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Previous studies revealed that the susceptibility, contacting preference, and recovery probability markedly alter the epidemic
outbreak size and threshold. *e recovery probability of an infected node is closely related to its obtained resources. How to
allocate limited resources to infected neighbors is extremely important for containing the epidemic spreading on complex
networks. In this paper, we proposed an epidemic spreading model on complex networks, in which we assume that the node has
heterogeneous susceptibility and contacting preference, and susceptible nodes are willing to share their resources to neighbors.
*rough a developed heterogeneous mean-field theory and a large number of numerical simulations, we find that the recovered
nodes provide resources uniformly to their infected neighbor nodes, and the epidemic spreading can be suppressed optimally on
homogeneous and heterogeneous networks. Besides, altering the susceptibility and contacting preference does not qualitatively
change the results. *e susceptibility of the node decreases, which makes the outbreak threshold of epidemic spreading increase,
and the outbreak size decreases. Our theory agrees well with the numerical simulations.

1. Introduction

Extensive phenomena, such as infectious disease spreading,
information diffusion, and rumor propagation, in real-world
systems, can be described as “epidemic” spreading on
complex networks [1–5]. In such a description framework,
nodes represent elements and edges stand for the rela-
tionship among nodes. Previous studies have revealed that
the evolution mechanisms, network topology, and social
factors are markedly affecting the epidemic outbreak size
and threshold point [6–12]. Researchers found that strong
degree heterogeneity makes the outbreak threshold vanish
[6]. When epidemic spreading dynamics on multilayer
networks, the system may exist a hybrid phase transition;
that is to say, the epidemic outbreaks globally in one network
and spreads locally in the other network [13–20]. Davis et al.
proposed a Maki–*ompson rumor-spreading model on

multipopulations and found that the dynamical behaviors
and threshold are closely correlated to the interactions
between spreading and subpopulations [21].

Designing effective strategies for fast recovery infected
nodes is extremely important for epidemic spreading. On
the one hand, researchers investigated the effects of recovery
probability on epidemic spreading, including the epidemic
outbreak size and threshold. Shu et al. [22] investigated the
recovery probability on the classical susceptible-infected-
recovered (SIR) model, by using an edge-based compart-
mental theory and synchronous updating numerical simu-
lations, and they found that the outbreak threshold increases
with the recovery probability for a given effective infection
probability. For epidemic spreading dynamics with general
recovery probability, the dynamic always exhibits a non-
Markovian character, which makes the theoretical predic-
tions deviate from the numerical simulations [23–27].
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Karrer and Newman [28] proposed a general message-
passing approach for epidemic spreading with a general
recovery probability distribution and markedly agree with
numerical simulations. de Arruda and his colleagues [29]
studied the roles of heterogeneous recovery probability and
revealed that the critical infectivity is smaller than the values
predicted by the quenched mean-field approaches.

On the other hand, researchers revealed that resources
(e.g., masks and specific drugs) are an essential factor for
epidemic recovery [30]. How to allocate the resources to
individuals is important. Chen et al. [31] assumed that the
recovery probability of infected nodes depends on the
amount of received resources. *rough a mean-field theory,
they found that the system exhibits a discontinuous phase
transition when the resources are insufficient. *ey further
consider the resource allocation correlates to a social net-
work, and they investigated the effects of different resource
allocation strategies, network topologies, interlayer degree-
degree correlations on the epidemic spreading, and phase
transition [32–35]. By using extensive numerical Monte-
Carlo simulations and the message-passing approach, they
revealed that the phase transition closely correlated to those
essential factors. Recently, Zhang et al. [36] revealed an
optimal resource allocation strategy, at which the epidemic
will be significantly suppressed.

In reality, distinct individuals always have different
susceptibility, inelastic resources (e.g., time), and medical
resources (e.g., masks). When a pandemic epidemic is
spreading, such as SARS and COVID-19, the above three
factors are essential. Neglecting any one may lead to a
misunderstanding about the spreading dynamics. To our
best knowledge, there is still a lack of a mathematical model,
which includes the three aspects simultaneously. Specifically,
we will propose a generalized SIR epidemic spreading dy-
namics considering the following three aspects. (i) Each
node with an inherent infection threshold is used to reflect
the susceptibility of nodes. *e larger the values of infection
threshold, the smaller the susceptibility. Miller [37] revealed
that an epidemic is a more likely outbreak for homogeneous
infectivity. Watts [38] revealed that the phase transition is
discontinuous when the infection threshold is included. (ii)
We preferred contact with neighbors due to the limited
energy and time. Previous studies found that preferring
contacting nodes with small degrees promotes the spreading
dynamics [39, 40]. (iii) *e resource supporting is deter-
mined by the degree of nodes. We propose an epidemic
spreading dynamic on complex networks, including the
above three aspects simultaneously, and discuss the effects of
the above three aspects of epidemic spreading dynamics.

*e organization of this paper as follows: in Section 2, we
describe our model. In Section 3, we develop a heteroge-
neous mean-field theory to describe the spreading dynamics.
*e numerical simulations are performed in Section 4. Fi-
nally, we draw the conclusions in Section 5.

2. Model Descriptions

In this section, we describe the epidemic spreading dynamics
model on complex networks.

2.1.NetworkDescription. To describe the complex networks,
we adopt two types of artificial networks: ER network and
uncorrelated configuration networks. We denoted the net-
work size, degree distribution, and average degree as N,
P(k), and 〈k〉 � 􏽐kkP(k), respectively. To build the ER
network, two nodes are connected with probability p.
*erefore, we have 〈k〉 � pN. For the uncorrelated con-
figuration networks, we build as follows: (i) assign the values
of N and P(k). Specifically, we assume the degree distri-
bution follows a power-law distribution P(k) � ζk− cD ,
where ζ � 1/􏽐kk− cD , cD represents the degree exponent.*e
larger of cD, the homogeneous of the degree distribution. (ii)
Assign degree for each node according to P(k). (iii) Assign
stubs for each node, and the number of stubs equals to its
degree. (iv) Randomly connect two stubs to build an edge.
Note that we disallow multiple edges and self-loops. (v)
Repeat step (iv) until there are no stubs left. *e pseudocode
of building the uncorrelated configuration networks is
shown in Algorithm 1 [41].

2.2. Epidemic Spreading Model. To describe the epidemic
spreading dynamics on complex networks, we adopt a
generalized susceptible-infected-recovered (SIR) model. A
susceptible node represents that the epidemic does not infect
it. Infected node stands for that it is infected by the epidemic
and can transmit the epidemic to susceptible neighbors.
Recovered nodes means that it is ever infected by the epi-
demic and recovered. Note that the recovered nodes will not
participate in the remaining spreading dynamics. *e im-
mune system response, such as allergic response, is de-
pendent on multiple exposures [42]. For the case of social
contagions, an individual should eliminate the adoption risk
before adopting a product, innovation, or behavior.
*erefore, multiple exposures are needed [43, 44]. To in-
clude this essential factor, we assume that every node has an
inherent infectious threshold f to reflect the fraction of
exposures that a susceptible node should have before be-
come an infected node.

*e epidemic spreading dynamics evolves as follows.
Initially, randomly select a fraction of s nodes as the seeds (i.e.,
in the infected state), and the remaining nodes are set to be in
the susceptible state. At each time interval t + δt, every in-
fected node i tries to transmit the infection to a neighbor
according to some strategies. Since every individual has
limited time and energy, he always preferentially contact some
neighbors to transmit the infection.We here assume that node
i selects node j to transmit the infection with probability:

pij �
k
β
j

􏽐j∈Ω(i)k
β
j

, (1)

where Ω(i) represents the neighbor set of node i. *e pa-
rameter β is used to reflect the preference of contacting. For
the case of β< 0, the infected node prefers to select neighbors
with a small degree. *e opposite situation happens when
β> 0. For the case of β � 0, the infected node contacts
neighbors randomly. If node j is in the infected or recovered
state, nothing happens. If node j is in the susceptible state,
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node i transmits the infection to node j with probability λδt.
*e number of infections yj is that node j plus one, i.e.,
yj � yj + 1. If yj ≥ 􏽬fkj􏽭, node j becomes infected, where kj

is the degree of node j and ⌈x⌉ means ceil of x.
*e recovery of infected nodes always needs some re-

sources from public resources and friends’ support. In this
paper, we focused on the latter one and assumed that every
susceptible node is generous and willing to share resources
with neighbors. *e number of resources of nodes is always
related to their inherent characteristics (e.g., age, profession
and education), which can be reflected by their degrees to
some extent. *e simplest way to describe the individuals’
characteristics is by using their degrees. *erefore, we as-
sume that a susceptible node u with degree ku provides kα

u

pieces of resources. For the case of α> 0, nodes with a large
degree can provide more resources. *e opposite situation
happens when α< 0. For the case of α � 0, all nodes provide
the pieces of the resource. To normalize the resources, we set
a susceptible node u can provide kα

u/max kα
min, kα

max􏼈 􏼉 re-
sources, where kmin and kmax represent the minimum and
maximum degrees, respectively.*erefore, the infected node
i receives ri pieces of resources and can be expressed as

ri � 􏽘
u∈Γ(i)

k
α
u

max k
α
min, k

α
max􏼈 􏼉

. (2)

With ri pieces of resources, Γ(i) is the set of susceptible
neighbors of node i, and the infected node i becomes re-
covered with rate:

μi � 1 − 1 − μ0( 􏼁
wri + μ1, (3)

where μ0 is the basic recovery probability with one piece of
resource. w is the resource utilization, and μ1 is endogenous
probability. *e spreading dynamics terminates when there
are no nodes in the infected state. In the final state, the
epidemic spreading size R is the fraction of nodes in the
recovered state. *e pseudocode of the spreading dynamics
is presented in Algorithm 2.

*e model proposed in this section includes three im-
portant aspects: (i) we use an inherent infection threshold to
describe the heterogeneous susceptibility of nodes, which is
similar to the threshold model, (ii) we preferentially contact

neighbors according to equation (1), and (iii) the recovery
probability is determined by equation (3).

3. Theoretical Analysis

To describe the epidemic spreading dynamics on complex
networks, we here use a heterogeneous mean-field theory
inspired by [6]. In this theory, we make the following three
assumptions: (i) nodes with the same values of degrees have
the same statistical properties, and (ii) the infected neigh-
bors, e.g., node u and v, of a susceptible node i transmit the
infection to node i independently. *at is to say, we neglect
the dynamical correlations among the states of neighbors.
(iii) In theory, we assume the epidemic spreading on large-
scale systems.

3.1. EvolutionDynamics. Denoting Sk(t), Ik(t), and Rk(t) as
the probability that a randomly selected node with degree k

at time t is in the susceptible, infected, and recovered state,
respectively. Since at very time step, a node should be in one
of the three states, we have

Sk(t) + Ik(t) + Rk(t) � 1. (4)

In what follows, we will derive the evolutions of Sk(t),
Ik(t), and Rk(t).

For a susceptible node u with degree k, the probability
that u is in the susceptible state decreases when u is infected
by neighbors. From the descriptions in Section 2, we know
that node u infected by neighbors at time t should fulfill a
situation; that is to say, node u at least received 􏼆fk􏼇 in-
fections from neighbors. We denote θk(t) as the probability
that a susceptible node with degree k receives one piece of
infection from a neighbor. *erefore, the probability that
node u receives m pieces of infections from neighbors is

φk(t) �
k

m
􏼠 􏼡 θk(t)􏼂 􏼃

m 1 − θk(t)􏼂 􏼃
k− m

. (5)

We further get that probability that node u becomes
infected at time t with probability:

(1) Input: N and P(k)

(2) Output: Network G

(3) Assigning degree ki for each node i according to P(k)

(4) Assigning stubs ℓi for each node with same value of degree ki, i.e., ℓi � ki

(5) while h � 􏽐iℓi > 0 do
(6) Randomly select two stubs m and n≠m to build an edge emn

(7) h⟵ h − 2
(8) end while

ALGORITHM 1: Building uncorrelated configuration networks.
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Ψk(t) � Sk(t) 􏽘
k

m�⌈fk⌉

φk(t). (6)

By using equations (5) and (6), we can describe the
infection threshold in our model. *e evolution of Sk(t) is

dSk(t)

dt
� − Ψk(t). (7)

Until now, we do not know the value of θk(t).
To obtain θk(t), we should compute the following three

aspects:

(i) *e probability of node u connects to an infected
neighbor node v with degree k′. In uncorrelated
network, we know the probability that an edge of
node u connects to node v is k′P(k′)/〈k〉, where 〈k〉

is the average degree of the network.
(ii) *e infected node v selects node u to contact

according to equation (1). *e weight of node v

selecting node u is kβ.*e weight of remaining k′ − 1

neighbors is H(k′ − 1), where H is the average
weight of node v selecting one node to contact except
for node u, and it is expressed as

H � 􏽘

k″

k″P k″( 􏼁

〈k〉
k″( 􏼁

β

�
〈kβ+1〉

〈k〉
,

(8)

where 〈kβ+1〉 is the β + 1-th moment of the degree
distribution. *erefore, the preferred contact proba-
bility that node v selects node u to contact is

G k, k′( 􏼁 �
k
β

H k′ − 1( 􏼁 + k
β. (9)

(1) Input: Network G and dynamical parameters λ, μ1, μ0, w, α, β, f, ρ0;
(2) Output: Epidemic spreading size R;
(3) Randomly selecting ρ0 seeds, and put them into queue Q1;
(4) t⟵ 0;
(5) Initialize yj for every node j;
(6) while Q1 is not empty do
(7) Initialize Q2 to be empty;
(8) δt⟵ 1/length(Q1);
(9) for i � 1 to length(Q1) do
(10) Node i of Q1 selects one neighbor j to contact according to equation (1);
(11) Node i transmits the infection to node j with probability λδt if j is in the susceptible state;
(12) if Node j receives the infection from i then yj←yj + 1
(13) end if
(14) if yj ≥ 􏽬fkj􏽭 then
(15) Node j becomes infected, and put it into queue Q2;
(16) end if
(17) end for
(18) for i � 1 to length(Q1) do
(19) Recovering node i according to equation (3);
(20) if Node i recovers then
(21) Delete node i from queue Q1;
(22) end if
(23) end for
(24) for i � 1 to length(Q2) do
(25) Adding node i to queue Q1;
(26) Deleting node i from queue Q2;
(27) end for
(28) t←t + δt

(29) end while

ALGORITHM 2: Epidemic spreading dynamics.
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(iii) Node v successfully transmits the infection to node
u with probability λ. Combining the above three
aspects, we obtain

θk( t ) � λ􏼢 􏽘

k′

k′P( k′ )
〈k〉

G( k, k′ )Ik′( t )􏼣. (10)

Inserting equation (10) into equation (7), we get the
evolution of Sk(t).

For the evolution of Ik(t), we should consider two as-
pects. On the one hand, the susceptible node u with degree k

becomes infected with the probability Ψk(t), which induces
the increase of Ik(t). On the other hand, the infected nodes
with degree k become recovered μk, which causes the de-
crease of Ik(t). *e expression of μk is

μk � 1 − 1 − μ0( 􏼁
wϕk + μ1, (11)

where ϕk is the pieces of resources that node v receives from
neighbors. According to equation (2), we know

ϕk � (k − 1) 􏽘

k′

k′P k′( 􏼁

〈k〉
Sk′(t)

k′
α

max k
α
min, k

α
max􏼈 􏼉

. (12)

On the right hand of equation (12), we times k − 1 since
an infected node v must connect to an infected neighbor. By
using equations (11) and (12), the recovery probability can
be computed. *erefore, we get the evolution of Ik(t) as

dIk(t)

dt
� Ψk(t) − μkIk(t). (13)

*e evolution of Rk(t) is

dRk(t)

dt
� μkIk(t). (14)

Combining equations (7), (13), and (14), we can get the
fraction of nodes in the susceptible, infected, and recovered
state as

X(t) � 􏽘

kmax

k�1
P(k)Xk(∞), (15)

where X ∈ S, I, R{ }. When t⟶∞, the epidemic outbreak
size is

R(∞) � 􏽘

kmax

k�1
P(k)Rk(∞). (16)

3.2. >reshold Analysis. In what follows, we study the
threshold point λc of the system. Previous studies indicated
that when λ≤ λc, the global epidemic spreading is impos-
sible. Otherwise, when λ> λc, the global epidemic outbreak
becomes possible. Initially, we only randomly a vanishingly
small fraction of seeds. *us, we have Ik(0) ≈ 0, Sk(0) ≈ 1,
and the high order of Ik(t) can be neglected when t⟶ 0.
Rewriting equation (13) and neglecting the high orders of
O( Ik(t)2 ), when 􏼆fk􏼇 � 1, we have

dIk(t)

dt
� Ψk(t) − μkIk(t)

� Sk(t) 1 − 􏽘

⌈fk⌉− 1

m�0

k

m

⎛⎝ ⎞⎠ θk(t)􏼂 􏼃
m 1 − θk(t)􏼂 􏼃

k− m⎧⎨

⎩

⎫⎬

⎭

− 1 − 1 − μ0( 􏼁
wϕk + μ1􏽨 􏽩Ik(t)

≈ kθk(t) − μ0wϕk + μ1( 􏼁Ik(t)

≈ kλ 􏽘

k′

k′P k′( 􏼁

〈k〉
G k, k′( 􏼁 − δkk′ μ0w􏽥ϕk + μ1􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦Ik′(t),

(17)

where δkk′ � 1 only when k � k′, and 􏽥ϕk � (k − 1)

􏽐k′((k′P(k′))/〈k〉)(k′
α/(max kα

min, kα
max􏼈 􏼉)). Rewriting

equation (17), we have

d I
→

(t)

dt
� L′ I

→
(t), (18)

where I
→

(t) � Ikmin
(t), . . . Ikmax

(t)􏽮 􏽯
T

and Lkk′′ �

kλ[ 􏽐k′((k′ P( k′ ))/〈k〉)G( k, k′ ) − δkk′( μ0w􏽥ϕk + μ1 ) ].
In a similar way, we study the case of 􏼆fk􏼇> 1. We have

d I
→

(t)

dt
� L″ I

→
(t), (19)
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whereLkk′″ � (2k − k2)λ[􏽐k′((k′P(k′))/〈k〉)G(k, k′) − δkk′
(μ0w􏽥ϕk + μ1)]. Combining the above two cases, we have

d I
→

(t)

dt
� L I

→
(t), (20)

where

Lkk′ �
Lkk′′ , if ⌈fk⌉ � 1,

L″kk′, otherwise.

⎧⎨

⎩ (21)

According to the stability analysis in [45], we know the
global epidemic outbreak only when the largest eigenvalue
Λ1(L) ofL is larger than 0. Otherwise, the global epidemic
outbreak is very small. *e critical epidemic transmission
probability λc fulfills

Λ1(L) � 0. (22)

4. Simulation Results and Analysis

We perform a large number of numerical simulations on the
Erdös–Rényi (ER) and scale-free (SF) networks with net-
work size N � 104, and average degree 〈k〉 � 10. *e basic
recovery probability is μ0 � 0.1, the endogenous recovery is
μ1 � 0.1, the resource utilization is w � 0.1, and the initial
seed ratio ρ0 � 0.0005. By performing extensive numerical
simulations, we found that other values of μ0, μ1, and w do
not qualitatively affect the results presented in this paper.
*rough a large number of theoretical analysis and exper-
imental simulation, we find that other parameters change the
conclusion presented in this paper qualitatively. All results
presented in this paper are averaged at least 1000 times on 10
different networks.

On the ER network, we first study the variation of the
outbreak size R(∞) with the transmission probability λwith
different preference selection parameters β as shown in
Figure 1. It can be found from Figure 1(a) that as the
transmission probability increases, the probability of sus-
ceptible nodes gets the infection increased; thus, the out-
break size also increases. *e outbreak size decreases first
and then increases with the resource provision parameter α.
Specifically, when λ is the same, the outbreak size corre-
sponding to α � − 0.5 is the largest, the outbreak size of α �

0.5 is between three α values, and the smallest size is among
the three α values when α � 0.0, while the outbreak
threshold increases first and then decreases with the resource
provision parameter α according to equation (22). Specifi-
cally, the outbreak threshold corresponding to α � − 0.5 is
the smallest, the outbreak threshold of α � 0.5 is between
three α values, and the largest size is among the three α
values when α � 0.0. *erefore, there is αopt at which out-
break size R(∞) is the smallest and outbreak threshold is the
largest (to be detailedly discussed in Figure 2). We can
understand the above phenomena as follows. For the case of
α � 0.0, a susceptible node j provides a piece of resource to
its infected neighbor i. For other values of α, the node j at
most provides one piece of resource to node i. In this sit-
uation, node i receives the maximum resources ri � |Γi|

when α � 0.0, where |Γi| is the number of the set Γi.
*erefore, node i has the largest recovery probability when
α � 0.0.

*ree peak values of Δ in Figure 1(d) represent the
simulated outbreak threshold for α � − 0.5, α � 0.0, and
α � 0.5, respectively. Δ is obtained through variability cal-
culation, and the calculation formula is [46]

Δ �

������������������

〈R(∞)
2〉 − 〈R(∞)〉

2
􏽱

〈R(∞)〉
. (23)

*ey correspond to the arrows in Figure 1(a) repre-
senting the theoretical outbreak threshold. It can be seen that
the theoretical prediction of R(∞) and theoretical outbreak
threshold well agree with the numerical predictions. *e
reason for the deviation between the theoretical and sim-
ulation results is the strong correlation between the neighbor
state and the finite size network.*emost important thing is
that we found that changing the value of β did not quali-
tatively change the above results. *e numerical simulation
results are good agreement with the theoretical predictions.

In Figures 3 and 4, we study the effects of different values
of f on the epidemic spreading dynamics. With the increase
of f, the epidemic outbreak threshold increases and the
epidemic outbreak size decreases. Different from previous
studies [38], in which the phase transition is discontinuous
when the infection threshold is large enough, we find that
R(∞) always increases continuously with λ regardless of f.
We explain the result as follows. In our model, an infected
node’s contact ability is limited; that is, an infected node only
contacts one neighbor to transmit the infection. In this
situation, the susceptible state node becomes infected
gradually and cannot induce a finite fraction of susceptible
nodes becoming infected state simultaneously. *us, R(∞)

increases with λ continuously. In addition, we also observed
a phenomenon similar to Figure 1. Specifically, when the
propagation probability λ is the same, the outbreak size
R(∞) reaches the minimum when α � 0.0 and the outbreak
threshold reaches the maximum when α � 0.0. *at is, there
is also an optimal α value here. Above all, from Figures 1, 3,
and 4, we can see that the change in f value has no effect on
αopt � 0.0, and αopt always exists, since the recovery prob-
ability reaches the maximum value at αopt. Next, it will be
systematically discussed and studied.

In Figure 2, we explore the effects of α and λ on the
epidemic spreading on ER networks. From Figures 2(a)–
2(c), we observe that when α< 0, the R(∞) decreases with α
while α> 0 and increases with α. *e variation of the out-
break threshold is opposite to the outbreak size. When α< 0,
the outbreak threshold increases with α while α> 0 and
decreases with α. *erefore, there is an optimal value
αopt � 0, i.e., white dotted line, where R(∞) reaches the
minimum value, and λc is the largest. Because when α � 0,
the volume of resources received by the infected nodes for
recovery is the largest, which makes them become recovered
quickly. *e value of the parameter β does not qualitatively
change the above phenomena. We also mainly realized that
the change of the parameter f cannot qualitatively change
these phenomena, but the increase of f can reduce the
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outbreak size and increase the outbreak threshold, which is
the same as the conclusion obtained in Figures 1, 3, and 4.

We further research the effects of λ and α on spreading
dynamics on SF networks with power-law degree distri-
bution P(k) � ck− c, where c is the degree distribution ex-
ponent and c � 1/􏽐kk− c, and the maximum degree is set as
kmax ∼

��
N

√
. *e simulations are performed on a strong

heterogeneity network with c � 3. We plot the phase dia-
gram of the theoretical outbreak sizeR(∞) as a function of α
and λ on the SF network with different values of β in
Figure 5. We find similar phenomena in Figure 2.

Specifically, in Figures 5(a)–5(c), for α< 0, the R(∞) de-
creases with α and outbreak threshold increases with α. For
α> 0, the R(∞) increases with α and outbreak threshold
decreases with α. *us, there is an optimal value of α that
makes R(∞) is the smallest, and the outbreak threshold is
the largest, i.e., αopt � 0. *e explanation of this optimal
phenomenon is the same as that on the ER network of
Figure 2. No matter how the values of β and f change, the
optimal value of α will not disappear. As f increases, the
final outbreak size decreases, and the outbreak threshold
increases. *e theoretical and simulation results agree well.
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Figure 1: *e variation of the outbreak size R(∞) with the transmission probability λ with different preference selection parameters β. (a)
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5. Conclusion

In the process of the real epidemic spreading, first of all,
the possibility of each node being susceptible to infection
is different; that is, each node itself has an inherent in-
fection threshold to reflect the susceptibility of the node.
Next, due to the limited energy and time of epidemic
disseminators, the process of epidemic transmission is
affected. Finally, the resource supporting is determined by
the degree of nodes. *e above three aspects have a sig-
nificant impact on the spread and recovery of the epi-
demic. Previous works have separately studied the
influence of three aspects of epidemic dynamics, but no
studies have included the three aspects into the same
dynamics of epidemic spreading at the same time.
*erefore, we proposed a model, including three aspects
to study them simultaneously. Besides, we extended the
heterogeneous mean-field theory to describe the model.
*rough theoretical analysis and a large number of nu-
merical simulations, we find that the recovered nodes
provide resources uniformly to their infected neighbor
nodes, and the epidemic spreading can be suppressed
optimally, i.e., the outbreak threshold is maximum, and
the outbreak size is minimum for α � 0.0 on homogeneous
and heterogeneous networks. *e change of threshold
parameter f and preference selection parameter β has no
qualitative change to the above conclusion.*e increase of
f increases the infection threshold of each node; that is,
the susceptibility of the node decreases, thus increasing
the outbreak threshold of epidemic spreading and de-
creasing the outbreak size. *e conclusion of this paper
can be used as a reference for the suppression of epidemic
spreading, and the theory proposed can be applied to
other network dynamic processes. For example, unin-
fected individuals may provide uniform resources and
help susceptible individuals who can be contacted. *e
research in this paper can be extended to more real
networks, such as sequential networks and multilayer
networks. Finally, our research results may shed some
light on studying the critical phenomena on complex
networks.
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