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A Mixed Logic Dynamic (MLD) model and control method based on mode selection are proposed for the Buck convertor. In
establishing the hybrid system model, the factors such as the inductor current are neglected, and the Model Predictive Control
(MPC) is used to switch the most favorable working state of the control target. Since the modeling process ignores the inductance
and current, it is necessary to convert the optimization prediction control resulting to avoid the problem that the model is
inconsistent with the control object. �e method proposed in this paper uses fewer auxiliary logic variables and mixed logic
variables in the modeling process, simplifying the model and improving the solution speed. �is method can not only make the
Buck converter work in the Continuous Current Mode (CCM) but also work in the Discontinuous Current Mode (DCM),
extending the adjustment range of the Buck converter. �e simulation results show that the proposed method has a better control
performance than the traditional MLD model.

1. Introduction

DC-DC converters have been greatly used in daily life. �e
traditional DC-DC converter modeling methods mostly use
the average and approximate ones to obtain the linear model
of the converter, such as the state-space small signal aver-
aged model. �e linear models and theories are used to
design the pulse width modulation- (PMW-) based con-
trollers, whether the controller is MPC, neural networks,
fuzzy control, or others [1–4]. For the traditional method, its
accuracy depends on the working point. If the working point
changes over a large range, the performance of the controller
will degrade. In addition, the dynamics within the switching
period are ignored in the average model, which may lead to
fast-scale instability [5].

DC-DC converters belong to a typical hybrid system
with a continuous part and discrete part. �e continuous
part is the linear system determined by the switching state,
and the discrete part is the switching action of the switch.
�e hybrid modeling of the converter is accurate in the sense
of no approximation or linearization used; its performance
does not depend on the working point. In the traditional

modeling method, it is di�cult to fully re�ect the nonlinear
characteristics of the converter. For hybrid system modeling
of the converters, methods such as Piecewise A�ne, Hybrid
Automata [6, 7], and MLD model are proposed [8, 9].
Among them, the MLD model provides a framework for
modeling DC-DC converter considering di�erent working
modes, with all constraints within an optimal problem
[5, 10].

At present, the hybrid modeling theory has been
gradually applied to the modeling and control of DC-DC
converters [9, 11, 12]. As the converters have the discrete
characteristics, the mixed logic dynamic model is built by
unifying the two parts in one system without approximation
and averaging [13]. �us, an accurate model for the
switching converter is established with the MLD model
re�ecting the dynamic characteristics of the system. For the
application of the switching converter, Mihaela Sbarciog
proposed a MLD model of the boost converter [2], deter-
mination of the speci�c implementation method of theMLD
model applied to the converter. However, this method uses
too many logical variables and the model is more compli-
cated. �e converter cannot be operated in the DCM mode.
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Hejri and Giua [14] proposed the concept of forward MLD
(FMLD) model and backward MLD (BMLD) model; he
classified the traditional MLD model as BMLD and solved
the one-step delay of the BMLD model when working mode
switch in the FMLD model. In the subsequent work, the
proposed model is improved and a voltage PI controller is
added externally for output compensation [15]. ,is method
allows the system to work in the DCM mode and also uses
more logic variables. Hejri and Mokhtari proposed a boost
converter control model including CCM and DCM modes,
dividing the control problem into several regions for the
optimal solution of predictive control.,e control rate of the
corresponding region is obtained by looking up the table. So,
the operation speed is enhanced by this method [16].
However, this method does not improve the model sim-
plification but chooses to optimize the control method. Ren
et al. proposed a simplified MLDmodeling method in which
he uses fewer logic variables to reduce the solution time and
also uses the PI compensator to adjust the current reference
value in the outer loop to reduce the steady-state error of the
output voltage [5]. However, this method limits the oper-
ating range of the DC-DC converter due to the constraints of
the model when the converter is controlled, so that the
system cannot switch from the CCM mode to the DCM
mode.

Aiming at the modeling control problem by the Buck
converter, this paper proposes a mode selected MLD
(MSMLD) modeling and control method. ,e control of the
object system is realized through the establishment of the
MLD model, the predictive control, and the transformation
of predictive control results under constraints. Experimental
results show that the system can not only work in CCM
mode and DCMmode but also use two discrete variables by
which to improve the speed of the algorithm. Experimental
results prove that the proposed method has a better control
performance.

2. Buck Converter MSMLD Model and Its
Predictive Control Method

In this paper, the inductor current is ignored in themodeling
of Buck converter. ,e modeling process only considers the
working state of the converter to establish theMLDmodel. It
converts the general control problem into the optimal state
selection according to the control target and by the MLD
model. ,e most favorable working state for the control
target is selected by the MPC method, which the switch
switched. Since the MLD modeling ignores the inductor
current factor, it is necessary to convert the optimization
result of prediction control under the constraint of the
inductor current to avoid model mismatch.

2.1. Model Establishment. ,e principle of the Buck con-
verter and the equivalent circuit is shown in Figure 1, where
L is the energy storage inductor, C the output filter capacitor,
R the load resistor, Vg the voltage input, S the ideal switch
tube, and D the freewheeling diode. ,e circuit state is
switched by the on/off of the switch tube, with the circuit

entering the first switching state when the switch tube
conduction is shown in Figure 1(b). In this state, the power
supplies energy into the energy storage element in the
circuit; the circuit enters into the second switching state
when the switch tube turns off and is shown in Figure 1(c).
,e energy storage component gradually bleeds. At this
time, the inductor current decreases linearly. ,e inductor
current drops to zero and the switching transistor not turned
on, and the circuit enters the third switching state, as shown
in Figure 1(d).

,e independent states of the Buck converter are the
inductor current iL(t) and the output voltage vo(t) across
the output capacitor. x(t) � [iL(t), vo(t)] is the status vector.
,e equation to state for each state can be written as

_x(t) � Anx(t) + Bn, n � 1, 2, 3,

y(t) � Cx(t),
(1)
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(2)

where n� 1, 2, and 3, which, respectively, corresponds to the
state in which the switch tube is turned on, the switch tube is
turned off, and the inductor current is greater than zero. ,e
switch tube turnoff inductor current is equal to zero. ,e
three logic variables are defined corresponding to the above
three state equations:

δ1 � 1⟺ _x(t) � A1x(t) + B1,

δ2 � 1⟺ _x(t) � A2x(t) + B2,

δ3 � 1⟺ _x(t) � A3x(t) + B3.

(3)

Since the converter can only be in one state at the same
time, the logical variables have the following constraints:

δ1 + δ2 + δ3 � 1. (4)

,ere are three logical variables with one each time and
only one of which is 1. According to this state equation,
logical variables can be rewritten as
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(6)

According to δ1 + δ2 + δ3 � 1, the state variables δ1 and
δ2 can be used to represent the state equation to the system.
In the above modeling process, the resulting logical variables
are constrained as follows:

δ1 � 1⟺ δ2 � 0

δ2 � 1⟺ δ1 � 0
 ⟺

δ1 + δ2 ≥ 0,

δ1 + δ2 ≤ 1.
 (7)

State 1: δ1 � 1, δ2 � 0; state 2: δ1 � 0, δ2 � 1; state 3:
δ1 � 0, δ2 � 0. Discretize the system as follows:
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(8)

where T is the sampling period. ,e equations of state are
written separately:

x1(k + 1) � x1(k) + k1 δ1 + δ2( x2(k) + k4δ1,

x2(k + 1) � k2 δ1 + δ2( x1(k) + k3x2(k).
(9)

,e auxiliary mixed variable z(k) � δ · x(k) is defined.
,ere is the product of the logical variable and the con-
tinuous variable, shown as

z1(k) � δ1x1(k),

z2(k) � δ2x1(k),

z3(k) � δ1x2(k),

z4(k) � δ2x2(k).

(10)

,e resulting auxiliary mixed variable constraints are as
follows:

zn � δn · f(x)⟺

zn ≤Mδn,

zn ≥mδn,

zn ≤f(x) − m 1 − δn( ,

zn ≥f(x) − M 1 − δn( ,
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(11)

where M and m are the maximum and minimum or upper
and lower bounds of f(x).

,e equation of state is organized as follows:

x1(k + 1) � x1(k) + k4δ1 + k1z2(k) + k1z4(k),

x2(k + 1) � k3x2(k) + k2z1(k) + k2z3(k).
(12)

,e MLD model of the Buck converter is available:

x(k + 1) �
1 0

0 k3
 x(k) +

k4

0
 u(k)

+ Oδ(k) +
0 k1 0 k1

k2 0 k2 0
 z(k),

y(k) � 1 0 x(k),

(13)

where the auxiliary logical variable δ(k) � δ2(k) and
the auxiliary mixed variable z(k) � z1 z2 z3 z4 

T. Let
u(k) � δ1(k) be the input. ,e logical variable δ2(k) in the
modeling process is also included in z(k). ,e model
contains only two auxiliary logic variables and four mixed
logic variables, greatly reducing the complexity of the model.
,is MLD is simpler than that in the literature [2, 5, 14–16].

2.2. Mixed Logic Dynamic Model Predictive Control. Since
the mixed logic dynamic model contains information such
as continuous dynamics, discrete states and physical con-
straints, the model predictive control is used to optimize the
continuous and discrete parts of the model, which are
significant control developments [17, 18]. ,e optimized
control is directly applied to the system [19–21]. ,e control
problem of this paper can be expressed: given the current
system state x(k) and the control target ye(k), the optimal
control sequence Tp is solved within the prediction step
u0, u1, . . . , uT− 1 , and the first control amount in the control
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Figure 1: Buck converter working state equivalent circuit.
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sequence is applied to the system. Use the following ob-
jective function:

min J � x(k) − xe

����
����
2
Q1

+ y(k) − ye

����
����
2
Q2

, (14)

where Q1 andQ2 are the weight matrices, x andy are the
current state variable and the output value, and xe, ye each
represents the state variable and the expected value of the
output.

,e MLD model is included in the constraint, i.e., the
state equation of the model is used as the equality constraint.
,e model’s inequality constraint matrix is used as the
inequality constraint of the function to be optimized:

MLDmodel,

x(0 | t) � x(t),

xmin ≤x(1 | t), x(2 | t), . . . , x Tp | t ≤xmax.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Since the model contains both integer and noninteger
variables, the above formula is written as a form of mixed
integer quadratic programming (MIQP) and solved by the
branch and bound (B&B) algorithm.,e principle is to divide
the total solution space into smaller subsets and to calculate
the target lower bound for each subset (for the minimum
problem), gradually reducing the optimal solution range by
continuously discarding the subsets that do not meet the
requirements. Determining the optimal solution is achieved
by continuously dividing the feasible solution range and
gradually reducing the upper and lower limits of the solution.

,e hybrid system controller based on the MPC and
MLD models has the properties of stability, traceability, and
constraint fulfilment, and its theoretical basis can be found
in [22, 23].

2.3. Predictive Control Result Conversion. In the process
shown above, the predictive control only selects the most
favorable working state for the control target according to
the object model, and the modeling process does not con-
sider inductor current. If the above optimization results are
directly used for control, the prediction model will be in-
consistent with the actual object, causing a control deviation.
,erefore, the result of the optimization solution needs to be
converted according to the inductor current. In this process,
the normal state and the “morbid state” (the state in which
the system state is indicated by the optimized switching state
and the inductor current is unreasonable) will appear, which
is described in detail below.

Let δ′ � [δ1, δ2] be the logic variable. For the inductor
current iL(t)> 0, the optimization results are shown in Table 1.

,e switching state obtained by the predictive control
optimization solution is δ′ � 0 0 

T, which means that
the system entering state3 at the next time is more favorable
to the control target. However, this is inconsistent with the
inductor current greater than zero, which is called the
“morbid” state. It means that the inductor current is greater
than that in the case of 0, and that the system cannot enter
the state3, so when this happens, the state should be
converted to δ′ � 0 1 

T into state2. When the inductor

current is greater than zero, the other predictive control
optimization results are normal.

Similarly, the state of the inductor current iL(t) � 0 also
has the optimization results in Table 2.

When the switching state obtained by the predictive
control optimization solution is δ′ � 0 1 

T, it means that
at the next time the system entering state2 is more favorable
to the control target, but that the inductance current is equal
to zero, which is also called as a “morbid” state. In this case,
the state should be converted to δ′ � 0 0 

T and enter
state3.

According to the above state switching process, the state
transition of the Buck converter is shown in Figure 2.

,e state in the “{}” sign in Figure 2 is the “morbid state”
obtained by the optimal control. ,is “morbid state” is
impossible for the real system; the state without the “{}”
bracket is the normal state, and the system state transitions
can be directly performed based on predictive control op-
timization results. In the mixed logic dynamic model of a
general Buck converter, these “morbid” states are limited by
constraints and therefore do not occur in the model.
However, the modeling method proposed in this paper will
have these morbidities. It is necessary to adjust these
“morbid” optimization results according to the inductor
current to complete the prediction model state transition,
which is represented by the symbol “≥.”

,e model prediction control flow chart based on the
MSMLD model is shown in Figure 3.

3. Experimental Result

,e simulation results of the Buck converter given in this
section are shown in Figure 4. ,e system parameters are
given as follows: input voltage 15V, energy storage induc-
tance 1mH, filter capacitor 300 μF, load resistance 13Ω,
target output voltage 4V, and sampling frequency 20 kHz
(the higher the frequency, the smaller the voltage fluctuation,
but the control period will be shorter; shorter control cycles
are detrimental to slower predictive control that translates
into MIQP problems), directly with the load voltage as the
control target. It can be seen from Figure 4 that the proposed
method allows the Buck converter to work not only in the
CCM state but also in the DCM state. Only two discrete
variables are used in the model.

For the MLD modeling method proposed in this paper,
the MLD model does not contain the constraint on the
inductor current. ,erefore, it is necessary for the model
prediction control optimization result to be converted
according to the inductor current. Otherwise, the prediction
model and the control model will be inconsistent. ,e
control results are shown in Figure 5. In the control process
that does not include the conversion of the predictive control
optimization results, the lack of information on the inductor
current makes the control deviation of the model and the
controlled system inconsistent. When the deviation is large,
the system may get out of control.

,e SMLD method proposed in [5] cannot switch to
DCM mode due to the constraint limitation in controlling

4 Complexity



the Buck converter. �erefore, after the system overshoots,
the inductor current oscillates around zero, so the load
voltage is adjusted slowly, which is shown in Figure 6
(control target is 8 V). Reference [2] also has the same re-
sult. �e method proposed in this paper increases the fea-
sible domain of the system operation and smoothly switches
to the DCMmode during the start-up phase, thus improving
the adjustment speed of the output voltage because the
modeling method in this paper only uses two logical vari-
ables and four mixed auxiliary variables to improve the
speed of predictive control.

�e Matlab tic/toc method is used to obtain the running
time by di�erent algorithms. �e prediction step size,
control step length, and solution time length of the di�erent
algorithms are the same. �e average running time is cal-
culated 20 times. All are shown in Table 1. It can be seen that
the method is simpler and faster than the method proposed
in [2, 5] and that it greatly improves the controllable range of
the system. �e MIQP problem is NP-hard [22]. �e
computational power required for the MIQP problem and
B&B algorithm is large, especially when the prediction
horizon is not one.�erefore, the simplicity of the method is
of importance for the Buck converter [5, 10].

�e SMLD proposed in [5] has fewer optimized discrete
variables and is combined with the idea of one-step prediction
that the inductor current is set to zero [14]. By comparing the
model prediction control optimization indicator, the Buck
converter can enter the DCM. �e combined method is
compared with the method proposed in this paper, as shown
in Figure 7. It can be seen that the combined method and the
method proposed in this paper are basically consistent in
control performance. However, the method is worse than the
proposed method in terms of the solution speed and the
number of discrete variables. �e solution speed and number
of auxiliary variables are shown in Table 3.

In the case where the control target changes, by com-
paring the e�ects of the method with the MSMLD, the
SMLD, and the SMLD for setting inductor current, the result
is shown in Figure 8. �e control target is changed from 8V
to 10V. It can be seen that the MSMLD proposed in this
paper still has a good control e�ect.

Compared with the traditional PI control method, the
MPC method based on small signal averaged model, and the
fuzzy sliding mode control method (FSMC) [4], the proposed
method has a shorter adjustment time, as shown in Figure 9.

Table 2: Optimization result conversion of the model predictive control.

Inductor current Predictive control optimization result Result conversion
x1 � 0 δ′ � 1 0[ ]T
x1 � 0 δ′ � 0 1[ ]T δ′ � 0 0[ ]T
x1 � 0 δ′ � 0 0[ ]T

x1 > 0, δ′ = [1 0]

x1 = 0, δ′ = [1 0]

x1 > 0, δ′ = [0 1]

x1 > 0, δ′ = [1 0]

x1 = 0, δ′ = [0 0]

x1 = 0, δ′ = [0 0]

State 1

State 3State 2

x1 > 0, δ′ = [0 1]

{x1 > 0, δ′ = [0 0]}

{x1 = 0, δ′ = [0 1]}

{x1 > 0, δ′ = [0 1]}

{x1 = 0, δ′ = [0 0]}

Figure 2: Buck converter state transition diagram.

Table 1: Predictive control optimization result conversion.

Inductor current Predictive control optimization result Result conversion
x1 > 0 δ′ � 1 0[ ]T
x1 > 0 δ′ � 0 1[ ]T
x1 > 0 δ′ � 0 0[ ]T δ′ � 0 1[ ]T

Start

Initialize the MSMLD model according to equations (4)~(14), using the
T, Vg, R, C, L parameters. Set parameters such as number of iterations k,

predictive horizon Tp, control horizonTM, and so on.

Convert the MPC control problem given by equations (15) and (16) to a
MIQP problem. B&B algorithm is used to slove the MIQP problem.

Get optimized calculation result based on the updated feedback status and
control objectives.

Converted the state of the Buck converter and obtain the control parameter
u(k), according to Figure 2.

Calculate the output of the object buck converter, according to equations
(1) and (2) using the T, Vg, R, C, L parametres and system status of object.

System status update.

Did the number of iterations arrive?

Yes

End

No

Figure 3: Control �ow chart based on the MSMLD model.
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Figure 7: Comparison of SMLD combined with inductor current zero prediction and proposed method. (a) System state of one step
prediction and MSMLD. Control input of (b) one step prediction and (c) MSMLD.
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In a noisy environment, the control effect of the pro-
posed method will decrease. However, the effect of noise can
be reduced by adjusting the model feedback coefficients (α),
as shown in Figure 10. ,e noise is Gaussian noise with a
mean of zero.

In practical situation, the variation of load resistance
makes the current reference change. Due to the uncertainty
of the parameter, the steady state error of output voltage will
increase. Some methods for hybrid model control have been
proposed to solve this problem [5, 9, 16, 21]. Most methods

Table 3: Computational time of models mentioned in papers.

Model Computational time(s) Number of auxiliary variables
SMLD model in [5] 2.024556 3 auxiliary, 4 mixed
MLD in [2] 2.345872 7 auxiliary, 7 mixed
MSMLD in this paper 1.614711 1 auxiliary, 4 mixed
Combination method in [5] and method in [14] 3.104398 3 auxiliary, 4 mixed
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Figure 8: Inductor current and output voltage responses of three methods when target voltage changes.

0 20 40 60 80 100 120 140 160 180 200
t

15

10

5

0

Lo
ad

 v
ol

ta
ge

MSMLD
PI

MPC
FSMC

Figure 9: Comparison of different control methods.
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are more complicated than PI controller [5, 16]. In order to
eliminate steady state error, the outer loop uses the PI
controller, with the inner loop being MSMLD in this paper.

In the case where the load resistance changes, by
comparing the effects of the method with the MSMLD and

the MSMLD with PI controller, the result is shown in
Figure 11. ,e load resistance is changed from 13Ω to 26Ω
at t � 500. It can be seen that the MSMLD with PI controller
can eliminate the steady state error caused by the variation of
load resistance.
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Figure 10: Comparison of control results of different feedback coefficients with same Gaussian noise.
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4. Conclusion

In this paper, a mode selected MLD model is proposed for
the Buck converter, which switches the most favorable state
of the control target at the current time. Compared with the
traditional Buck converter MLDmodel, fewer auxiliary logic
variables and mixed logic variables are used, so it has a faster
solution speed. ,is method considers the state of the
“morbid” into the system that was originally unreachable in
the model, rather than it being constrained to be outside of
the solution domain. ,e “morbid” state is transformed
according to the magnitude of the inductor current to
migrate to the correct system state, greatly expanding the
feasible domain of the system. ,e effectiveness of the
proposed method is proved by simulation experiments and
it has a better system performance than the traditional MLD
model.
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