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Dynamical complexity and multistability of electrostatic waves are investigated in a four-component homogeneous and
magnetized lunar wake plasma constituting of beam electrons, heavier ions (alpha particles, He++), protons, and suprathermal
electrons. 'e unperturbed dynamical system of the considered lunar wake plasma supports nonlinear and supernonlinear
trajectories which correspond to nonlinear and supernonlinear electrostatic waves. On the contrary, the perturbed dynamical
system of lunar wake plasma shows different types of coexisting attractors including periodic, quasiperiodic, and chaotic, in-
vestigated by phase plots and Lyapunov exponents. To confirm chaotic and nonchaotic dynamics in the perturbed lunar wake
plasma, 0 − 1 chaos test is performed. Furthermore, a weighted recurrence-based entropy is implemented to investigate the
dynamical complexity of the system. Numerical results show existence of chaos with variation of complexity in the
perturbed dynamics.

1. Introduction

'e Moon is nonconducting and has no atmosphere and
intrinsic magnetic field, so the solar wind freely interacts
with the Moon and forms a wake on the antisunward side of
the Moon [1]. 'e magnetic field of solar wind enters the
Moon easily compared with particles of solar wind. 'e
variations in density across the boundary of lunar wake steer
the solar wind plasma to replenish the void area by ambi-
polar diffusion [2, 3].'e presence of ion and electron beams
with fluctuating temperature of solar wind plasma produces
different kinds of waves. 'e wind satellite revealed ion
beams [2] and different modes of nonlinear waves [4] in the
tail region of lunar wake. A lunar orbiter SELENE revealed
the existence of electrostatic waves which are generated due
to the electrostatic instability driven by energetic solar wind
particles in the lunar wake [5].

'e particles of astrophysical plasmas such as solar wind
plasma were generally found to follow non-Maxwellian
distribution containing suprathermal particles with high-
energy tails [6]. 'e kappa distribution appropriately defines
the influence of suprathermal particles [7]. Recently, Saini
[8] and Devanandhan et al. [9] investigated arbitrary
nonlinear wave structures in two-temperature plasmas with
suprathermal electrons and found the effect of suprathermal
electrons on amplitude of solitons.

Some nonlinear systems can exhibit many solutions with
specified parameters and distinct initial conditions [10]. 'is
nonlinear behavior is termed as coexisting attractors or
multistability. Multistability behaviors [11, 12] of the
physical system act as important feature in the dynamics of
nonlinear systems. Experimentally, multistability feature
was firstly investigated in a Q-switched gas laser [13];
thereafter, various works [14, 15] were reported in different
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complex systems exhibiting multistability features. In this
study, we show multistability features of the lunar wake
plasma system for the first time.

Recently, a new wave structure called supernonlinear
wave was introduced in theoretical [16] and astrophysical
plasmas [17]. 'e nonlinear Alfvén waves and solitons
defined in the framework of derivative nonlinear Schro-
dinger equation [18] are found to support supernonlinear
waves. Tamang and Saha [19] reported supernonlinear waves
and chaotic motion in a non-Maxwellian plasma. Singh and
Lakhina [20] investigated ion-acoustic supersolitons in
multicomponent plasma. Streaming charged debris moving
in space plasma may cause an external disturbance to the
system. 'ese disturbances can disrupt the motion of the
system [21, 22]. To the best of our knowledge, the study on
dynamical properties of nonlinear electrostatic waves in
lunar wake plasma is not reported. So, in this work, we
employ the concept of nonlinear dynamics to study dy-
namical properties nonlinear electrostatic structures in
magnetized, collisionless, homogeneous plasma comprising
of beam electrons, and heavier ions (alpha particles and
He++), protons, and kappa distributed electrons.

'e article is organized as follows. In Section 2, model
equations for the lunar wake plasma system are considered.
In Section 3, dynamics of the perturbed and unperturbed
system are studied. It has been noticed that the novel system
can produce coexisting attractors under the influence of an
external forcing term. Variation of Lyapunov exponents
shows the conservative nature of the system. To quantify
chaos, Lyapunov exponents do not produce constructive
information, since very small oscillations of the Lyapunov
spectra are observed. To classify chaotic and nonchaotic
regimes, 0 − 1 chaos test [23, 24] is then implemented. 'e
analysis is given in Section 4. A dynamical complexity is also
investigated by weighted recurrence entropy [25] in Section
5. Section 6 is the conclusion.

2. Model Equations

A homogeneous four-component magnetized lunar wake
plasma constituting of protons (Np0, Tp), electron beams
(Nb0, Tb), heavier ions, such as alpha particles,
He++(Ni0, Ti), and suprathermal elections (Ne0, Te), where
Nj0 and Tj denote number densities at equilibrium state and
temperature of jth species, where j � b, e, i, and p for beam
electrons and suprathermal electrons, ions, and positrons,
respectively. Here, nonlinear electrostatic waves and drift
velocity of beam electron (Vb0) are assumed to be propa-
gating along the ambient magnetic field (B0).

'e suprathermal electrons of the lunar wake plasma are
assumed to follow the κ-distribution [26]:
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where κ represents spectral index, Γ(κ) stands for gamma
function, and θ denotes modified electron thermal velocity
given by

θ2 � 2 −
3
κ

 
Te

me

, (2)

where Te and me are electron temperature and mass, re-
spectively. 'e kappa distribution tends to Maxwellian
distribution, for κ⟶∞.

'e suprathermal electron number density is given by
[26]
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'e normalized fluid equations for lunar wake plasma
propagating parallel to B0 are given by
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z2ϕ
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where μpj � (mp/mj) is the ratio of mass of proton to mass
of jth species, n0 � ne0 + nb0 � np0 + Zini0 is equilibrium
number density, and Zj denotes the electronic charge of the
jth species with Zp � 1, Zb � − 1, and Zi � 2. In equations
(3)–(6), velocity (vj) is normalized by Ca �
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, ϕ by (Te/e),
and nj by n0. Furthermore, for one-dimensional case, we
consider the adiabatic index, cj � 3 for all species.

3. Dynamical Systems

3.1. Unperturbed Dynamical System. To analyze the dy-
namical properties of electrostatic waves in lunar wake
plasma, we take transformation ξ � x − Vt, whereV signifies
wave speed. Employing ξ and imposing the conditions
ϕ⟶ 0 and (dϕ/dξ) � 0 as ξ⟶ ±∞ in equations (4)–(5),
we obtain
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Again using equations (3), (7), (8), and (9) in equation
(6), we obtain

d2ϕ
dξ2

� Aϕ + Bϕ2 + Cϕ3
+ Dϕ4, (10)
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Equation (10) is represented as the following dynamical
system:

dϕ
dξ

� y,

dy

dξ
� Aϕ + Bϕ2 + Cϕ3 + Dϕ4.
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(12)

Here, equation (12) represents a dynamical system with
physical parameters κ, nb0, ne0, ni0, np0, σb, σi, σp, Vbo, μpb,
μpi, and V.

Considering typical parameteric values of lunar wake
[3, 26], we set nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 ≈ 0.9,
σb � 0.0025, σi � 0.4, σp � 0.2, and Vbo � 17.14.

In Figure 1, we present probable phase plots of system
(12) for nonlinear electrostatic waves in lunar wake plasma.
Based on the values of parameters κ, np0, ni0, ne0, nb0, σp, σi,
σb, Vbo, μpb, μpi, and V, we have four distinct types of phase
plots. Each trajectory in a phase plane corresponds to a
traveling wave solution.'e phase plots presented in Figure 1
constitute different families of phase trajectories, such as
superhomoclinic (SH3,1), superperiodic (SP3,1), periodic
(P1,0), and homoclinic (H1,0) trajectories which correspond
to supersolitary, superperiodic, periodic, and solitary wave
solutions of system (12), respectively. Considering different
speeds (V) of the nonlinear wave with κ � 5, nb0 � 0.01,
ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025, σi � 0.4,
σp � 0.2, Vbo � 17.14, μpb � 1836, and μpi � 0.25187, all
qualitatively distinct phase plots are depicted in Figures 1(a)–
1(d). If we consider V � 1.1 with specified values of other
parameters, there exist only two fixed points at (ϕ0, 0) and
(ϕ1, 0), as shown in Figure 1(a), where ϕ0 � 0 and ϕ1 < 0. 'e
two fixed points (ϕ0, 0) and (ϕ1, 0) are the center and saddle
point, respectively.'e homoclinic trajectory (H1,0) at (ϕ1, 0)

and a periodic trajectory (P1,0) at (ϕ0, 0) correspond to
solitary and periodic wave solutions in lunar wake plasma.
'e phase portrait in Figure 1(b) is presented for V � 1.225
with specified values of other parameters. In this case, we
obtain a pair of saddle points and centers which occur at
(ϕ0, 0), (ϕ3, 0), (ϕ1, 0), and (ϕ2, 0), respectively, where ϕ1 < 0
and ϕ2,ϕ3 > 0. It shows signatures of superperiodic and
supersolitary wave structures due to the presence of SH3,1 and
SP3,1 trajectories. For V � 1.24, the existence of four fixed
points can still be seen and there exist a pair of P1,0 and H1,0
trajectories but there is no superperodicity as depicted in
Figure 1(c). Figure 1(d) is obtained for V � 1.3. In this case,
one saddle point at (ϕ0, 0) and a center at (ϕ1, 0) occur, where
ϕ1 < 0. 'ere also exist a class of P1,0 and H1,0 trajectories.
'us, the existence of supernonlinear waves (superperiodic
and supersoliton) is confirmed in lunar wake for the first time.

3.2. Perturbed Dynamical System. Recently, effect of the
Gaussian-shaped source term on nonlinear plasma waves is
investigated [27]. But, the nonlinear source term as an
external forcing can be of different types [28, 29]. In this
work, we consider a source term or perturbation as
f0 cos(ωξ). In presence of the source f0 cos(ωξ), the dy-
namical system (12) can be expressed in the following form:

dϕ
dξ

� y,

dy

dξ
� Aϕ + Bϕ2

+ Cϕ3
+ Dϕ4 + f0 cos(ωξ),
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(13)

where f0 is the strength and ω is the frequency of the ex-
ternal force.

In Figure 2, we depict possible phase plots of attractors
corresponding to system (13) for nonlinear electrostatic
structures of lunar wake. We display multistability for dif-
ferent values of ω by varying the initial condition with κ � 5,
nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025,
σi � 0.4, σp � 0.2, Vbo � 17.14, μpb � 1836, μpi � 0.25187,
V � 1.225, and f0 � 0.01. For ω � 0.08, we obtain
Figure 2(a) which shows chaotic and quasiperiodic attractors
in ϕy plane with initial conditions (0, − 0.00161) (green
curve) and (0, − 0.00327) (red curve), respectively. In
Figure 2(c), we set ω � 2.09 with specified values of other
physical parameters and detect the presence of three kinds of
attractors which are quasiperiodic, chaotic, and periodic-2
attractors. Quasiperiodic attractors are obtained for initial
conditions (− 0.049, 0.0021) (blue curve), (0, 0.011) (brown
curve), and (0.049, 0) (ocean green curve). Chaotic and
periodic-2 attractors are obtained for initial conditions
(− 0.049, − 0.001897) (magenta curve) and (0.013, 0) (black
curve), respectively. Here, Figure 2(b) is a part of attractors
shown in Figure 2(c). For ω � 1.08, we show chaotic and
periodic-1 attractors with initial conditions (0, − 0.0169)

(red curve) and (0.21, 0) (blue curve), respectively, in
Figure 2(d). 'us, multistability behaviors are confirmed in
lunar wake plasma in presence of external periodic force.

Lyapunov exponent is an effective tool to check the
chaotic motion of any system. For a system to be chaotic,
there must be at least one positive Lyapunov exponent. In
Figure 3, Lyapunov exponents are plotted against extent of
the external periodic force f0 with specified values of other
physical parameters as in Figure 2. Figures 3(a)–3(c) show
the Lyapunov exponents corresponding to the chaotic phase
trajectories shown in Figures 2(a)–2(d), respectively. From
Figure 3, it can be also observed that the fluctuations of
Lyapunov exponents are very small (near to 0) in all the
cases. So, chaos in (13) cannot be confirmed strongly by the
study of the Lyapunov exponent. A test of chaos is thus also
performed which is given in the following section.

4. Characterization of Chaos

In this section, we investigate chaos by 0 − 1 test method. In
0 − 1 test method, only one component, say x(n)N

k�1 (N being
the length of the component), of a system is considered
[23, 24]. Using the following transformation:

p(n, c) � 
n

j�1
x(j)cos(jc),

q(n, c) � 
n

j�1
x(j)sin(jc),

c ∈ (0, π).

(14)
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'e component x(n)N
k�1 is decomposed into two com-

ponents p and q. In [23, 24], it has been established that the
chaotic and nonchaotic behavior can be recognized by the
respective regular and Brownianmotion-like structure in the
corresponding (p, q)-plots. So, we investigate nature of the
(p, q)-plots for system (13) with the variation of
f0 ∈ [0, 0.012] and initial conditions Ik � (0, − k),

k ∈ [0.00161, 0.00327]. Some of the plots are shown in
Figure 4. It can be observed from Figures 4(a) and 4(b) that
the corresponding (p, q) clouds are of regular and Brownian
motion-like structures, respectively. It indicates nonchaotic
and chaotic dynamics in system (13) for the respective f0 �

0.001, 0.012 with k � 0.00161. On the contrary, both
Figures 4(c) and 4(d) show Brownian-like structure in the
corresponding plots with k � 0.00161, 0.0261 and
f0 � 0.012. 'us, Figure 4 shows chaotic as well as non-
chaotic dynamics with the variation of f0 and k.

In the next, we compute fluctuation of Kc with the
variations of f0 ∈ [0, 0.012] and k ∈ [0.00161, 0.00327],
where Kc is defined by

Kc � lim
n⟶∞

logMc(n)

log n
, (15)

where Mc(n) is defined as

Mc(n) � lim
N⟶∞

1
N



N

j�1
pc(j + n) − pc(j) 

2

+ qc(j + n) − qc(j) 
2
.

(16)

'e values of Kc ≈ 0 and 1 correspond nonchaotic and
chaotic dynamics of the system. Figures 5(a) and 5(b) show
fluctuation of Kc over f0 ∈ [0, 0.012] (fixed k � 0.0032) and
k ∈ [0.00161, 0.00327] (fixedf0 � 0.012), respectively. From
Figure 5(a), it can be observed that the Kc ≈ 1 for
f0 ∈ [0, 0.0097], except f0 � 0.004, 0.005, 0.0055. It assures
that chaos in system (13) can only be seen at
f0 � 0.004, 0.005, 0.0055 when f0 ∈ [0, 0.0097]. Further-
more, Kc ≈ 1 can be seen for f0 ∈ [0.098, 0.12]. It confirms
chaotic dynamics in perturbed system (13) over the region
f0 ∈ [0.098, 0.12]. On the contrary, Figure 5(b) shows
Kc ≈ 1 for almost all values of k ∈ [0.00161, 0.00327] with
fixed f0 � 0.012. It confirms chaos in (13) over
k ∈ [0.00161, 0.00327]. We also investigate fluctuation of Kc

with the variation of (f0, k) ∈ [0, 0.012] × [0.00161,

0.00327]. 'e corresponding contour is given in Figure 5(c).
In Figure 5(c), most of the region shows Kc ≈ 1, except for
few closed regions. It establishes chaotic dynamics of system
(13) over [0, 0.012] × [0.00161, 0.00327], except few values
of (f0, k).

In the following section, we have investigated dynamical
complexity using weighted recurrence plot (WRP) [25].

5. Analysis of Dynamical Complexity

For a given n-dimensional phase space P � xi ∈ Rn ,
weighted recurrence w(i, j) is defined by

w(i, j) � e
− xi− xj

����
����, i, j � 1, 2, . . . , N, (17)
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Figure 1: Probable phase plots of the dynamical system (12) for κ � 5, nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025, σi � 0.4,
σp � 0.2, Vbo � 17.14, μpb � 1836, and μpi � 0.25187 with (a) V � 1.1, (b) V � 1.225, (c) V � 1.24, and (d) V � 1.3.

Complexity 5



where N is the length of the trajectory of the phase space.
As ‖xi − xj‖ indicates dispersion between xi and xj, w(i, j)

can measure exponential divergence between the trajec-
tories. 'e corresponding matrix [w(i, j)]N×N can thus
recognize disorder in the phase space. Figures 6(a) and
6(b) represent some of the weighted matrix plots for
system (13) with f0 � 0.001 and 0.012 (fixed k � 0.0032),
respectively. From Figure 6(a), it can be seen that range of
variation as well as its pattern in w(i, j) are very less as
compared to same in Figure 6(b). It indicates that the

corresponding phase space of system (13) at f0 � 0.012 is
more complex than the same at f0 � 0.001 for k � 0.001.
Furthermore, similar investigation is carried out for k �

0.00161, 0.00261 with fixed f0 � 0.012. 'e corresponding
weighted matrix plots are shown in Figures 6(c) and 6(d),
respectively. As variation in the weights is almost similar
between Figures 6(b) and 6(c), same kind of disorder can
be observed in the respective phase spaces. On the con-
trary, completely different as well as various patterns in
[w(i, j)] can be seen in Figure 6(d), which indicates higher
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Figure 2: Coexisting attractors of system (13) for κ � 5, nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025, σi � 0.4, σp � 0.2,
Vbo � 17.14, μpb � 1836, μpi � 0.25187, V � 1.225, and f0 � 0.01 and (a) ω � 0.08 with intial conditions (0, − 0.00161) (green curve) and
(0, − 0.00327) (red curve), (b) ω � 2.09 with intial conditions (0, 0.011) (brown curve), (0.013, 0) (black curve), and (0.049, 0) (ocean green
curve), (c) enlarged view of coexisting attractors enveloping attractors shown in Figure 2(c) with initial conditions (− 0.049, − 0.001897)

(magenta curve) and (− 0.049, 0.0021) (blue curve), and (d) for ω � 1.08 with initial conditions (0, − 0.0169) (red curve) and (0.21, 0) (blue
curve).
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Figure 3: Lyapunov exponents of system (13) of chaotic attractors corresponding to (a) Figure 2(a), (b) Figure 2(c), and (c) Figure 2(d).
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Figure 4: (a) and (b) represent (p, q)-plots for system (13) with f0 � 0.001 and 0.012, respectively. In order to calculate p and q, we choose
y-component of system (13) with the initial condition (0, − 0.0032). Same plots are represented in (c) and (d) with respect to the different
initial conditions (0, − 0.00161) and (0, − 0.00261) for fixed f0 � 0.012. In both the cases, the values of parameters are considered same as
chosen in Figure 2. In each calculation, the value of (c) is considered as (2π/3).
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Figure 5: (a) representsKc vs. f0 graph for system (13) withf0 ∈ [0, 0.013] and k � 0.00161. (b) representsKc vs. k for the same systemwith
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color bar indicates values of Kc over the region [0.00161, 0.00327] × [0, 0.013]. In order to calculate Kc, we have taken n≪ ncut � (N/10).
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complex structure in the corresponding phase space
compared to the other cases.

However, the above mentioned analysis is not enough to
understand the complexity for the whole range. 'is is why
we utilize a complexity measure-weighted recurrence en-
tropy measure to investigate how complexity varies with the
variations of f0 and k. 'e weight recurrence entropy (Sw) is
defined as

Sw � − 
sk∈S

p sk( logp sk( , (18)

where p(sk) denotes probability of sk ∈ S � sk: sk �

(1/N) M
j�1 ωkj, 1≤ k≤M} (M being number of events). In

our case, “events” means sks.
Using (18), we have computed fluctuation of Sw over

f0 ∈ [0, 0.012] and k ∈ [0.00161, 0.00327]. Corresponding
oscillations are given in Figures 7(a) and 7(b), respectively.
An increasing trend can be seen in Figure 7(a). It indicates
increasing pattern in the complexity with the increasing

f0 ∈ [0, 0.012] (fixed k � 0.0032). On the contrary, almost
parallel trend exists in Figure 7(b). It assures that, variation
in Sws does not fluctuate abruptly. So, complexity does not
differ significantly in system (13) with increasing
k ∈ [− 0.00161, − 0.00327] (fixed f0 � 0.012).

We further investigate complexity of system (13) over the
region (f0, k) ∈ [0, 0.012] × [0.00161, 0.00327]. 'e corre-
sponding contour is shown in Figure 7(c). In Figure 7, it can
be observed that higher complexity bounded regions are
very fewer compared with its complement. However, some
discrete increasing as well as decreasing patterns can be seen
in the whole contour.

So, the analysis on the novel system reveals that the
chaotic dynamics can be observed in system (13) for
large regions of f0 and k, but higher complexity can be
seen in the same system for small regions of f0 and k.
'erefore, chaos with high complexity in system (13) for
the interval (f0, k) ∈ [0, 0.012] × [0.00161, 0.00327] can be
observed.
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Figure 6: (a) and (b) represent [w(i, j)] matrix plots for system (13) with f0 � 0.001 and 0.012, respectively. In order to calculate [w(i, j)]

matrix, we solve system (13) with the initial condition (0, − 0.0032). Same plots are represented in (c) and (d) with respect to the different
initial conditions (0, − 0.00161), (0, − 0.00261) for fixed f0 � 0.012. In both the cases, the values of parameters are considered same, as
chosen in Figure 2. In each calculation, we consider last 10,000 points on the trajectories.
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6. Conclusions

Phase portrait analysis of a novel dynamical system corre-
sponding to lunar wake has been performed in plasma
constituting of beam electrons, heavier ions (alpha particles,
He++), protons, and suprathermal electrons. Typical values
of physical parameters of lunar wake [3, 26] have been
applied in the unperturbed system to investigate qualita-
tively different phase portraits comprising of superperiodic,
superhomoclinic, periodic, and homoclinic trajectories.
'ese trajectories correspond to different types of nonlinear
and supernonlinear wave solutions. For an external periodic
perturbation due to the nonlinear source term, multistability
features have been confirmed in a lunar wake plasma system.

'e existence of multistability in such a plasma model is
never been reported. We have also investigated that the
system does not confirm chaos with the observations of
Lyapunov exponents as the Lyapunov exponents are close to
zero with conservative characteristics. To quantify the ex-
istence of chaos, we have constructed the 0 − 1 test. Fur-
thermore, a detailed dynamical complexity analysis has been
implemented by using weighted recurrence. 'e corre-
sponding results assure that the perturbed system (13) has
high complexity in some region inside the parametric space.

Data Availability

No data were used to support this study.
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