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Dam behavior is difficult to predict due to its complexity. At the same time, dam deformation behavior is vital to dam systems.
Developing a precise prediction model of dam deformation from prototype data is still challenging but determinant in the
structural safety assessment. In this paper, an artificial neural network (ANN), trained by the improved artificial fish swarm
algorithm (IAFSA) and backpropagation algorithm (BP), is proposed for predicting the dam deformation. Initially, crossover
operator is embedded into AFSA, which aims to enhance the performance. In light of the influence mechanism of many factors on
dam deformation behavior, the hybrid (IAFSA and BP) model uses statistical input to obtain the optimal connection weights and
threshold values of the neural network. /e hybrid model integrates IAFSA’s strong global searching ability and BP’s strong local
search ability. To avoid overfitting the training set data, a validation set is adopted to check the generalization capability.
Subsequently, the obtained optimal parameters are applied to predict the dam deformation behavior. /e hybrid model’s
preciseness is verified against the radial displacements of a pendulum in a concrete arch dam and simulations of four models:
statistical model, BP-ANN optimized by genetic algorithm (GA), particle swarm optimization (PSO), and AFSA. Results
demonstrate that the proposed model outperforms other models and may provide alarms for safety control.

1. Introduction

Dam failures are generally catastrophic if the structure is
breached [1]. Dam is a complex system, which comprises
many interconnected components, such as the dam body,
the spillway, the power plant, etc. Dam behavior is in-
trinsically difficult to predict due to the interactions
between their components or between the given dam
system and its environment. /rough dam safety mon-
itoring, prototype observations on dam behavior can be
obtained. Among the various observations, the most
important indicator is deformation [2]. Over the past
years, researches have dealt relatively well with the dam

deformation through models, based on prototype ob-
servations [3–6].

/e prediction models, in the context of dam safety
monitoring, offer a solution, by first creating knowledge
from previous experiences and learning the model param-
eters, in order to predict the dam behavior from possible
input data [7]. /ey have the attractiveness of being robust
and effective with insufficient input information, noise, and
uncertainty [7]. Notable data-based behavior models include
the genetic algorithm (GA) [8, 9], particle swarm optimi-
zation (PSO) [10], differential evolution (DE) [11], gravi-
tational search algorithm (GSA) [12], harmony search
algorithm [13, 14], support vector machine (SVM) [15],
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dendritic neuron model (DNM) [16, 17], boosted regression
trees [18, 19], extreme learning machine [20, 21], and ar-
tificial neural network (ANN) [22]. /e artificial neural
network (ANN) [23, 24] is useful for detecting nonlinear
patterns and has been widely used in many different do-
mains, including dam engineering [25–27].

To train the neural network in an efficient manner, tools
such as backpropagation algorithm (BP) [28] are used in the
data-based behavior models. /e BP neural network [29]
algorithm is a multi-layer feedforward network, trained
according to error backpropagation algorithm, and it is one
of the most widely applied neural network models. BP
network can be used to learn and store a great deal of
mapping relations of input-output model and requires no
previous knowledge of the mathematical equation de-
scribing the mapping relationships. Its learning rule is to
adopt the steepest descent method, where the weight value
and threshold value of the network are regulated to achieve
theminimum sum-of-squared error between the desired and
computed output [30].

Despite the fact that the use of BP algorithm is justified
[31] for most conditions, problems might appear in the
solution of complex descent gradients due to inherent
trapment of local rather than global minima [32]. In recent
years, researchers have been investigating approaches to
counteract this disadvantage, such as defining modified
[33] or hybrid forms of BP algorithms. In particular, the
hybrid form has gained fresh prominence in the dam
deformation models with many arguing it leads to faster-
converging and better results, as opposed to the original BP
algorithm [34].

/is paper proposes the hybrid BP and artificial fish
swarm algorithm (AFSA) model for understanding dam
behavior. /e AFSA [35] has been employed to optimize
the swarm intelligence. /e basic premise of the AFSA is
to imitate the fish behaviors such as preying, swarming,
and chasing, where the search of fish individuals leads to
the global optimal solution [35]. /is approach contrib-
utes to accurate results, high rate of convergence, flexi-
bility, and tolerance to failure [36, 37]. To enhance its
optimization performance, a novel variant has been
proposed, named improved artificial fish swarm algo-
rithm, or IAFSA. In this crossover operator, the artificial
fish acquire their parents’ attributes, promoting the di-
versification and rising the likelihood of attaining the
global optimal solution.

/e rest of the paper is organized as follows. In Section
2.1, the statistical relations between loads and deforma-
tion behavior are briefly introduced. Section 2.2 deals with
the concepts of improved artificial fish swarm algorithm
(IAFSA). Artificial neural network (ANN) and back-
propagation (BP) algorithm are introduced in Section 2.3
and Section 2.4. In Section 2.5, the overall structure of
hybrid-learning algorithm, IAFSA-BP, is introduced for
training the ANN. A dam case study is described in
Section 3. In Section 4, the prediction accuracy and po-
tential of the proposed algorithm are verified. And dis-
cussions and conclusions are given in Sections 4 and 5,
respectively.

2. Hybrid IAFSA-BP-ANN Model

2.1. Statistical Relations between Loads and Deformation
Behavior of Dam. In order to provide reliable structural
responses, the mechanisms of the factors influencing the
dam deformation behavior need to be investigated and
reproduced in a simple but yet accurate way [38]. Statistical
(also hydrostatic-season-time (HST) model) methods fit this
criteria.

In this sense, a multi-period harmonic can be selected as
the factor of dam temperature variation, once the hydration
heat has been distributed and the quasi-steady temperature
field has been reached in the dam body. /e statistical re-
lations between loads and the deformation behavior of the
dam (δ) can be described as the sum of three terms: the
temperature variation, the hydrostatic pressure variation,
and other unexpected causes, such as time effects. It is [38]

δ � δH + δT + δθ � a0 + 􏽘

m1

i�1
aiH

i

+ 􏽘

m2

i�1
b1i sin

2πit

365
+ b2i cos

2πit

365
⎛⎝ ⎞⎠ + c1θ + c2 ln θ,

(1)

where δH is the hydrostatic pressure component; δT is the
temperature component; δθ is the time effect component; a0
is constant; ai, b1i, b2i, c1, and c2 represent coefficients; H is
water load;m1 is an integer dependent on the dam type (3 for
gravity dam, 4 or 5 for arch dam); i denotes the period (1 for
annual cycle, 2 for half a cycle); t is the cumulative number of
days from the initial value to monitoring value; θ � t/100;
and m2 is usually taken as 1 or 2. /e effect of hydrostatic
thrust, seasonal environment, and irreversible time-de-
pendent conditions are regarded as inputs of the ANN.

2.2. Improved Artificial Fish Swarm Algorithm

2.2.1. Review of Artificial Fish Swarm Algorithm. In nature,
an area occupied with large fish number is generally nu-
tritious. /e fish can discover the most nutritious area by
intelligent behaviors, such as preying behavior, swarming
behavior, following behavior, etc. [35]. /e artificial fish
swarm algorithm (AFSA) is an artificial intelligent algorithm
based on the behavior of fish swarm. /is algorithm is
capable of reaching the global optimum by imitating the
collective movement of artificial fish (AF) [36, 39]. /e
AFSA has attractive features, such as good robustness, global
search ability, tolerance of parameter setting, and insensi-
tiveness to initial values [35, 36].

/e vision concept of the AF is illustrated in Figure 1.
From the graph, the term Step is the step length and the
Visual is the visual distance./e spatial coordinate of the AF
is represented by X � (x1, x2, x3, . . . , xn), where xi is a
potential solution. /e food consistence of the AF in its
current position is denoted by the objective function,
Y � f(X). /e distance between adjacent AF individuals
(ith and jth) is expressed as Dij � ‖Xi − Xj‖ and the crowd
factor is Δ.

2 Complexity



/e fish behavior relies on inspecting the nearby region,
up to where a behavior condition is met. /us, if the AF is
conditioned to step forward in a direction, it arrives to Xnext;
otherwise, it continues inspecting within its visual range.

/e refreshed position can be described as

xv � xi + Visual × Rand i ∈ (0, n],

Xnext �
Xv − X

Xv − X
����

����
× Step × Rand

(2)

where Xv is a position within the vision; Rand are randomly
generated numbers between zero and 1; and n is the number
of variables; others are the same as above.

/e AF model contains four classical behaviors: preying
behavior, swarming behavior, following behavior, and
random behavior.

(1) Preying Behavior. Preying behavior is mainly con-
sidered as a kind of behavior of tending to more food.
Within the context of optimization algorithm, it is an it-
erative way of moving to a more nutritious area, such as in
the visual concept in the AF.

Let the current location of the AF be Xi, and a random
position in the visual range be Xj . /en, take the maximum
problem as an example (because the maximum problem can
be transformed into minimum problem via the reciprocal of
the objective function) and the position becomes

Xj � Xi + Visual ×(2 × rand − 1), (3)

where other terms are the same as above.
/us, if the objective criterion, Yi <Yj, is met, the AF

steps forward in this direction; otherwise, select a new
random location Xj, and execute the objective condition. If
the condition is not satisfied, after a specified number of
times, called the try_number, step randomly. In the preying

behavior, a small try_number implies the AF swims ran-
domly and thus diverges from the local extreme value field.
/e refreshed position is

Xi(t + 1) � Xi(t) +
Xj(t) − Xi(t)

Xj(t) − Xi(t)
�����

�����
× Step × rand( ) Yi <Yj,

Equation(4), Yi ≥Yj,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where the terms are the same as above.
(2) Swarming Behavior. /e swarming behavior can be

described, using two rules from Reynolds [40]:
To move to the center of the nearest companions as

much as possible.

To avoid overcrowding, so the swarming ability of the
artificial fish can be basically realized.
When travelling, the fish assemble in groups naturally
to avoid danger and guarantee the existence of the
colony. Let Xc be the center of this gathering area

Xc �
1
n

􏽘

n

i�1
Xi, (5)

where n is the total fish population.

Let nf be the number of AF’s companions in the
neighborhood (dij <Visual). If (Yc/nf)> δYi, it means the
AF’s companion center has more food (higher fitness
function value), with a small crowd factor; hence, the AF
steps to the companion center; otherwise, the AF executes
the preying behavior. /e updated position conditions
are

Xi(t + 1) � Xi(t) +
Xc(t) − Xi(t)

Xc(t) − Xi(t)
����

����
× Step × rand( )

Yc

nf

> δYi,

equation(4), otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where the terms are the same as above.
(3) Following Behavior. /e following behavior can be

understood as moving towards the best neighbor com-
panions. In the random behavior, the direction is not
specified due to a lack of purpose.

Let Xi be the AF current position, and the companion in
the neighborhood (dij <Visual) with the greatest food
consistence Xj. If (Yj/nf)> δYi, the AF steps forward due to
companion’s higher food concentration (higher fitness
function value) with spacious surrounding; otherwise, it
follows the preying behavior. /e conditions are

Xi(t + 1) � Xi(t) +
Xj(t) − Xi(t)

Xj(t) − Xi(t)
�����

�����
× Step × rand( )

Yj

nf

> δYi,

equation(4), otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

X

Xu

Xnext

Step

Visual

Figure 1: Vision concept of the artificial fish.
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(4) Random Behavior. /e fish swim randomly in water;
in fact, they are seeking food or companions in larger ranges.
It is the default behavior of preying. /e AF location is

Xi(t + 1) � Xi(t) + Visual ×(2 × rand( ) − 1), (8)

where the terms are the same as above.

2.2.2. Improved ASFA. AFSA’s system is based on the
collective behaviors of AFs. An arguable weakness of the AF
is its seeking ability in large or flat areas. More precisely, as
the local optimum is searched and updated to its self-or-
ganized system [37] by an individual AF, others companions
behave chaotically, thus reducing the seeking efficiency of
the global optima.

To improve the performance of AFSA, a crossover op-
erator is embedded into the AFSA, using genetic algorithm
for reference. /e crossover operator combines the features
of two individuals and creates a potential better offspring.
/e search of the global optima is improved as well by
allowing some uncertainty.

In every iteration, a specified number of AF are put in the
pool, according to the crossover probability. Initially, the
crossover is operated between every AF, in order to generate
a corresponding child AF. /e child AF replaces the parent
AF and its position is given by the arithmetic crossover of the
parent AF:

X
child

(t) � rand( ) × X
parent
1 (t) +(1 − rand( )) × X

parent
2 (t),

(9)

where the terms are the same as above.
Finally, a new fish swarm is produced from the iterative

procedure.

2.3. Artificial Neural Network (ANN). /e artificial neural
network (ANN) is a mathematical model vaguely inspired by
the biological neural networks of animal brains [41]. /e
single hidden layer, feedforward neural network is the
simplest unidirectional (input to output) form, consisting of
three layers: input, hidden, and output. Figure 2 depicts this.
Perhaps, the greatest advantage of this method (multi-layer
perceptron with just one hidden layer), according to the
universal approximation theorem, is its ability to approxi-
mate every (real-valued) bounded function [42]. It is
therefore used for a wide range of activation functions, e.g.,
sigmoid function [43], and for both classification and re-
gression problems. For regression, typically l � 1, with one
output unit (δ) at the top [44].

For dam deformation prediction, a popular approach is
to first transform the raw observation data on dam defor-
mation via the statistical model (equation (1)). /en, the
features (hydrostatic components, temperature components,
and time effect components) become the inputs of the neural
network. Finally, the output becomes the observation data, δ,
from the deformation behavior.

2.4. Backpropagation (BP)Algorithm. Backpropagation (BP)
algorithm is a widely used algorithm in training feedforward
neural networks. /e backpropagation algorithm works by
computing the gradient of the loss function with respect to
each weight by the chain rule. More explicitly, it computes
the gradient of one layer at a time by iterating backwards
(from the last layer) to avoid redundant calculations from
intermediate terms in the chain rule [45].

As seen in Figure 2, given the training set (xHST
1 , δ1),􏼈

(xHST
2 , δ2), . . . , (xHST

N , δN)}, xHST
i ∈ Rp, δi ∈ R (δ is the ob-

servation data on dam deformation) in the neural network,
let there be p input neurons, one output neuron, and q

hidden neurons.
/e threshold value of the jth hidden layer neuron is θj.

In a similar way, let αj � 􏽐
p
i�1 ωijxi be the input of the jth

hidden layer neuron, where ωij represents the connection
weight from input neuron i to hidden neuron j, and
β � 􏽐

q

j�1 vjbj, the input of the output layer neuron, where vj

represents the connection weight from the hidden neuron j
to the output neuron and bj denotes the output of the jth
hidden layer neuron. /en, the network output of the kth
training data (xHST

k , δk) may be described as
􏽢δk � f βk − ck( 􏼁, (10)

where f is the activation function and c denotes the
threshold value of the output layer neuron.

And the fitting error of the kth training data is calculated:

Ek �
1
2

􏽢δk − δk􏼐 􏼑
2
. (11)

/e iterative procedure of the BP algorithm is described
in the following steps:

(1) Compute the network output 􏽢δk.
(2) Calculate the gradient term of output layer neurons

g � −zEk/z􏽢δk · z􏽢δk/zβ.
(3) Calculate the gradient term of hidden layer neurons

gj � −zEk/zbj · zbj/zαj.
(4) Update the connection weights ωij, vj and thresholds

θj, c according to the gradient descent strategy.
Obtain the cumulative error of the training set fitted
by the network as

δOutput layer

Hidden layer

Input layer x1

z1 z2 z3

x2 x3 x4

zq

xp

Figure 2: Schematic of a single hidden layer, feedforward neural
network.
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E �
1
N

􏽘

N

k�1
Ek. (12)

(5) Evaluate the stopping criteria. If satisfied, store the
output; otherwise, repeat Steps 1-4.

2.5. Hybrid IAFSA-BP-ANN Model for Predicting Dam De-
formation Behavior. /e two AFSA and BP algorithms are
combined into a hybrid-learning algorithm, referred to as
IAFSA-BP, to overcome their standalone shortcomings. /e
IAFSA-BP algorithm’s searching process starts with a ran-
dom AF group, where the IAFSA algorithm is executed to
attain the global best position. Subsequently, the BP algo-
rithm is used to search for the global optimum, leading to an
overall faster convergence and high accuracy results. /e
procedure of the IAFSA-BP neural network prediction
model is summarized in Figure 3. /e proposed model
couples three stages.

In Stage 1, the statistical relations are studied via the
statistical model. /e input vectors of the neural network are
obtained statistically; namely, input � (H, H2, . . . ,

Hn, sinx, cosx, sin 2x, cos 2x, θ, ln θ), where x � 2πt/365.
In Stage 2, the ANN is trained on the training set and its

performance is compared with the validation set.

Step 1. Determine the topology of the neural network.
Initialize the weights and thresholds of the neural
network in the range of [0, 0.1]. Notice every AF
represents a set of weights and thresholds of the neural
network. /e number of parameters to be identified is
p × q + 2q + 1, as shown in Figure 2.
Step 2. Implement the following behavior, swarming
behavior and preying behavior (the default behavior).
Step 3. Use the function that calculates the validation
error of basic BP neural network as the fitness function
(food consistence) of IAFSA algorithm. IAFSA algo-
rithm is used to train the weights and thresholds.
Step 4. Evaluate the behavior of AFs. Every artificial fish
(AF) tries to find better food consistence position by
simulating swarming behavior and following behavior,
respectively. If this is successful, choose the better one
to perform; otherwise, perform preying behavior.
Step 5. Operate the arithmetic crossover; then, generate
the new fish swarm.
Step 6. If the maximal iteration times are arrived, go to
Step 7; else, go to Step 2.
Step 7. Output the optimal weights and thresholds of
the ANN.

After defining the training, validation, and testing set,
with a number of examples, the ANN with the best vali-
dation set performance is chosen and demonstrated against
the testing set. /e solution of the maximum problem is
taken as an example, and the reciprocal of validation set
error is set as the food consistence of the fish swarm.

Ultimately, Stage 3 deals with the deformation simula-
tion of the dam. δ(t + 1), δ(t + 2), . . . , δ(t + ?) is the

prediction over the testing set. /e schematics of the stages
are presented in Figure 3.

3. Case Study

/e data used for the study correspond to a concrete arch
dam, located on the Yalong River in China. It is a double
curvature arch dam, completed in 2014, made up of 26
sections, with amaximum dam height of 305m./ewidth of
the dam’s crest and bottom is 16m and 63m, respectively.
/e reservoir capacity is 7.76 billion m3.

Figure 4 depicts the dam, as well as the location of the
monitoring device. Using the available records, the study
focused on the radial displacements measured by pendulum
PL13-1 (along the upstream-downstream direction). Fig-
ure 5 shows the records, divided into three sets: training
(first 80% sample), validation (middle 10% sample), and
testing (last 10% sample); the displacements toward up-
stream are negative, and towards downstream, positive.

/e training set is used to calculate gradients and update
connection weights and threshold values of ANN. In the
validation range, the output error is the food consistence
(fitness function) in the current position of each AF; namely,
food consistence � 1/errorvalidation, where errorvalidation is
typically the sum of the squared errors. In the model, the
objective of pursuing the error’s minimum is converted to
the maximum value of food consistence.

/e goodness of the model accuracy is computed in
terms of the root mean squared error (RMSE), a measure of
the differences between predicted values and observed
values. /e magnitude and the deviation of the target var-
iable are determined with the average relative variance
(ARV) [18, 46]. /ey are defined as

δRMSE �

����

1
n

􏽘

n

i�1

􏽶
􏽴

δi − 􏽢δi􏼐 􏼑
2

, (13)

δARV �
􏽐

n
i�1 δi − 􏽢δi􏼐 􏼑

2

􏽐
n
i�1 δi − 􏽢δi􏼐 􏼑

2 �
δMSE

σ2
, (14)

where n is the length of the analyzed data set; δi is the
observation on deformation behavior; 􏽢δi is the predicted
values; δ is the observation mean; δMSE is the mean square
error, and δMSE � (1/n) 􏽐

n
i�1 (δi − 􏽢δi)

2; and σ2 is the variance
of the analyzed data set.

/e statistical model is the most widely applied in dam
engineering [5]. /rough the statistical model, the wide
knowledge in analyzing the behavior of concrete dams
provides the prior knowledge between the loads and the
deformation. It will be helpful for the data-based models’
prediction accuracy, such as ANN. /us, according to the
statistical relations between the loads and the deformation
(equation (1)), input � (H, H2, H3, H4, sin 2πt/365,

cos 2πt/365, sin 4πt/365, cos 4πt/365, θ, ln θ) is regarded as
ANN inputs.

Hyper-parameters (for example, number of hidden
layers and units, activation function) play an important role
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in the performance of the ANN [47, 48]. Because the ro-
bustness of the neural network is influenced by the hidden
layer, in order to achieve better accuracy, the Hecht–Nielson
method [49] is adopted to determine the neuron number of
the hidden layer; thus, when the neuron number of the input
layer is p, the neuron number of the hidden layer
is q � 2p + 1. /e ANN of the study comprised an input
layer with 10 parameters (input), a hidden layer with 21
nodes, and an output layer with one parameter (to denote
the upstream-downstream radial displacement of the PL13-1
pendulum). /us, the neural network structure is 10-21-1.

/e hidden layer’s activation function was assumed as a
sigmoid function (equation (15)), and the output layer’s
activation function was a linear function (equation (16))./e
Levenberg–Marquardt algorithm was used in the training
process:

PL13-1
1 2 3 4 5 9876 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

(a)

13

(b)

Figure 4: Geometry and location of the monitoring device. (a) Left: view from downstream; (b) highest cross section. To be continued.
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Figure 5: Displacement recorded by the pendulum at block 13.
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y �
1

1 + e
− x, (15)

y � x. (16)

Considering that the AF’s position represents the con-
nection weights and thresholds of the ANN, every AF
consisted of p × q + 2q + 1 � 253 parameters. /e compo-
nent varies from 0 to 1. Table 1 provides the values for other
IAFSA parameters.

4. Results and Discussion

4.1. Prediction Results. Figure 6 presents the optimization
process of the IAFSA, which is also the minimal vali-
dation set errors varying with the iteration times. When
the iteration time reached 6, the validation error con-
verged. IAFSA-BP-ANN predicted results versus obser-
vations for PL13-1 is shown in Figure 7. Figure 7
compares observed and computed displacements of
training set, validation set, and testing set obtained by
IAFSA-BP-ANN for PL13-1 pendulum. It provides an
intuition on the good performance on the training set,
validation set, and testing set.

4.2. Model Comparison. /e prediction accuracy and po-
tential of the proposed model are verified against four
popular methods: the statistical model, the backpropagation
neural network optimized by GA (GA-BP-ANN), the
backpropagation neural network optimized by PSO (PSO-
BP-ANN), and the backpropagation neural network opti-
mized by AFSA (AFSA-BP-ANN).

Due to the lack of validation in the statistical model, its
training is set to 90% of the sample, compared with the
remaining models’ 80%. It is crucial to bear in mind the
conceivable bias in the comparisons, since increasing the
amount of training leads to a better performance. /e
structure 10-21-1 was adopted for the GA-BP-ANN, PSO-
BP-ANN, AFSA-BP-ANN, and IAFSA-BP-ANN models.
Ceteris paribus, the higher the accuracy, the better the
model.

Figure 8 depicts the optimization processes of the
models, except for the statistical model. /e IAFSA has a
convergence after 6 iterations (Error� 0.6), the fastest of all,
with a trend being similar to but slightly less accurate (higher
error) than the AFSA. /e converged error of the PSO is
relatively high, about 2.5, although its convergence speed is
modest (19 iterations). /e GA performs the worst, by
attaining a convergence after 45 iterations, with a mean
squared error (δMSE) of 17.

For reasons of comparison clarity, only the predicted
outputs of the testing set and their residuals are displayed in
Figures 9 and 10, respectively. IAFSA-BP-ANN’s predictions
can be seen from the testing period of Figure 7. All the
models capture the overall trend of the testing set, although
the accuracy varies to a large extent, according to the model
and the range of the testing set. For example, the PSO
predicts poorly the curve at first-half stage but then improves

dramatically, having minimal, if any at some points, re-
siduals (Figure 10(c)). On the contrary, the modest pre-
dictions of the statistical model deteriorate slightly over time
(Figure 10(a))./e GA predicts accurately the last portion of
the observations but underpredicts beforehand. /e AFSA
captures the beginning and end relatively well but fails to
capture the intermediate process and initiation of the pla-
teau. /e IAFSA yields good results and contains the least
error deviations (low overall residuals, see Figure 10(e)).

To analyze the results in a quantitative way, two per-
formance indices (equations (13) and (14)) are adopted in
this study. In Table 2, a comparison of the set fitting is made
between the four methods, in terms of their root mean
squared error (δRMSE) and average relative variance (δARV).
/e lowest values are in bold fonts.

It is apparent from this table that a good fitting to the
training set does not consequently result in accurate pre-
dictions of validation, or a good validation into reliable
simulations of testing. For example, the GA-BP-ANN
showed the best performance for the training set but was the
worst for validation (overfitting)./e validation errors of the
AFSA-BP-ANN were the smallest but similar to the PSO-
BP-ANN’s, AFSA-BP-ANN’s, and IAFSA-BP-ANN’s. /e
IAFSA-BP-ANN, the proposed model, achieved the best
testing results, even if its training yielded the worst but
moderate results.

Table 1: Parameters of IAFSA.

Parameter Value
Number of AF 50
Visual distance of AF 3
Crowd factor 0.618
Step of AF 0.5
Trying number of preying behavior 20
Number of iterations 20
Crossover probability 0.9

Iterative process of IAFSA

2 4 6 8 10 12 14 16 18 200
Iteration times

0.58

0.6

0.62

0.64

0.66

0.68

0.7
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0.76
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Figure 6: Optimization process of IAFSA.
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Figure 7: IAFSA-BP-ANN outputs (blue line) versus observations (black lines) for PL13-1.
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Figure 8: Optimization process of GA-BP-ANN, PSO-BP-ANN, AFSA-BP-ANN, and IAFSA-BP-ANN.
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Figure 9: Continued.
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Figure 9: Predicted displacements on testing set: (a) statistical model; (b) GA-BP-ANN; (c) PSO-BP-ANN; (d) AFSA-BP-ANN.
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Figure 10: Continued.
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Figure 10: Residuals between model predictions and observations: (a) statistical model; (b) GA-BP-ANN; (c) PSO-BP-ANN; (d) AFSA-BP-
ANN; (e) IAFSA-BP-ANN.

Table 2: Performance indices for statistical model, GA-BP-ANN, PSO-BP-ANN, AFSA-BP-ANN, and IAFSA-BP-ANN.

Training set Validation set Testing set
δRMSE δARV δRMSE δARV δRMSE δARV

Statistical model 1.2712 0.0297
GA-BP-ANN 0.3290 0.0005 17.5116 4.5665 1.9816 0.0722
PSO-BP-ANN 0.3836 0.0007 0.5720 0.0049 2.9266 0.1576
AFSA-BP-ANN 0.3595 0.0006 0.5343 0.0043 1.4953 0.0411
IAFSA-BP-ANN 0.4217 0.0008 0.5974 0.0053 0.9157 0.0154

Table 3: Performance indices of residuals for all the models.

Model σε 􏽐
n
i�1 εi

2

Statistical model 0.8559 138.98
GA-BP-ANN 0.9894 337.69
PSO-BP-ANN 2.1942 736.59
AFSA-BP-ANN 1.3788 192.28
IAFSA-BP-ANN 0.7302 72.11
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Figure 11: Solution distribution of 30 independent runs by using BP-ANN, GA-BP-ANN, PSO-BP-ANN, AFSA-BP-ANN, and IAFSA-BP-
ANN, respectively: (a) δRMSE over training set; (b) δRMSE over validation set; (c) δRMSE over testing set; (d) δARV over training set; (e) δARV
over validation set; (f ) δARV over testing set.
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4.3.Discussion. /e variance (σε) of the residuals (εi) for the
five models is given in Table 3. As observed, the two sta-
tistical estimators, σε and􏽐

n
i�1 εi

2, of the IAFSA-BP-ANN are
the lowest, thus implying the narrowest confidence interval
under the same level of significance. In light of the good
prediction accuracy, the IAFSA-BP-ANN can be adopted for
a health evaluation of the dam’s deformation behavior, in
order to obtain good performance and less false alarms.

It is sometimes commented that the proposed model is
not based on the principles of mechanics but only the
knowledge of statistical nature. Although this may be true,
nevertheless, the physical behavior is intrinsic to the ob-
served values (i.e., the observations are statistical data but are
still governed by the actual behavior of the structure [22]),
and thus, the statistical-based model predictions are rea-
sonable and practical.

To more precisely assess the performance of each op-
timization algorithm, they are tested for 30 independent
runs and their performance indices (δRMSE and δARV) are
calculated. BP-ANN is taken to highlight the effect of IAFSA.
/en, solution distribution of 30 independent runs by using
BP-ANN, GA-BP-ANN, PSO-BP-ANN, AFSA-BP-ANN,
and IAFSA-BP-ANN is depicted in Figure 11.

Tables 4 and 5 show the mean values of the performance
indices and the p values of IAFSA in comparison with other
algorithms. /e best values of performance indices are
highlighted in boldface in Tables 4 and 5./ere is not a great

difference between performance indices for all the algo-
rithms on the training set. /e validation results are similar
except GA-BP, which is overfitting. From them, we can see
that testing accuracy of IAFSA-BP-ANN outperforms other
algorithms.

One-way analysis of variance is adopted to detect the
differences between the behaviors of IAFSA and the com-
pared algorithm (Tables 4 and 5). A p value smaller than 0.05
signifies significant difference between IAFSA and the
compared algorithm. According to Figure 11 and Tables 4
and 5, IAFSA shows better generalization ability than the
other algorithms. /e results are consistent with the former
analysis.

5. Conclusions

In this paper, an IAFSA-BP-ANN model was proposed to
forecast the dam deformation behavior, specifically the crest
radial displacements. /e input of the model was generated
from the statistical relations between loads and deformation
behavior of dams. /e IAFSA was chosen for its global
search ability, and the BP, for its local search ability. /e
combined algorithm overcame their standalone shortcom-
ings. A case dam study was used to verify the model, along
with other four methods: statistical model, GA-BP-ANN,
PSO-BP-ANN, and AFSA-BP-ANN. /e superiority of the
proposed model was demonstrated in a quantitative manner
(error graph, root mean squared error δRMSE, average rel-
ative variance δARV, etc.).

/e main advantage of the IAFSA-BP-ANN was its high
prediction accuracy, fast convergence speed, and low residuals
performance indices, thus, implying a narrow confidence in-
terval and less dam’s false warnings. Additionally, the proposed
model is linked with engineering experience, namely, the most
popular data-driven model, the statistical model.

As for dam safety monitoring, the data-based behavior
models should never be the only source of information to
make assessment. Law-based behavior models, such as finite
element analysis, should be taken into account. In future
works, the model effectiveness can be tested with more
available dam information to provide greater insights into
dam deformation behavior.

Data Availability

/e monitoring data of the ultrahigh arc dam used to
support the findings of this study are available from the
corresponding author upon request.

Table 4: Statistical comparison of δRMSE for BP-ANN, GA-BP-ANN, PSO-BP-ANN, AFSA-BP-ANN, and IAFSA-BP-ANN based on 30
independent runs.

Training set Validation set Testing set
Mean p value Mean p value Mean p value

BP-ANN 0.4131 0.0854 2.9166 4.03E− 21 3.5042 9.72E− 15
GA-BP-ANN 0.3542 0.0035 18.3578 7.16E− 63 3.0255 8.89E− 06
PSO-BP-ANN 0.3950 0.8692 1.2097 4.58E− 06 2.5101 2.64E− 08
AFSA-BP-ANN 0.3776 0.2358 0.5290 0.7919 1.5415 0.0169
IAFSA-BP-ANN 0.3929 — 0.5235 — 1.1907 —

Table 5: Statistical comparison of δARV for BP-ANN, GA-BP-
ANN, PSO-BP-ANN, AFSA-BP-ANN, and IAFSA-BP-ANN based
on 30 independent runs.

Training set Validation set Testing set

Mean p

value Mean p value Mean p value

BP-
ANN 0.0008 0.0805 0.1381 3.15E− 13 0.2496 2.91E− 09

GA-
BP-
ANN

0.0006 0.0037 5.0369 6.34E− 46 0.2409 0.0032

PSO-
BP-
ANN

0.0007 0.8205 0.0296 0.0002 0.1353 3.81E− 06

AFSA-
BP-
ANN

0.0007 0.2411 0.0042 0.8318 0.0514 0.0083

IAFSA-
BP-
ANN

0.0007 — 0.0042 — 0.0292 —
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