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As both ticks and hosts may carry one or more pathogens, the phenomenon of coinfection of multiple tick-borne diseases becomes
highly relevant and plays a key role in tick-borne disease transmission. In this paper, we propose a coinfectionmodel involving two tick-
borne diseases in a tick-host population and calculate the basic reproduction numbers at the disease-free equilibrium and two boundary
equilibria. To explore the impact of coinfection, we also derive the invasion reproduction numbers which indicate the potential of a
pathogen to persist when another pathogen already exists in tick and host populations.)en, we obtain the global stability of the system
at the disease-free equilibrium and the boundary equilibrium, respectively, and further demonstrate the existence conditions for uniform
persistence of the two diseases. )e final numerical simulations mainly verify the theoretical results of coinfection.

1. Introduction

Tick-borne diseases, which mainly comprise Lyme disease,
human babesiosis, tick-borne encephalitis, and human
granulocytic, are becoming an increasingly significant
danger to people living in countrysides or near woodlands
all over the world. Specifically, Lyme disease, which is one
of the most widespread tick-born diseases in the world, is
caused by the pathogen Borrelia burgdorferi, and medical
reports prove that there were more than 20,000 cases al-
ready as early as 2013 in America [1] and that the number
has continued to increase year after year. As for human
babesiosis, the parasite Babesia microti is responsible for
the occurrence of this disease, and the number of human
cases is in steady increase in northeastern America [2].
Tick-borne encephalitis, instead, is an arthropod-trans-
mitted viral infection caused by TBE virus and frequently
occurs in some European countries. Human granulocytic
anaplasmosis is caused by Anaplasma phagocytophilum
that is a bacterium, which has done great harm to human
health over the last decade [3].

)emain species that transmit all the tick-borne diseases
mentioned above are Ixodes ticks, so their dynamics plays a

significant role in studying the transmission of tick-borne
diseases. For instance, a black-legged tick named Ixodes
scapularis can be infected by a large number of different
kinds of pathogens including B. burgdorferi, B. microti, and
A. phagocytophilum or any combination of them concur-
rently [4]. An early study reported occurrences of coin-
fection of different pathogens in tick and host populations
[5], and several case studies described the coinfection among
tick-borne diseases from biotic experiments and ecological
perspectives.

Diuk-Wasser et al. [6] analyzed the promoting effect of
coinfection of B. burgdorferi and B. microti on disease
transmission in conformity with epidemiological, eco-
logical, and clinical effects. Horowitz et al. [7] applied
blood culture and serology to detect how human gran-
ulocytic anaplasmosis in Lyme disease infections played a
role in the apparent rate of coinfection and in the severity
to illness by studying concrete cases to explore their in-
teraction. Welc-Faleciak et al. [8] performed a retro-
spective study concerning tick-exposed hosts living in
southeastern Poland, aimed at probing into the risk of
coinfection between Borrelia species and Anaplasma
phagocytophilum or Babesia spp.. )ese articles have
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clearly shown that coinfection among tick-borne patho-
gens or diseases is a real phenomenon through actual case
studies or experimental analysis and demonstrated that
coinfection can indeed have a certain impact on the
disease transmission.

Mathematical models have been applied to the coinfection
of infectious diseases. Gao et al. [9] established a SIS epidemic
model that includes coinfection between two infectious dis-
eases and proved a sufficient condition for coexistence of both
diseases by introducing the invasion reproduction number.
Tang et al. [10] integrated the relevant transmission dynamics
describing coinfection of dengue and Zika into a mathematical
model and focused on how dengue vaccine affected the out-
break of Zika. Wang et al. [11] proposed a Zika-dengue model
emphasizing the joint dynamics between dengue and Zika and
discussed the impact of vaccination against dengue and an-
tibody-development enhancement.)ese studies are all related
to mosquito-borne diseases; however, to our best knowledge,
reports of mathematical models regarding tick-borne coin-
fection are relatively scarce. Exclusively, Lou et al. [2] built a
tick-borne pathogen model with coinfection and discussed the
promotion effect of coinfection on two diseases transmission.
Unfortunately, they just considered coinfection with two
determinated diseases, Lyme disease and human babesiosis,
and ignored the effects of invasion on coexistence of the two
pathogens.

Based on the previous studies mentioned above, our
objective here is principally to formulate a tick-borne
coinfection model comprising tick dynamics and host dy-
namics with two pathogens and obtain the coexistence
conditions of two tick-borne diseases. )is paper is orga-
nized as follows. We establish a coinfection model involving
tick and host populations in Section 2. )en, we calculate
basic reproduction numbers and invasion reproduction
numbers and present their explicit expressions in Section 3.
We further discuss the threshold dynamics at the disease-

free equilibrium and two boundary equilibria, as well as the
coexistence conditions of two tick-borne diseases in Section
4. Numerical simulations validate the coinfection theories
and reveal the coexistence conditions of two diseases, and
finally, we provide some discussions in Section 5.

2. The Model

We formulate a SIS-type model consisting of two tick-borne
pathogens to describe the disease dynamics of coinfection as
well as the effect on the spread of two tick-borne diseases.
Note that we only consider one life stage of tick, nymph,
which can account for the infection on the host to a great
extent [12]. Both ticks and hosts can be infected with two or
more pathogens through tick bites and blood meals.

Let T(t) and H(t) be the total tick population and host
population, respectively. )e tick population is divided into
four subclasses: susceptible ticks to two diseases, infected
ticks with only disease 1, infected ticks with only disease 2,
and infected ticks with both diseases, which can be described
as Ts(t), Ti

1(t), Ti
2(t), and Ti

3(t), respectively. Here, the total
tick population is

T(t) � T
s
(t) + T

i
1(t) + T

i
2(t) + T

i
3(t). (1)

)e host population is also partitioned into four cate-
gories: susceptible hosts to two diseases, infected hosts with
only disease 1, infected hosts with only disease 2, and infected
hosts with both diseases, which are expressed asHs(t),Hi

1(t),
Hi

2(t), and Hi
3(t), respectively. In the same way,

H(t) � H
s
(t) + H

i
1(t) + H

i
2(t) + H

i
3(t). (2)

In combination with the above statements, a transmis-
sion diagram describing coinfection of two diseases trans-
mission among ticks and hosts is explicitly depicted in
Figure 1. )en, we construct the following model:
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where all parameters involved in the model are listed in
Table 1. We assume the summations of transmission prob-
abilities β1 + β31 and α1 + α31 are greater than original β1 and
α1 without coinfection, respectively, and which also hold for
the transmission probabilities of disease 2. Susceptible ticks
Ts(t) recruited at a constant rate ΛT are infected and can
move into Ti

1(t) (Ti
2(t)) by blood feeding on Hi

1(t) or Hi
3(t)

(Hi
2(t) or Hi

3(t)) with rates of disease transfer β1, β31 ≥ 0 (β2,
β32 ≥ 0). Ti

1(t) (Ti
2(t)) can move to Ti

3(t) by feeding on
Hi

2(t) or Hi
3(t) (Hi

1(t) or Hi
3(t)) with infection probability

β12, β13 ≥ 0 (β21, β23 ≥ 0). In addition, susceptible ticks Ts(t)

may also be infected by taking a blood meal from Hi
3(t)

directly with infection probability β3 and move into com-
partment Ti

3(t). We also consider μT which represents the
exit rate from the current compartment of the tick population.
Similarly, the infection process with two diseases in the host
population can be derived.

For the total populations of ticks and hosts, it can be
shown that

dT(t)

dt
� ΛT − μTT(t),

dH(t)

dt
� ΛH − μHH(t).

(4)

It follows that the asymptotic equilibria of the two pop-
ulations satisfy limt⟶+∞T(t) � ΛT/μT and limt⟶+∞H(t) �

ΛH/μH. Here, Lemma 1 illustrates the basic properties of
solutions in system (3), and the proof corresponding to this
lemma can be derived in the Appendix of Wang [11].

Lemma 1. Let χ(t) � (Ts(t),Ti
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1
(t), Hi

2(t),Hi
3(t)). All solutions χ(t) of system (3) with

nonnegative initial values χ(0) remain nonnegative for t≥0.
Specifically, the solutions χ(t) satisfy χ(t)>0 under the
condition that the initial value χ(0)>0 for t>0. Further-
more, the solution set Γ � (Ts(t),Ti
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+Hi
3 (t) ≤ ΛH/μH} is positively invariant.

3. The Reproduction Numbers

)e reproduction number R0, which is an essential threshold
concept in epidemiological studies, denotes the average
number of secondary cases caused by an infectious individual
when it is introduced in an entirely susceptible population [11].
Mathematically, R0 can measure the maximum reproductive
capacity and determine whether the disease will become en-
demic or die out [13]. In this section, we calculate basic re-
production numbers and invasion reproduction numbers.

3.1. Basic Reproduction Number. In system (3), there always
exists a disease-free equilibrium E0 � (Ts

0, 0, 0, 0, Hs
0, 0, 0, 0)

in which Ts
0 � ΛT/μT and Hs

0 � ΛH/μH. Based on the cal-
culation of the relevant next generationmatrices [14], we can
easily obtain the specific form of the basic reproduction
number, that is,

R0 � max R1,R2,R3 , (5)

whereRi �
�������������
(αiβiΛT/ΛHμ2T)


for i � 1, 2, 3. Biologically,R1

indicates the average number of secondary cases infected by
an infectious tick or host with disease 1 when this infection is
drawn into a susceptible population. Concretely, it is the
product of the number of new ticks infected with disease 1,
which are those produced by susceptible ticks feeding on
an infectious host with disease 1 at a rate β1Ts

0/H during
this host’s average lifetime 1/μH and the number of new
hosts infected with disease 1 generated by an infectious
tick with disease 1 when taking blood meals of sus-
ceptible hosts at a rate α1Hs

0/H during the period 1/μT.
)e biological interpretations for R2 and R3 are
analogous.

It is clear that there are two boundary equilibria E1 and
E2, which represent the cases in which just disease 1 and just
disease 2 are endemic in the population, respectively.

)erefore, at E1, we have that Ti
2, Ti

3, Hi
2, and Hi

3 are all
zero, and
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s∗

, T
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Figure 1: A transmission diagram of coinfection of two tick-borne pathogens among tick population (a) and host population (b),
respectively.
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1 .

We substitute (7) into (8) and get
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Combining (9) and (10), we obtain
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)erefore, (11) is positive ifR1 > 1, but whenR1 < 1, no
positive root can be found. )us, the equilibrium E1 exists
provided R1 > 1.

Similarly, the boundary equilibrium E2 takes the fol-
lowing form:
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with H∗∗ � Hs∗∗ + Hi∗∗
2 . Also, the equilibrium E2 exists if

R2 > 1.

3.2. Invasion Reproduction Number. )e basic reproduction
number works as a threshold that only includes information
about diseases transmission in one population containing a
single pathogen and focuses on the static state, but it cannot
represent the number of secondary cases infected by an
infectious individual with one disease when this infection is
led into a population where another disease already exists.

Table 1: Model parameters and descriptions.

Parameter Description
ΛT Recruitment rate of ticks
ΛH Recruitment rate of hosts
μT Exit rate of ticks
μH Mortality rate of hosts
β1, β2 Probability of infection for susceptible ticks that feed on infectious hosts Hi

1 or Hi
2, respectively

β3 Probability of infection for susceptible ticks that feed on infectious hosts Hi
3 and become infected by both pathogens

β31, β32
Probability of infection for susceptible ticks that feed on infectious hosts Hi

3 and become infected by only disease 1 or only
disease 2, respectively

β12, β13
Probability of infection for infectious ticks with only disease 1 that feed on Hi

2 or Hi
3, respectively, and also become infected by

disease 2

β21, β23
Probability of infection for infectious ticks with only disease 2 that feed on Hi

1 or Hi
3, respectively, and also become infected by

disease 1
α1, α2 Probability of infection for susceptible hosts that are fed by infectious ticks Ti

1 or Ti
2, respectively.

α3 Probability of infection for susceptible hosts that are fed by infectious ticks Ti
3 and become infected by both pathogens

α31, α32
Probability of infection for susceptible hosts that are fed by infectious ticks Ti

3 and become infected by only disease 1 or only
disease 2, respectively

α12, α13
Probability of infection for infectious hosts with only disease 1 that are fed by Ti

2 or Ti
3, respectively, and also become infected

by disease 2

α21, α23
Probability of infection for infectious hosts with only disease 2 that are fed by Ti

1 or Ti
3, respectively, and also become infected

by disease 1
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)us, it is necessary to introduce a new threshold quantity:
the invasion reproduction number [15].

In the following, we calculate two reproduction numbers
which are the invasion reproduction number for disease 1
when disease 2 is already endemic and the invasion re-
production number for disease 2 when disease 1 is already
endemic, respectively.

Considering that the derivation of the invasion repro-
duction number for disease 2, namely, R1

2, is based on a
population in which disease 1 is already endemic, we con-
centrate on the boundary equilibrium E1 to reckon the ma-
trices F2 and V2 as follows:
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H∗
0 0

α12Hi∗
1

H∗
α3Hs∗ + α13Hi∗

1
H∗

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V2 �

μT +
β21Hi∗

1
H∗

0 0 0

−
β21Hi∗

1
H∗

μT 0 0

0 0 μH +
α21Ti∗

1
H∗

0

0 0 −
α21Ti∗

1
H∗

μH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)
)en, the next generation matrix is given by

F2V
− 1
2 �

0 0 a b

0 0 c d

e f 0 0

k g 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where

a �
μHH∗β2Ts∗ + α21Ti∗

1 β32Ts∗

μHH∗ μHH∗ + α21Ti∗
1( 

,

b �
β32Ts∗

μHH∗
,

c �
β12Ti∗

1 μHH∗ + α21Ti∗
1 β3Ts∗ + β13Ti∗

1 α21Ti∗
1

μHH∗ μHH∗ + α21Ti∗
1( 

,

d �
β3Ts∗ + β13Ti∗

1
μHH∗

,

e �
α2Hs∗μTH∗ + α32Hs∗β21Hi∗

1
μTH∗ μTH∗ + β21Hi∗

1( 
,

f �
α32Hs∗

μTH∗
,

k �
α12Hi∗

1 μTH∗ + α3Hs∗β21Hi∗
1 + α13Hi∗

1 β21Hi∗
1

μTH∗ μTH∗ + β21Hi∗
1( 

,

g �
α3Hs∗ + α13Hi∗

1
μTH∗

,

(18)

in which Ts∗, Ti∗
1 , Hs∗, Hi∗

1 , and H∗ are expressed in (7).
)e characteristic equation is

f(λ) � λ4 − (cf + ae + dg + bk)λ2 +(eg − kf)(ad − bc) � 0.

(19)

Let
A � (cf + ae + dg + bk),

B � (eg − kf)(a d − bc).
(20)

It follows from A2 − 4B> 0 that the dominant eigenvalue of
equation (19) satisfies λ2 � ((A +

�������
A2 − 4B

√
)/2), and then

we can acquire the invasion reproduction number for dis-

ease 2, that is, R1
2 � ρ(F2V

− 1
2 ) �

�����������������

((A +
�������
A2 − 4B

√
)/2)



.
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Similarly, the invasion reproduction number for disease
1, namely, R2

1, can also be derived following the above
process, which is given by

R
2
1 � ρ F1V

− 1
1  �

������������

A +

�������

A
2

− 4B



2




,
(21)

where
A � (cf + ae + dg + bk),

B � (eg − kf)(ad − bc),

(22)

a �
μHH∗∗β1Ts∗∗ + α12Ti∗∗

2 β31Ts∗∗

μHH∗∗ μHH∗∗ + α12Ti∗∗
2( 

,

b �
β31Ts∗∗

μHH∗∗
,

c �
β21Ti∗∗

2 μHH∗∗ + α12Ti∗∗
2 β3Ts∗∗ + β12Ti∗∗

2 α23Ti∗∗
2

μHH∗∗ μHH∗∗ + α12Ti∗∗
2( 

,

d �
β3Ts∗∗ + β23Ti∗∗

2
μHH∗∗

,

e �
α1Hs∗∗μTH∗∗ + α31Hs∗∗β12Hi∗∗

2
μTH∗∗ μTH∗∗ + β12Hi∗∗

2( 
,

f �
α31Hs∗∗

μTH∗∗
,

k �
α21Hi∗∗

2 μTH∗∗ + α3Hs∗∗β12Hi∗∗
2 + α23Hi∗∗

2 β12Hi∗∗
2

μTH∗∗ μTH∗∗ + β12Hi∗∗
2( 

,

g �
α3Hs∗∗ + α23Hi∗∗

2
μTH∗∗

.

(23)

Note that Ts∗∗, Ti∗∗
2 , Hs∗∗, Hi∗∗

2 , and H∗∗ are defined in
(13).

4. Stability and Coinfection Dynamics

To study the dynamics of two diseases transmission, it is
essential to explore the stability of system (3) by studying
that of the disease-free equilibrium and the one-disease
equilibria for two subsystems and yield dynamic conditions
for a second disease invasion and coinfection.

4.1. Stability of Disease-Free Equilibrium. Firstly, we discuss
the stability of the disease-free equilibrium E0 � (Ts

0, 0, 0, 0,

Hs
0, 0, 0, 0), where Ts

0 � ΛT/μT and Hs
0 � ΛH/μH.

Theorem 1. Ae disease-free equilibrium E0 for system (3) is
globally asymptotically stable ifR0 < 1 but unstable ifR0 > 1.

Proof. As mentioned above, the tick and host populations
satisfy the following two equations:

dT

dt
� ΛT − μTT,

⟹T
s
0 �
ΛT

μT

,

dH

dt
� ΛH − μHH,

⟹H
s
0 �
ΛH

μH

,

(24)

which means that system (3) is globally attractive for the two
populations [16].)en, there exists small enough ϵ > 0 and t1 �

t(ϵ)> 0 such that Ts
0 − ϵ ≤Ts ≤Ts

0 + ϵ, Hs
0 − ϵ ≤Hs ≤ Hs

0 + ϵ,
0≤Ti

1 ≤ ϵ, 0≤Ti
2 ≤ ϵ, 0≤Ti

3 ≤ ϵ, 0≤Hi
1 ≤ ϵ, 0≤Hi

2 ≤ ϵ, and
0≤Hi

3 ≤ ϵ for any t≥ t1. So, for t≥ t1, we can obtain

dTi
1(t)

dt
≤ β1

Ts
0 + ϵ

Hs
0 − ϵ

H
i
1(t) + β31

Ts
0 + ϵ

Hs
0 − ϵ

H
i
3(t) − μTT

i
1(t),

dTi
2(t)

dt
≤ β2

Ts
0 + ϵ

Hs
0 − ϵ

H
i
2(t) + β32

Ts
0 + ϵ

Hs
0 − ϵ

H
i
3(t) − μTT

i
2(t),

dTi
3(t)

dt
≤ β3

Ts
0 + ϵ

Hs
0 − ϵ

H
i
3(t) + β12 + β13 + β21 + β23( 

ϵ2

Hs
0 − ϵ

− μTT
i
3(t),

dHi
1(t)

dt
≤ α1

Hs
0 + ϵ

Hs
0 − ϵ

T
i
1(t) + α31

Hs
0 + ϵ

Hs
0 − ϵ

T
i
3(t) − μHH

i
1(t),

dHi
2(t)

dt
≤ α2

Hs
0 + ϵ

Hs
0 − ϵ

T
i
2(t) + α32

Hs
0 + ϵ

Hs
0 − ϵ

T
i
3(t) − μHH

i
2(t),

dHi
3(t)

dt
≤ α3

Hs
0 + ϵ

Hs
0 − ϵ

T
i
3(t) + α12 + α13 + α21 + α23( 

ϵ2

Hs
0 − ϵ

− μHH
i
3(t).

(25)

We consider the auxiliary linear system

dx(t)

dt
� M0(ϵ)x(t), (26)

where vector x(t) � (x1(t), x2(t), x3(t), x4(t), x5(t), x6
(t))T and
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M0(ϵ) �

− μT 0 0 β1
Ts
0 + ϵ

Hs
0 − ϵ

0 β31
Ts
0 + ϵ

Hs
0 − ϵ

0 − μT 0 0 β2
Ts
0 + ϵ

Hs
0 − ϵ

β32
Ts
0 + ϵ

Hs
0 − ϵ

0 0 − μT 0 0 β3
Ts
0 + ϵ

Hs
0 − ϵ

α1
Hs

0 + ϵ
Hs

0 − ϵ
0 α31

Hs
0 + ϵ

Hs
0 − ϵ

− μH 0 0

0 α2
Hs

0 + ϵ
Hs

0 − ϵ
α32

Hs
0 + ϵ

Hs
0 − ϵ

0 − μH 0

0 0 α3
Hs

0 + ϵ
Hs

0 − ϵ
0 0 − μH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

When R0 < 1, it follows from )eorem 2 in [14] that
s(M0(0))< 0, which means that M0(0) is stable. )us, we
have limt⟶+∞xi(t) � 0 for i � 1, 2, . . . , 6. In accordance
with the comparison principle, we have

lim
t⟶+∞

T
i
1(t), T

i
2(t), T

i
3(t), H

i
1(t), H

i
2(t), H

i
3(t) 

� (0, 0, 0, 0, 0, 0),
(28)

and by the theory of asymptotically semiflow in [17], we get

lim
t⟶+∞

T
s
(t) � T

s
0 and lim

t⟶+∞
H

s
(t) � H

s
0. (29)

)is proves that E0 is globally asymptotically stable when
R0 < 1. Similarly, there is small enough τ > 0 and t2 �

t(τ)> 0 such that Ts
0 − τ ≤Ts ≤Ts

0 + τ, Hs
0 − τ ≤Hs ≤Hs

0 + τ,
0≤Ti

1 ≤ τ, 0≤Ti
2 ≤ τ, 0≤Ti

3 ≤ τ, 0≤Hi
1 ≤ τ, 0≤Hi

2 ≤ τ, and
0≤Hi

3 ≤ τ for any t≥ t2. )us, for t≥ t2, we also have

dTi
1(t)

dt
≥ β1

Ts
0 − τ

Hs
0 + τ

H
i
1(t) + β31

Ts
0 − τ

Hs
0 + τ

H
i
3(t) − β12 + β13( 

τ2

Hs
0 + τ

− μTT
i
1(t),

dTi
2(t)

dt
≥ β2

Ts
0 − τ

Hs
0 + τ

H
i
2(t) + β32

Ts
0 − τ

Hs
0 + τ

H
i
3(t) − β21 + β23( 

τ2

Hs
0 + τ

− μTT
i
2(t),

dTi
3(t)

dt
≥ β3

Ts
0 − τ

Hs
0 + τ

H
i
3(t) − μTT

i
3(t),

dHi
1(t)

dt
≥ α1

Hs
0 − τ

Hs
0 + τ

T
i
1(t) + α31

Hs
0 − τ

Hs
0 + τ

T
i
3(t) − α12 + α13( 

τ2

Hs
0 + τ

− μHH
i
1(t),

dHi
2(t)

dt
≥ α2

Hs
0 − τ

Hs
0 + τ

T
i
2(t) + α32

Hs
0 − τ

Hs
0 + τ

T
i
3(t) − α21 + α23( 

τ2

Hs
0 + τ

− μHH
i
2(t),

dHi
3(t)

dt
≥ α3

Hs
0 − τ

Hs
0 + τ

T
i
3(t) − μHH

i
3(t).

(30)

And we can construct the auxiliary linear system
dx(t)

dt
� M0′ (τ)x(t), (31)

where
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M0′ (τ) �

− μT 0 0 β1
Ts
0 − τ

Hs
0 + τ

0 β31
Ts
0 − τ

Hs
0 + τ

0 − μT 0 0 β2
Ts
0 − τ

Hs
0 + τ

β32
Ts
0 − τ

Hs
0 + τ

0 0 − μT 0 0 β3
Ts
0 − τ

Hs
0 + τ

α1
Hs

0 − τ
Hs

0 + τ
0 α31

Hs
0 − τ

Hs
0 + τ

− μH 0 0

0 α2
Hs

0 − τ
Hs

0 + τ
α32

Hs
0 − τ

Hs
0 + τ

0 − μH 0

0 0 α3
Hs

0 − τ
Hs

0 + τ
0 0 − μH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

It is shown obviously that s(M0′(0))> 0 if R0 > 1, which
implies that yi(t)⟶ +∞ when t⟶ +∞ for i � 1, 2
, . . . , 6. )en, the disease-free equilibrium E0 is unstable. □

4.2. Stability of Boundary Equilibria. We first analyze the
two subsystems containing only one disease prior to
exploring the stability of the boundary equilibria E1 and
E2.

)e subsystem with only disease 1 is given by

dTs(t)

dt
� ΛT − β1H

i
1(t)

Ts(t)

H(t)
− μTT

s
(t),

dTi
1(t)

dt
� β1H

i
1(t)

Ts(t)

H(t)
− μTT

i
1(t),

dHs(t)

dt
� ΛH − α1T

i
1(t)

Hs(t)

H(t)
− μHH

s
(t),

dHi
1(t)

dt
� α1T

i
1(t)

Hs(t)

H(t)
− μHH

i
1(t).

(33)

)e feasible region of this subsystem (33) is Γ1 �

(Ts(t), Ti
1(t), Hs(t), Hi

1(t)) | Ts (t)≥ 0, Ti
1(t)≥ 0, Hs(t)≥ 0,

Hi
1(t)≥ 0, 0≤Ts(t) + Ti

1(t)≤ΛT/μT, 0≤Hs(t) + Hi
1(t)≤

ΛH/μH} and is positively invariant.
)ere is a disease-free equilibrium E1

0 � (Ts
0, 0, Hs

0, 0) in
subsystem (33), in which Ts

0 � ΛT/μT and Hs
0 � ΛH/μH. If

R1 > 1, then a unique endemic equilibrium E1
1 � (Ts∗,

Ti∗
1 , Hs∗, Hi∗

1 ), where Ts∗, Ti∗
1 , Hs∗, and Hi∗

1 are expressed
as (7), exists in subsystem (33). We aim to study the global
dynamics of system (33) as follows.

Theorem 2. Ae following statements are valid:

(i) If R1 < 1, then subsystem (33) at E1
0 is globally as-

ymptotically stable in Γ1

(ii) If R1 > 1, then there exists a unique positive solution
E1
1 that is globally asymptotically stable for subsystem

(33) in Γ1\E1
0

Proof. In subsystem (33), the tick and host populations
satisfy

dT

dt
� ΛT − μTT,

dH

dt
� ΛH − μHH,

(34)

which imply that the subsystem is globally attractive, and
there is E1

0 � (Ts
0, 0, Hs

0, 0), where Ts
0 � ΛT/μT and Hs

0 �

ΛH/μH.
If R1 < 1, there exists small enough ζ > 0 and t3 �

t(ζ)> 0, and when t≥ t3, we take the limiting system for Ti
1

and Hi
1. Considering the auxiliary system

dw(t)

dt
� M1(ζ)w(t), (35)

with vector w(t) � (w1(t), w2(t)) and matrix

M1(ζ) �

− μT β1
Ts
0 + ζ

Hs
0 − ζ

α1
Hs

0 + ζ
Hs

0 − ζ
− μH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (36)

we have s(M1(0))< 0 if R1 < 1 and finally obtain that E1
0 is

globally asymptotically stable when R1 < 1 according to the
comparison principle.

Similarly, statement (ii) can also be proved via taking the
limiting system for Ti

1 and Hi
1, a detailed proof process

similar to Lemma 2.3 in Lou and Zhao [18] and)eorem 3.2
in Gao et al. [19]. □

Analogously, the other subsystem containing only dis-
ease 2 can be written as follows:
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dTs(t)

dt
� ΛT − β2H

i
2(t)

Ts(t)

H(t)
− μTT

s
(t),

dTi
2(t)

dt
� β2H

i
2(t)

Ts(t)

H(t)
− μTT

i
2(t),

dHs(t)

dt
� ΛH − α2T

i
2(t)

Hs(t)

H(t)
− μHH

s
(t),

dHi
2(t)

dt
� α2T

i
2(t)

Hs(t)

H(t)
− μHH

i
2(t).

(37)

In view of the feasible region Γ2 � (Ts(t), Ti
2(t),

Hs(t), Hi
2 (t)) | Ts(t)≥ 0, Ti

2(t)≥ 0, Hs(t)≥ 0, Hi
2(t)≥ 0, 0≤

Ts (t) + Ti
2(t)≤ΛT/μT, 0≤Hs(t) + Hi

2(t)≤ ΛH/μH}, we can
find that Γ2 is positively invariant. In this subsystem (37),
there exists a disease-free equilibrium E2

0 � (Ts
0, 0, Hs

0, 0) in
which Ts

0 � ΛT/μT, Hs
0 � ΛH/μH, and a unique nontrivial

equilibrium E2
2 � (Ts∗∗, Ti∗∗

2 , Hs∗∗, Hi∗∗
2 ) in which Ts∗∗,

Ti∗∗
2 , Hs∗∗, and Hi∗∗

2 are expressed by (13). )en, we obtain
the global behaviors at E2

0 and E2
2 for subsystem (37).

Theorem 3. Ae following statements are valid:

(i) If R2 < 1, then subsystem (37) at E2
0 is globally as-

ymptotically stable in Γ2
(ii) If R2 > 1, then there exists a unique positive solution

E2
2 that is globally asymptotically stable for subsystem

(37) in Γ2\E2
0

Next, we discuss the relevant dynamics of general system
(3) in Γ, which comprise not only these basic reproduction
numbers describing the stability of the boundary equilibria
E1 and E2 but also the invasion reproduction numbers
explaining how a disease can invade a tick-host population
where another disease is already prevalent.

Theorem 4. When R1 > 1, the boundary equilibrium E1 is
locally asymptotically stable for system (3) if R1

2 < 1 but
unstable if R1

2 > 1.

Proof. Define WS(E1) as the stable manifold of E1, and

Γ3 � T
s
, T

i
1, T

i
2, T

i
3, H

s
, H

i
1, H

i
2, H

i
3 

∈ Γ | T
i
2 � T

i
3 � H

i
2 � H

i
3 � 0,

Γ4 � T
s
, T

i
1, T

i
2, T

i
3, H

s
, H

i
1, H

i
2, H

i
3 

∈ Γ | T
s

� T
s∗

, T
i
1 � T

i∗
1 , H

s
� H

s∗
, H

i
1 � H

i∗
1 .

(38)

Note that Γ3 and Γ4 are all invariant sets for system (3)
with respect to the boundary equilibrium E1. According to
the center manifold theorem, we consider two invariant

manifolds W1 and W2 tangent to Γ3 and Γ4, respectively,
which satisfy dimW1 � dimΓ3 and dimW2 � dimΓ4.

Likewise, Γ3\E0 is also an invariant set for system (3),
and there is an invariant manifold expressed as W3 such
that dimW3 � dimΓ3\E0 � dimΓ3. Since E1 is globally
stable in Γ3\E0 by )eorem 2, we have W3 ⊂WS(E1). )en,
we focus on the linearization of system (3) with respect to the
subspace Γ4. Calculating the respective Jacobian matrix J2, we
obtain

J2 � F2 − V2, (39)

where F2 and V2 are shown in (16). In accordance with
)eorem 2 in [14],

s J2( < 0(> 0)⟺R
1
2 < 1(> 1), (40)

in which s(·) represents the maximum real part of the ei-
genvalues of J2.

IfR1
2 > 1, that is, s(J2)> 0, the boundary equilibrium E1

is unstable. If R1
2 < 1, the real parts of the eigenvalues of J2

are all negative; therefore, Γ4 is stable. At the same time, the
manifold W2 is also stable. )en, we can prove that dim
WS(E1)≥ dimW3 + dimW2 � 8; therefore, dimWS (E1) � 8,
and the equilibrium E1 is stable. Finally, when R1 > 1, the
equilibrium E1 is locally asymptotically stable for system (3)
if R1

2 < 1 but unstable if R1
2 > 1. □

)e proof method of )eorem 4 can also be applied to
the following theorem, which shows how the stability of E2
depends on the invasion reproduction number R2

1.

Theorem 5. When R2 > 1, the boundary equilibrium E2 is
locally asymptotically stable for system (3) if R2

1 < 1 but
unstable if R2

1 > 1.

4.3. Coexistence of Two Diseases. We have shown that the
boundary equilibrium E1 (or E2) is unstable in the tick-host
population where disease 1 (or 2) is already prevalent once the
invasion reproduction number R1

2 (or R
2
1) is greater than one,

which means that disease 2 (or 1) is able to invade in the pop-
ulation. From this perspective, the instability ofE1 andE2 may be
an advantage to study the coexistence of these two diseases. Here,
we present )eorem 6 involving disease persistence.

Theorem 6. If R1 > 1, R2 > 1, R
1
2 > 1, and R2

1 > 1, then
system (3) remains uniformly persistent, namely, there exists a
constant ε> 0 such that every solution χ(t) ≡ (Ts(t),

Ti
1(t), Ti

2(t), Ti
3(t), Hs(t), Hi

1(t), Hi
2(t), Hi

3(t)) for system
(3) with positive initial value χ(0) ≡ (Ts(0), Ti

1(0), Ti
2

(0), Ti
3(0), Hs(0), Hi

1(0), Hi
2(0), Hi

3(0)) satisfies

lim inf
t⟶+∞

T
s
, T

i
1, T

i
2, T

i
3, H

s
, H

i
1, H

i
2, H

i
3 ≥ (ε, ε, ε, ε, ε, ε, ε, ε).

(41)
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Proof. Define

X0 � T
s
, T

i
1, T

i
2, T

i
3, H

s
, H

i
1, H

i
2, H

i
3 

∈ Γ | T
s > 0, T

i
1 > 0, T

i
2 > 0, T

i
3 > 0, H

s > 0,

H
i
1 > 0, H

i
2 > 0, H

i
3 > 0,

(42)

zX0 � Γ\X0. (43)

It can be shown that system (3) remains uniformly
persistent regarding (X0, zX0).

By Lemma 1, first of all, we know that Γ and X0 are
positively invariant in system (3). Also, X0 is relatively closed
in Γ, and system (3) is point dissipative. Let

Mz � χ(t) | χ(t)satisfies system(3) as well as χ(t) ∈zX0,∀t≥ 0 ,

(44)

and set

Mz0 � T
s
, 0, 0, 0, H

s
, 0, 0, 0( 

 T
s ≥ 0, H

s ≥ 0 ,

Mz1 � T
s
, T

i
1, 0, 0, H

s
, H

i
1, 0, 0 

 T
s ≥ 0, H

s ≥ 0, T
i
1 ≥ 0, H

i
1 ≥ 0 ,

Mz2 � T
s
, 0, T

i
2, 0, H

s
, 0, H

i
2, 0 

 T
s ≥ 0, H

s ≥ 0, T
i
2 ≥ 0, H

i
2 ≥ 0 .

(45)

Assume Mz � Mz0∪Mz1∪Mz2. )en, we prove that

Mz � Mz. (46)

Firstly, Mz ⊆Mz clearly holds, so we concentrate on the
proof of Mz ⊆Mz.

Proving by contradiction, we suppose thatMz ⊆Mz does
not hold. As χ(t) denotes the solution of system (3) with
positive initial value χ(0), then χ(t) ∈Mz for t≥ 0, and
χ(t) ∉Mz. )us, χ(t) ≡ (Ts(t), Ti

1(t), Ti
2(t), Ti

3(t), Hs(t),

Hi
1(t), Hi

2(t), Hi
3(t)) is in accordance with one of these

conditions:

(1) )ere exists t0 ≥ 0 such that at least one of Ti
3(t0) and

Hi
3(t0) is not zero

(2) If Ti
3(t0) � Hi

3(t0) � 0 as t0 ≥ 0, then the solution
satisfies the following: (i) there exists t0 ≥ 0 such that
at least one of Ti

1(t0) andHi
1(t0) is not zero; (ii) there

exists t0 ≥ 0 such that at least one of Ti
2(t0) and

Hi
2(t0) is not zero

We suppose χ(t) satisfies condition (1). Without loss of
generality, we may as well presume that Ti

3(t0)> 0 and
Hi

3(t0) � 0. According to Lemma 1, the solution Ti
3(t)> 0

can be given for any t> t0. For system (3) and for t> t0, we
have

H
i
1(t) � H

i
1 t0( exp − 

t

t0

α12
Ti
2(s)

H
ds − 

t

t0

α13
Ti
3(s)

H
ds − μH t − t0(  

+ exp − 
t

t0

α12
Ti
2(s)

H
ds − 

t

t0

α13
Ti
3(s)

H
ds − μH t − t0(   

t

t0

α1T
i
1(s)

Hs(s)

H


+ α31T
i
3(s)

Hs(s)

H
exp 

t

s
α12

Ti
2(ξ)

H
+ α13

Ti
3(ξ)

H
 dξ + μH(t − s) ds > 0,

H
i
2(t) � H

i
2 t0( exp − 

t

t0

α21
Ti
1(s)

H
ds − 

t

t0

α23
Ti
3(s)

H
ds − μH t − t0(  

+ exp − 
t

t0

α21
Ti
1(s)

H
ds − 

t

t0

α23
Ti
3(s)

H
ds − μH t − t0(   

t

t0

α2T
i
2(s)

Hs(s)

H


+ α32T
i
3(s)

Hs(s)

H
exp 

t

s
α21

Ti
1(ξ)

H
+ α23

Ti
3(ξ)

H
 dξ + μH(t − s) ds > 0,

T
i
1(t) � T

i
1 t0( exp − 

t

t0

β12
Hi

2(s)

H
ds − 

t

t0

β13
Hi

3(s)

H
ds − μT t − t0(  

+ exp − 
t

t0

β12
Hi

2(s)

H
ds − 

t

t0

β13
Hi

3(s)

H
ds − μH t − t0(   

t

t0

β1H
i
1(s)

Ts(s)

H


+ β31H
i
3(s)

Ts(s)

H
exp 

t

s
β12

Hi
2(ξ)

H
+ β13

Hi
3(ξ)

H
 dξ + μT(t − s) ds > 0,
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T
i
2(t) � T

i
2 t0( exp − 

t

t0

β21
Hi

1(s)

H
ds − 

t

t0

β23
Hi

3(s)

H
ds − μT t − t0(  

+ exp − 
t

t0

β21
Hi

1(s)

H
ds − 

t

t0

β23
Hi

3(s)

H
ds − μT t − t0(   

t

t0

β2H
i
2(s)

Ts(s)

H


+ β32H
i
3(s)

Ts(s)

H
exp 

t

s
β21

Hi
1(ξ)

H
+ β23

Hi
3(ξ)

H
 dξ + μT(t − s) ds > 0,

H
i
3(t) � H

i
3 t0( exp − μH t − t0(   + exp − μH t − t0(   

t

t0

α3T
i
3(s)

Hs(s)

H


+ α12T
i
2(s)

Hi
1(s)

H
+ α13T

i
3(s)

Hi
1(s)

H
+ α21T

i
1(s)

Hi
2(s)

H
+ α23T

i
3(s)

Hi
2(s)

H


exp μH(t − s) ds > 0.
(47)

)is implies that χ(t) ∉ zX0 when t> t0. Likewise, we
have χ(t) ∉ zX0 for t> t0 using condition (2), which con-
tradicts the hypothesis χ(t) ∈zX0. )erefore, it follows that
Mz ⊆Mz, and then Mz � Mz.

We know that there exist three equilibria E0, E1, and E2
in which all are isolated invariant sets in Γ. In addition, we
can show that WS(E0)∩X0 � ∅, WS(E1)∩X0 � ∅, and
WS(E2)∩X0 � ∅, in which WS(Ei) represents the stable
manifold of Ei for i � 0, 1, 2, namely, there is κ> 0 such that,
for every solutionΦt(χ(0)) of system (3) with χ(0) ∈ X0, we
obtain

lim sup
t⟶+∞

d Φt(χ(0)), E0( ≥ κ,

lim sup
t⟶+∞

d Φt(χ(0)), E1( ≥ κ,

lim sup
t⟶+∞

d Φt(χ(0)), E2( ≥ κ,

(48)

in which d is a distance function for X0.
Without loss of generality, we only prove that

lim supt⟶+∞ d(Φt(χ(0)), E1)≥ κ. Suppose it does not hold;
then, lim supt⟶+∞ d(Φt(χ(0)), E1)< ε for any ε> 0, that is,
there is t4 � t(ε)> 0 such that Ts∗ − ε≤Ts ≤Ts∗ + ε,
Ti∗
1 − ε≤Ti

1 ≤Ti∗
1 + ε, Hs∗ − ε≤Hs ≤Hs∗ + ε, Hi∗

1 − ε≤Hi
1

≤Hi∗
1 + ε, 0≤Ti

2 ≤ ε, 0≤Ti
3 ≤ ε, 0≤Hi

2 ≤ ε, and 0≤Hi
3 ≤ ε for

any t> t4. In system (3) for t> t4, we have

dTi
2(t)

dt
≥ β2H

i
2
Ts∗ − ε

H∗
+ β32H

i
3
Ts∗ − ε

H∗
− β21T

i
2
Hi∗

1 + ε
H∗

− β23
ε2

H∗
− μTT

i
2,

dTi
3(t)

dt
≥ β3H

i
3
Ts∗ − ε

H∗
+ β12H

i
2 + β13H

i
3 

Ti∗
1 − ε
H∗

+ β21T
i
2
Hi∗

1 − ε
H∗

− μTT
i
3,

dHi
2(t)

dt
≥ α2T

i
2
Hs∗ − ε

H∗
+ α32T

i
3
Hs∗ − ε

H∗
− α21H

i
2
Ti∗
1 + ε
H∗

− α23
ε2

H∗
− μHH

i
2,

dHi
3(t)

dt
≥ α3T

i
3
Hs∗ − ε

H∗
+ α12T

i
2 + α13T

i
3 

Hi∗
1 − ε
H∗

+ α21H
i
2
Ti∗
1 − ε
H∗

− μHH
i
3.

(49)

)en, we consider the following auxiliary system:
du

dt
� M2(ε)u, (50)

in which the vector u � (u1, u2, u3, u4)
T and

Complexity 11



M2(ε) �

−
β21 Hi∗

1 + ε( 

H∗
− μT 0

β2 Ts∗ − ε( )

H∗
β32 Ts∗ − ε( )

H∗

β21 Hi∗
1 − ε( 

H∗
− μT

β12 Ti∗
1 − ε( 

H∗
β3 Ts∗ − ε( ) + β13 Ti∗

1 − ε( 

H∗

α2 Hs∗ − ε( )

H∗
α32 Hs∗ − ε( )

H∗
− μH −

α21 Ti∗
1 + ε( 

H∗
0

α12 Hi∗
1 − ε( 

H∗
α3 Hs∗ − ε( ) + α13 Hi∗

1 − ε( 

H∗
α21 Ti∗

1 − ε( 

H∗
− μH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

It is clear that M2(0) � F2 − V2, where F2 and V2 are
given by (16). By referring to)eorem 2 in [14], we get that if
R1

2 > 1, then s(M2(0))> 0. As M2(ε) is continuous for small
ε, there exists sufficiently small ε such that s(M2(ε))> 0.
Consequently, we obtain a positive eigenvalue of M2(ε) with
a positive eigenvector. Let u(t) � (u1(t), u2(t), u3(t),

u4(t))T denote a positive solution for auxiliary system (50),
which is strictly increasing, namely, ui(t)⟶ +∞ as
t⟶ +∞ for i � 1, 2, 3, 4. Using the comparison principle,
we have

lim
t⟶+∞

T
i
2(t) � +∞, lim

t⟶+∞
T

i
3(t) � +∞,

lim
t⟶+∞

H
i
2(t) � +∞, lim

t⟶+∞
H

i
3(t) � +∞,

(52)

and this conflicts with the above assumption.
)us, E1  is not only an isolated invariant set for Γ, but it

also satisfies WS(E1)∩X0 � ∅. Analogously, we can also
verify that E2  is not only an isolated invariant set for Γ, but
it also satisfies WS(E2)∩X0 � ∅ when R2

1 > 1. In addition,
when R1 > 1 and R2 > 1, E0  is not only an isolated in-
variant set for Γ, but it also satisfies WS(E0)∩X0 � ∅.
According to)ieme [20], system (3) is uniformly persistent
if R1 > 1, R2 > 1, R

1
2 > 1, and R2

1 > 1. □

5. Numerical Illustrations and Discussion

In this section, we utilize specific numerical simulations to
illustrate the impact of coinfection on the dynamics of two
tick-borne pathogens and ensure the effectiveness of the
previous theories. Besides, we also propose and verify the
uniform persistence of the two diseases and the presence of a
coexistence equilibrium in the case in which R1 > 1 and
R2 < 1<R

1
2 or R2 > 1 and R1 < 1<R

2
1 in the following.

By referring to some early works [2, 11, 21–23], we fix the
parameter values as follows: ΛT � 5000 day− 1, μT � 1 day− 1,
ΛH � 200 day− 1, μH � 0.1 day− 1, β1 � 0.4, α1 � 0.3, β2 �

0.25, and α2 � 0.15. First, we consider subsystems (33) and
(37) and set the initial values of these subsystems to (Ts

(0), Ti
1(0), Hs(0), Hi

1(0)) � (Ts(0), Ti
2(0), Hs(0), Hi

2(0)) �

(100, 250, 75, 200). According to Figure 2(a), it is clearly
shown that the number of infectious individuals with disease
1 consisting of infected ticks and hosts will eventually
reach the equilibrium E1

1 � (4105, 952.5, 853.5, 1146), which

means that disease 1 would remain endemic since
R1 � 1.025> 1. On the contrary, it follows from Figure 2(b)
that disease 2 will not persist in the relative tick and host
populations as expected since R2 � 0.943< 1. )us, we can
conclude that disease 2 cannot survive alone in tick and host
populations, but disease 1 can.

Next, we introduce disease 2, which cannot spread if taken
singularly, into tick and host populations where disease 1 al-
ready exists in order to study the influence of coinfection. We
choose the following as parameter values: β32 � β31 � β21 �

β23 � α32 � α31 � α23 � α21 � 0.1, β3 � α3 � 0.25, and β12 �

β13 � α12 � α13 � 0.12. )e initial values of (Ti
2, Ti

3, Hi
2, Hi

3)

are set to (Ti
2(0), Ti

3(0), Hi
2(0), Hi

3(0)) � (100, 200,

150, 100), and we calculate the invasion reproduction number
R1

2 � 1.01> 1. From Figure 3, we see that infected ticks and
hosts with only disease 2 approach and stabilize at 76.4 and 65.9,
and ones with both pathogens stabilize at 153.7 and 302.9,
respectively, which imply that disease 2 can invade tick and host
populations in which disease 1 is already endemic ifR1

2 > 1. In
order to visualize theoretical results, we choose β3 and α3 as
parameters and plot Figure 4 to show their effects on the in-
vasion reproduction number R1

2.
In this paper, we have developed a coinfection model

involving two tick-borne diseases to explore their interaction
and spread. Based primarily on the works by Van den
Driessche [14], we have calculated the basic reproduction
numbers concerning the disease-free equilibrium E0 and
two boundary equilibria E1 and E2. Considering the invasion
of a disease, we have then proposed a new threshold, namely,
the invasion reproduction number, to describe the number
of secondary cases infected by a disease later introduced into
a population where another disease is already endemic, and
we have derived the expressions for these two reproduction
numbers.

According to the comparison principle and the theory
of asymptotically semiflow, we have proved the global
stability at the disease-free equilibrium E0 if R0 < 1 and
the local stability at the two boundary equilibria E1 and E2
if R1 > 1(R2 > 1) and R1

2 < 1(R2
1 < 1), as well as the co-

existence conditions for these two diseases, which are
R1 > 1, R2 > 1, R

1
2 > 1, and R2

1 > 1. We have also showed
that the two diseases are uniformly persistent, and the
transmission system of two diseases admits a coexistence
equilibrium when R1 > 1 (or R2 > 1) and R2 < 1<R

1
2 (or
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R1 < 1<R
2
1), which implies that the existence of one

disease can facilitate the invasion and transmission of
another disease. )ese results have been verified by nu-
merical simulations.

)e highlight of this paper is the introduction of the
invasion reproduction number, which can directly reflect
whether one disease can invade a population where another
disease is already persistent, in order to investigate the effect
of coinfection. We conclude that coinfection has a positive
effect on the transmission of two tick-borne diseases in

model (3), that is, one disease may invade a tick-host
population where another disease already exists, although it
cannot remain endemic alone in the population.

However, theoretically, pathogens or diseases interacting
in a population may not only promote each other but also
compete or be independent one from the other [2]. )us, in
future research, we will focus on the negative effects of
coinfection on diseases transmission. Furthermore, other
factors such as temporal and spatial heterogeneity will also
be worth discussing.
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Figure 2: Solutions of submodels (33) and (37). )e numbers of susceptible and infectious individuals are represented by blue and red
curves, respectively, where solid lines denote the number of susceptible or infectious ticks, and dotted lines denote the number of susceptible
or infectious hosts. (a) Subsystem (33) stabilizes at equilibrium E1

1 asR1 � 1.025> 1 for this parameter choice, which indicates that disease 1
can be endemic in tick and host populations; (b) susceptible ticks and hosts eventually approach and stabilize at 4990 and 1985, respectively,
but infected ticks and hosts die out as R2 � 0.943< 1, which implies that disease 2 cannot spread in the tick-host population.
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Figure 3: Solutions of model (3) reflecting the influence of the invasion of disease 2. )e numbers of infectious ticks and hosts are
represented by blue and red curves, respectively, where dotted lines denote the number of infected individuals with only disease 2, and solid
lines denote the number of infected individuals with both diseases. It is shown that infectious individuals related to both diseases tend to
persist, and then disease 2 can invade the tick-host population as R1

2 � 1.01> 1.
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