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­e optimal con�guration of manufacturing resources in the cloud manufacturing environment has always been the focus of
research on various advanced manufacturing systems. Aiming at the problem of manufacturing resources optimization con-
�guration for middle and lower batch customization enterprises in cloud manufacturing environment, this paper gives a bi-level
programming model for manufacturing resources optimization con�guration in cloud manufacturing environment which fully
considers customer satisfaction and enterprise customization economic bene�ts. ­e method �rstly identi�es the relationship
between customer demands and customer satisfaction through questionnaires and quanti�es the Kano model e�ectively. ­en, it
uses Quality Function Deployment (QFD) to transform customer demand characteristics into engineering characteristics and
integrates the qualitative and quantitative results of the Kano model. Next, the method establishes enterprise economic bene�ts
function according to the factors of order quantity and input cost. Furthermore, a comprehensive nonlinear bi-level programming
model is established based on cost, time, and quality constraints. ­e model is solved by intelligent algorithm. Finally, the validity
and feasibility of the model are veri�ed by model simulation of actual orders of an enterprise. ­is method e�ectively realizes the
optimal con�guration of manufacturing resources in the cloud manufacturing environment, while maximizing the interests of
both suppliers and demanders.

1. Introduction

In today’s economic globalization, the market has gradually
transformed from a seller’s market to a buyer’s market which
has prompted more and more companies to start from
traditional stock-based production to order-based pro-
duction, in order to better meet the demand for products
and services. ­e order-based production model requires
companies to provide customers with the best possible
products and services in the shortest possible time, while
reducing the production costs of the company as much as
possible [1]. ­e “cloud manufacturing” production model
provides a new development model for the development of
the manufacturing industry. In the cloud manufacturing
environment, enterprises with insu�cient resources can

save the cost of purchasing and maintaining large-scale
equipment by renting manufacturing equipment, and so on.
At the same time, resource idle enterprises can use the
method of renting manufacturing equipment to create
pro�ts for the enterprise [2]. Manufacturing resources op-
timization con�guration as a core component of cloud
manufacturing which is the key link to reduce the cost of
resource use and improve the e�ciency of resource utili-
zation [3].

How to scienti�cally and e�ciently realize the optimal
con�guration of production and processing resources,
improve the utilization e�ciency of production and
processing resources, and provide customers with better
production and processing services, which become an
important issue for the cloud manufacturing model to
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explore and research [4]. -erefore, this paper presents a
bi-level planning manufacturing resource optimization
configuration model based on customer satisfaction and
economic benefits. -e next structure of this paper is as
follows: Section 2 introduces the current state of research
on manufacturing resource optimization configuration;
Section 3 introduces problem description of the paper;
Section 4 details the manufacturing resources optimiza-
tion configuration model proposed in this paper; Section 5
simulates the model with an instance; Section 6 and
Section 7 make a brief discussion and conclusion,
respectively.

2. Literature Review

If enterprises want to gain a favorable position in the current
fierce market competition, they must establish alliance-
based networked off-site collaborative manufacturing alli-
ances with other enterprises to form a virtual enterprise and
carry out effective manufacturing resources optimization
configuration [5]. Due to different manufacturing tasks and
different manufacturing capabilities, there are two types of
manufacturing resources optimization configuration in the
cloud manufacturing environment: optimized configuration
of manufacturing resources within the enterprise in cloud
manufacturing environment and optimized configuration of
manufacturing resources between enterprises in cloud
manufacturing environment.

Akbaripour et al. proposed a new mixed integer pro-
gramming (MIP) model to solve the process of service se-
lection optimization and scheduling (SSOS) under the
condition of cost and quality over time which the model is
applied to the motorcycle manufacturing task in the cloud
manufacturing environment [6]. Wu et al. studied tolerance
design, a key technology for developing quality and reducing
cost in cloud manufacturing environment, and used two-
level game theory to optimize the problem.-e supplier level
and the demander level are regarded as the two sides of the
game. -rough this game, both the supplier and the
customer can eventually achieve a balance and realize the
effective allocation of resources [7]. Zheng et al. proposed
an integrated resource service selection method based on
designer preference and fuzzy quality of service (FQoS) in
cloud manufacturing environment; then particle swarm
optimization (PSO) was used to select the optimal service
composition; and finally, a numerical example was given
to verify the effectiveness and scientificity of the proposed
method [8]. Based on the custom technology and order
preference method, Zhang et al. establishes a compre-
hensive objective function which considers the minimum
standard cost, the highest priority, the highest reliability,
the lowest energy consumption, and the maximum cus-
tomer satisfaction to facilitate the demand in the cloud
manufacturing environment [9]. Cao et al. uses fuzzy
decision theory to convert TQCS values into relative
dominance, taking into account the factors affecting time,
quality, cost, and service (TQCS), and then, by combining
the weighted coefficients, the four relative dominances are
combined into one overall optimization goal, and the

service selection and scheduling model is established [10].
Zhang proposed a new energy adaptive immune genetic
algorithm (EAIGA) in order to realize low-cost and high-
efficiency mechanical design task scheduling in cloud
manufacturing environment. -is algorithm can not only
improve the search diversity based on immune strategy
but also adaptively adjust the probability of crossover and
mutation which can effectively achieve a good balance
between resource search diversification and in-
tensification [11].

In the existing research on the manufacturing resources
optimization configuration in the cloud manufacturing
environment, most of the research only considers the
unilateral influence factors and constraints in the resource
optimization configuration which does not consider the
satisfaction of the customized parties. Moreover, there are
many research results on the optimal allocation of re-
sources within enterprises, and there are few models
considering the collaborative optimal allocation of
manufacturing resources among enterprises, which can-
not effectively solve the problem of idle and redundant
resources in the whole industry. Based on this, this paper
proposes a method to manufacturing resources optimi-
zation configuration in cloud manufacturing environ-
ment, which aims at customer satisfaction and enterprise
customization economic benefits.

3. Problem Description

In the cloud manufacturing environment, due to the
complexity of the customized product manufacturing
process, a manufacturing company often cannot complete
the manufacturing orders independently which requires
multiple manufacturing companies to work together to
complete. When the manufacturing company receives the
customer’s customized product processing order, it first
organizes the process experts to analyze the production
process of the customized product according to the cus-
tomer order details and customer needs and uses the
appropriate method to decompose the total production
and processing tasks into a single production task; then,
according to the production and processing capabilities of
the enterprise, it is clarified which sub-tasks can be
completed independently by the enterprise and which sub-
tasks need to be completed together with other companies
by coordinating production. In a cloud manufacturing
environment, there are often multiple manufacturing
companies that can accomplish collaborative
manufacturing sub-tasks. Enterprises should build a col-
laborative enterprise selection optimization model based
on factors such as time, quality, and cost of customer
orders, which select the most suitable collaborative
manufacturing enterprises among the many candidate
collaborative manufacturing enterprises to obtain maxi-
mum customer satisfaction and the company’s maximum
economic benefits [12]. -e process of optimizing con-
figuration of manufacturing resources for middle and
lower batch customization enterprises in cloud
manufacturing environment is shown in Figure 1.
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It can be seen from Figure 1 that the collaborative
manufacturing resource optimization configuration of the
customized product involves the customer layer, the en-
terprise layer, the collaborative enterprise layer, and so on,
which needs to consider many factors. Customers pursue the
maximization of satisfaction, hoping that product quality,
delivery time, purchase cost, and so on can meet their
maximum expectations. However, manufacturing enter-
prises pursue the maximization of enterprise customization
economic benefits, hoping to obtain the maximization of
enterprise economic benefits through the smallest pro-
duction input. For the same order, the maximization of
customer satisfaction and the maximization of enterprise
economic benefits cannot always reach the maximum at the
same time. -ere is always a certain contradiction between
them. -erefore, in the process of optimizing configuration
of manufacturing resources for middle and lower batch
customization enterprises in cloud manufacturing envi-
ronment, not only the maximization of enterprise cus-
tomization economic benefits but also the maximization of
customer satisfaction should be considered. -rough the
game between them, we can get the balance which makes the
economic benefits of customization and customer satisfac-
tion reach the maximum at the same time.

4. The Proposed Method

4.1. Preliminary Knowledge

4.1.1. Kano Model. Kano model is a mathematical model
proposed by Professor N. Kano, which can obtain customer
demand classification, priority ranking, and the nonlinear
relationship between customer satisfaction and customer
demands [13]. Kano thinks that the customer satisfaction is
essentially the difference between actual perception and
expectation perception, that is, when the customer compares
the perception of the product or service with the actual
perception, the happiness or disappointment generated by
the customer is the customer satisfaction. According to the
relationship between customer demand characteristics and
customer satisfaction, we divide customer demand char-
acteristics into Must-be Quality (M), One-dimensional
Quality (O), Attractive Quality (A), Indifferent Quality (I),
and Reverse Quality (R) [14], as shown in Figure 2.

(1) Must-Be Quality (M). It refers to the characteristics that
customers believe should be included in the products or
services provided by enterprises. Must-be quality is posi-
tively related to customer satisfaction.
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Figure 1: -e process of manufacturing resources optimization configuration.
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(2) One-Dimensional Quality (O). It means that the customer
wants the product or service provided by the company to
contain this characteristic.

(3) Attractive Quality (A). It means that the products or
services provided by the company contain characteristics
that the customer did not think. If the company provides this
characteristic, customer satisfaction can grow rapidly; if the
company does not provide this feature, customer satisfaction
will not be reduced.

(4) Indifferent Quality (I). It means that the increase or
decrease in the characteristics of the products or services
provided by the company will not affect the increase or
decrease of customer satisfaction.

(5) Reverse Quality (R). It means that the characteristics that
the customer does not want the products or services pro-
vided by the company. Reverse quality is inversely related to
customer satisfaction.

4.1.2. QFD Model. Because the customer demands of
products or services expression are comprehensive, it is
necessary to adopt the basic principle of QFD to refine the
customer demand characteristics.

At this time, we need to adopt the basic principles of
QFD to decompose the characteristics of customer demand
in detail, that is, transforming the customer demand
characteristics into the specific engineering characteristics of
a product or service [15]. For example, when a customer
purchases a car, he gives his first demand characteristic as
“fast.” If we use QFD to convert demand characteristics, it
requires the car manufacturer to strengthen the engine.
Studies have shown that QFD not only can well represent the
correlation-degree between customer demand characteris-
tics and engineering characteristics but also can express the
autocorrelation-degree between engineering characteristics
[16]. Based on this, the function representation relationship
between the demand characteristics and the engineering
characteristics is determined. Before a QFD optimization

model is established, the House of Quality (HoQ) should be
constructed at first. A typical HoQ comprises of six main
parts as described in Figure 3.

4.1.3. Bi-Level Programming Mode. In the cloud
manufacturing environment, the manufacturing resources
optimization configuration research should not only con-
sider the maximization of customer satisfaction but also
consider the maximization of enterprise customization
economic benefits. -e process of optimization is a typical
Multiobjective Optimization Problem (MOP), so we can use
the bi-level programming mode to describe the relationship
between the customer and the enterprise.

Compared with the traditional single-level planning
model, the bi-level programming model has the following
significant advantages. Firstly, the upper and lower decision
makers have their own objectives and constraints in the bi-
level programmingmodel. Secondly, the upper objective and
the lower objective can form their own optimal values
through game theory. -e mathematical description of the
bi-level programming model is as follows [17]:

(U) maxZ(x, y),

s.t.G(x, y)≤ 0;

(L) maxf(x, y),

s.t.g(x, y)≤ 0,

(1)

where (U) is the the upper objective; (L) is the lower ob-
jective; G is the upper constraint; and g is the lower con-
straint. -e lower decision variable y is a function of the
upper decision variable x, i.e., y� y(x). -is paper adopts
the theory of the bi-level programming model to solve the
problem of manufacturing resources optimization config-
uration in the cloud manufacturing environment. -e
maximum customer satisfaction is the upper objective and
the maximum enterprise customization economic benefits
are the lower objective, as shown in Figure 4.

4.2. Model Building

4.2.1. Calculation of Customer Satisfaction. Calculating
customer satisfaction (CS) and customer disappointment
(DS) is the first step in quantitative analysis of the Kano
model. EOC Mkpojiogu [18] believes that customers have
different demand characteristics for the same product or
service, so customer satisfaction (CS) and customer disap-
pointment (DS) which can be said by percentage of cus-
tomers who are satisfied or dissatisfied; they can be
calculated using the following formulas:

CSi �
Mi + Oi + Ai

Mi + Oi + Ai + Ii + Ri

, i � 1, . . . , n, (2)

DSi �
Ii + Ri

Mi + Oi + Ai + Ii + Ri

, i � 1, . . . , n, (3)

where CSi and DSi represent customer satisfaction and
customer dissatisfaction with the i-th demand characteristic,
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Figure 2: -e model diagram of Kano.
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respectively; Mi, Oi, Ai, Ii, and Ri, respectively, indicate the
number of people who think that the i-th demand char-
acteristics are Must-be Quality (M), One-dimensional
Quality (O), Attractive Quality (A), Indifferent Quality (I),
and Reverse Quality (R).

After obtaining customer satisfaction (CS) and customer
disappointment (DS), we can calculate the weight of each
demand characteristic i and normalize it using the following
formula.

ωi �
CSi − DSi

􏽐
n
i�1 CSi − DSi( 􏼁

, i � 1, . . . , n, (4)

where ωi represents the weight of the i-th demand
characteristic.

We quantify the relationship between customer satis-
faction (CS) and the customer demand satisfaction of de-
mand characteristics (CR), recorded as Si � (yi, a, b), where
yi indicates the degree of satisfaction for the i-th demand
characteristic and ai and bi are the Kano model adjustment
factors for different demand characteristics [19]. If the i-th
demand characteristic is a Must-be Quality (M), the

satisfaction function is expressed as Si � ai(− e− yi ) + bi. -e
adjustment factors ai and bi can be calculated by

ai �
e CSi − DSi( 􏼁

e − 1
,

bi �
eCSi − DSi

e − 1
, i � 1, . . . , n.

(5)

If the i-th demand characteristic is a One-dimensional
Quality (O), the satisfaction function is expressed as
Si � a2yi + b2. -e adjustment factors ai and bi can be
calculated by

ai � CSi − DSi,

bi � DSi, i � 1, . . . , n.
(6)

If the i-th demand characteristic is a Attractive Quality
(A), the satisfaction function is expressed as Si � a2e

yi + b2.
-e adjustment factors ai and bi can be calculated by

ai �
CSi − DSi

e − 1
,

bi �
CSi − eDSi

e − 1
, i � 1, . . . , n.

(7)

By integrating the three cases in Table 1, the CS-CR
function can be expressed in general form: Si � aif(yi) + bi,
where f(yi) is the basic function to determine the shape of the
relationship curve and ai and bi are adjustment coefficients of
the Kano model with different demand characteristics.

4.2.2. Demand Characteristics and Engineering Character-
istics Conversion Based on QFD. -e “0–9” scoring method
is used to score the autocorrelation-degree of engineering
characteristics and the correlation-degree between demand
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characteristics and engineering characteristics, where “0”
means no correlation and “9” means the strongest corre-
lation. rij denotes the correlation-degree between the i-th
demand characteristic and the j-th engineering character-
istic; gkj denotes the autocorrelation-degree of the j-th
engineering characteristic.

Based on this, we can further obtain the association
relationship between the i-th demand characteristic and the
j-th engineering characteristic, as shown in the following
formula:

Rij � 􏽘
m

k�1
rikgkj, i � 1, . . . , n, j � 1, . . . , m, (8)

where Rij denotes association relationship between the i-th
demand characteristic and the j-th engineering
characteristic.

In order to effectively improve the accuracy of the
calculation results, the obtained association relationship
needs to be normalized by

􏽢Rij �
Rij

max Rij􏽮 􏽯
, i � 1, . . . , n, j � 1, . . . , m. (9)

Based on the normalized association relationship, the
functional relationship between the i-th demand charac-
teristic and the j-th engineering characteristic is further
determined to be Y � 􏽢RX, that is,

yi � 􏽢Rijxj, i � 1, . . . , n, j � 1, . . . , m, (10)

where Y � y1, . . . , yn􏼈 􏼉 is a set of customer demand char-
acteristics, yi denotes the i-th demand characteristic of
customer and X � x1, . . . , xm􏼈 􏼉 is a set of engineering
characteristics, xj denotes the j-th engineering
characteristic.

Combined with equations (5)–(10), the customer satis-
faction function expression is

S y1, . . . , yn( 􏼁 � 􏽘
n

i�1
ωisi, i � 1, . . . , n. (11)

-at is,

si �

CSi − DSi

e − 1
e
􏽢Rijxj −

CSi − eDSi

e − 1
, (A),

CSi − DSi( 􏼁e􏽢Rijxj + DSi, (O),

−
e CSi − DSi( 􏼁

e − 1
e

− 􏽢Rijxj +
eCSi − DSi

e − 1
, (M),

i � 1, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where ωi denotes the proportion of the i-th demand char-
acteristic to the customer’s entire demand, that is, the weight
of the i-th demand characteristic.

4.2.3. Enterprise Customization Economic Benefits
Calculation. In economics, economic benefits refer to the
proportional relationship between the gross production
value and production costs which is the ultimate compre-
hensive indicator for measuring all economic activities [20].
-e enterprise customization economic benefits proposed in
this paper refer to the economic benefits of enterprise under
the environment of mass customization.

-e enterprise customization economic benefits value
can be expressed by the difference between the input values
(I) and the output values (O) in the production process [21],
as in the following equation:

E � O − I, (13)

whereEdenotes the enterprise customization economic benefits.
-e input value in the production process of an enter-

prise can be divided into direct costs C1, indirect costs C2,
and hidden costs C3.

Direct costs include the cost of raw materials used to
purchase primary or auxiliary materials, the cost of pur-
chasing production equipment, the product transportation
costs for semifinished or finished products, and the labor
costs of production and assembly staff. Indirect costs include
the depreciation costs incurred by equipment production
operations, the operating costs for normal production (e.g.,
plant lease fees, utility bills, etc.), and the labor costs of the
operation management personnel. -e hidden costs include
the opportunity cost lost due to the capital flow being oc-
cupied and the cost of collaborative production with other
companies, as shown in Table 2.

-e sales output value of the enterprise mainly refers to
the sales value of the products customized by the customer.
For example, if the number of customized products is N and
the price of each product is p, the sales output value is N × P,
that is, I � N × P.

Based on the above analysis, the enterprise custom-
ization economic benefits E can be expressed as

E � N × P − C1 + C2 + C3( 􏼁. (14)

4.2.4. >e Bi-Level Programming Mode for Manufacturing
Resources Optimization Configuration. Considering the
different objective functions of the supply and demand sides,
customer satisfaction is selected as the upper objective
function and the enterprise customization economic benefits

Table 1: CS-CR relational functions.

KC ai bi f(yi) Si � aif(yi) + bi

A (CSi − DSi)/(e − 1) (CSi − eDSi)/(e − 1) eyi Si � ((CSi − DSi)/(e − 1))ey1 + ((CSi − eDSi)/(e − 1))

O CSi − DSi DSi yi Si � (CSi − DSi)yi + DSi

M e(CSi − DSi)/(e − 1) (eCSi − DSi)/(e − 1) − e− yi Si � (e(CSi − DSi)/(e − 1))e− y1 + ((eCSi − DSi)/(e − 1))
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is used as the lower objective function, and then selecting
cost, time, and cost as constraints build the bi-level pro-
gramming mode, as follows:

max S � 􏽘

n

i�1
ωisi, (15a)

s.t. p � 􏽘
n

i�1
􏽘

ki

j�1
cijxij + C1 + C2

⎛⎝ ⎞⎠ ×(1 + r),

􏽘

ki

j�1
xij � 1;

􏽘

n

i�1
􏽘

ki

j�1
xij � n;

􏽘

n

i�1
ki � m;

(15b)

max E � N × p − 􏽘
n

i�1
􏽘

ki

j�1
cijxij − C1 + C2( 􏼁, (16a)

s.t. Tmin ≤ 􏽘
n

i�1
􏽘

ki

j�1
tijxij ≤Tmax;

􏽘

n

i�1
􏽘

ki

j�1
cijxij + C1 + C2 ≤N × p;

􏽐
n
i�1􏽐

ki

j�1Qijxij

n
≥Qmin;

􏽘

ki

j�1
xij � 1;

􏽘

n

i�1
􏽘

ki

j�1
xij � n;

􏽘

n

i�1
ki � m;

xij �

1, ECj are assigned to the j − th companies in the
collaborative production enterprise setBi,

0, ECj are assigned to the j − th companies in the
collaborative production enterprise setBi,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16b)

where (15a) and (16a) denote the upper objective and the
lower objective; (15b) and (16b) are upper and lower

constraints; r is cost-profit margin; [Tmin, Tmax] is the pro-
duction lead time constraints for manufacturing orders; and
Qmin is the minimum quality requirement for the product.

4.2.5. Model Solving. -ebi-level programming problem is a
kind of hierarchical optimization problem with master-slave
hierarchical structure, which belongs to NP-hard problem
[22]. Genetic algorithm (GA) is an optimization algorithm
that simulates the inheritance and evolution of natural
organisms.

-e GA searches for the optimal solution in the global
scope through coding, selection, intersection, and mu-
tation, which can effectively solve the problem of large-
scale nonlinear optimization [23, 24]. Aiming at the
characteristics of the optimization problem of
manufacturing resource configuration, this paper uses a
hybrid genetic algorithm embedded in the bi-level pro-
gramming principle to solve it [25, 26]. -e solution
process of the algorithm is as follows. Firstly, an initial
solution g0 of the lower objective function is obtained;
then, the initial solution is substituted into the upper
objective function, and the initial optimal decision vari-
able value G0 of the upper objective function and its
objective function value z(G0) are obtained; finally, the
initial optimal decision variable value of the upper layer is
substituted into the lower layer plan to obtain the optimal
value f(G0) of the lower objective function.

-rough the selection, crossover, and mutation, the new
feasible solution g′ of the lower target is obtained. -e new
decision variable G′ and the upper function value z(G′) are
obtained by substituting g′ into the upper objective function,
and then, the new decision variable is substituted into the
lower objective function to obtain the new lower function
value f(G′). By iterating over and over again, the nonoptimal
feasible solution is eliminated and the optimal solution of the
bi-level programming problem is approached gradually. -e
basic flow chart of the algorithm is shown in Figure 5.

5. Example

We take the large lathe as an example. Enterprise A has re-
ceived the processing order of CA6140 horizontal lathe from
enterprise D. By consulting the relevant literature, we can know
that the customer’s demand characteristics for lathe are smooth
speed (y1), cutting precision (y2), good support (y3), excellent
adjustability (y4), easy to operate (y5), and stable operation (y6).
According to this customer demand characteristics, we first
designed a Kano survey questionnaire and distributed the
questionnaire to the 150 respondents (including operators and
managers) of the customerD company, and then, equations (2)

Table 2: Production input values.

Direct costs Symbol Indirect costs Symbol Hidden costs Symbol
Raw material cost c11 Depreciation cost c21 Opportunity cost c31
Production equipment cost c12 Manager cost c22 Collaborative cost c32
Transportation cost c13 Operating cost c23
Production worker cost c14

Complexity 7



and (3) were used to calculate the CS value, the DS value, and
demand characteristics weights, as shown in Table 3.

From Table 3, it can be seen that smooth speed (y1),
cutting precision (y2), and stable operation (y6) are Must-be
Qualities; good support (y3) is One-dimensional Quality;
which is the expected demand in customer demand char-
acteristics; excellent adjustability (y4) and easy to operate
(y5) are Attractive Qualities. At the same time, we can get the
values of customer satisfaction (CS) and customer disap-
pointment (DS). -en, we can calculate the weight value of
each demand characteristic by using equation (4).

ω1 �
0.9333 − 0.0667

4.7064
� 0.1841,

ω2 �
0.9667 − 0.0333

4.7064
� 0.1983,

ω3 �
0.9133 − 0.0867

4.7064
� 0.1756,

ω4 �
0.8533 − 0.1467

4.7064
� 0.1501,

ω5 �
0.8933 − 0.1067

4.7064
� 0.1671,

ω6 �
0.7933 − 0.2067

4.7064
� 0.1246.

(17)

Equations (5) and (7) were used to calculate the ad-
justment coefficients ai and bi of Kano model with different
demand characteristics in Table 1, as shown in Table 4.

Next, we use QFD to translate the six demand charac-
teristics of CA6140 lathe into six engineering characteristics.
For example, the smooth speed of customer demand is
converted into corresponding engineering characteristics, that
is, the headstock (x1) is working well. -e other demand
characteristics can be transformed into engineering charac-
teristics: tool holder (x2), tailstock (x3), feed box (x4), sliding
box (x5), and lathe bed (x6), respectively. -en, we hired seven
experienced process experts to score the autocorrelation-de-
gree of engineering characteristics and the correlation-degree
between engineering characteristics and demand character-
istics using the “0–9” scoring method.-e relationship matrix
is obtained as follows:

r �

9 5 7 2 5 5
5 9 6 1 4 4
2 2 9 2 3 1
3 3 1 9 6 2
1 4 3 6 9 3
5 6 2 4 5 9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g �

9 4 5 4 3 2
4 9 4 6 2 3
5 4 9 3 7 1
4 6 3 9 4 5
3 2 7 4 9 3
2 3 1 6 3 9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

Coding

Roulette selection

Start

Crossing

Variation

Does the termination
criteria be met ?

Calculating fitness values of 
the upper and lower 

Decoding

Output optimal individual

End

Update population

No

Yes

Initial population

Figure 5: Basic flow chart of hybrid genetic algorithm.
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Further, we obtain the association relationship R be-
tween the demand characteristic and the engineering

characteristic by using equation (8) and normalize the as-
sociation relationship R to obtain 􏽢R.

􏽢R �

0.1861 0.1608 0.1916 0.1707 0.1696 0.1211
0.1688 0.1888 0.1875 0.1763 0.1588 0.1200
0.1664 0.1534 0.2348 0.1534 0.2052 0.0869
0.1480 0.1669 0.1553 0.2177 0.1713 0.1408
0.1318 0.1563 0.1793 0.1970 0.1984 0.1372
0.1522 0.1700 0.1463 0.2045 0.1534 0.1736

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)
From equation (10), we can get the relationship between

demand characteristics and engineering characteristics as
follows:

y1 � 0.1861x1 + 0.1608x2 + 0.1916x3 + 0.1707x4 + 0.1696x5 + 0.1211x6;

y2 � 0.1688x1 + 0.1888x2 + 0.1875x3 + 0.1763x4 + 0.1588x5 + 0.1200x6;

y3 � 0.1664x1 + 0.1534x2 + 0.2348x3 + 0.1534x4 + 0.2052x5 + 0.0869x6;

y4 � 0.1480x1 + 0.1669x2 + 0.1553x3 + 0.2177x4 + 0.1713x5 + 0.1408x6;

y5 � 0.1318x1 + 0.1563x2 + 0.1793x3 + 0.1970x4 + 0.1984x5 + 0.1372x6;

y6 � 0.1522x1 + 0.1700x2 + 0.1463x3 + 0.2045x4 + 0.1534x5 + 0.1736x6.

(20)

According to the customer order details and the
enterprise's production efficiency combined with the QFD
method, designers can establish a house of quality model, as
shown in Table 5.

According to the analysis of the process experts of A
company, due to the limited manufacturing precision of the
enterprise, it is impossible to complete the manufacture of
the spindle box and the feed box, and it is necessary to find a
company with highmanufacturing precision to complete the
cooperation.

According to the A enterprise’s process expert analysis,
A enterprise cannot complete the manufacture of feed box
(x4) and sliding box (x5) because of its own manufacturing
precision; therefore, it is necessary to find a enterprise with
high manufacturing precision to complete the cooperation.
Due to the high production cost of the enterprise, headstock
(x1), tool holder (x2), tailstock (x3), and lathe bed (x6) need to
find companies with lower manufacturing costs to
cooperate.

-rough the cloud manufacturing platform, the
manufacturing enterprises that can complete the system
manufacturing tasks are collected and assembled. -e
manufacturing resource collection is shown in Table 6.

-e candidate enterprises sets for engineering charac-
teristics manufacturing tasks x1, x2, x3, x4, x5, and x6 are B1,
B2, B3, B4, B5, and B6 in which the number of candidate
enterprises in each set is 3, 2, 3, 2, 4, and 2, respectively, and
there are 16 enterprises in total.

In other words, for the production orders of D enter-
prises, it is necessary to select the most suitable 6 enterprises
from 16 candidate companies to jointly complete 6 col-
laborative manufacturing tasks. -is not only ensures that
the final product can be completed within the customer’s
allowed delivery time, the price, and the processing quality
that can be accepted by the customer but also ensures that
the total manufacturing cost is relatively low, maximizing
the company’s economic benefits.

-e D enterprise’s custom number of CA6140 ordi-
nary horizontal lathes is 30, that is, N � 30; the time
allowed for delivery is [Tmin, Tmax] � [35, 42]; the mini-
mum quality pass rate that can be tolerated is 0.86, i.e.,
Qmin � 0.86. -e A enterprise’s maximum acceptable cost
for the CA6140 ordinary horizontal lathe is 200000; the A
enterprise’s production input cost is 2000, that is,
C1 + C2 � 20000; cost-profit margin is 0.091, that is,
r � 0.091.

Table 3: Analysis of questionnaire results.

Demand characteristics M O A I R Total KC CS DS
Smooth speed (y1) 79 50 11 10 0 150 M 0.9333 0.0667
Cutting precision (y2) 67 36 42 5 0 150 M 0.9667 0.0333
Good support (y3) 56 61 20 12 1 150 O 0.9133 0.0867
Excellent adjustability (y4) 45 23 60 22 0 150 A 0.8533 0.1467
Easy to operate (y5) 47 35 52 15 1 150 A 0.8933 0.1067
Stable operation (y6) 50 24 45 31 0 150 M 0.7933 0.2067

Table 4: Adjustment coefficient and satisfaction function.

Demand
characteristics KC ai bi si � (yi, ai, bi)

y1 M 1.3709 1.4376 s1 � a1(− e− y1 ) + b1
y2 M 1.4766 1.5099 s2 � a2(− e− y2 ) + b2
y3 O 0.8266 0.0867 s3 � a3y3 + b3
y4 A 0.4112 0.2645 s4 � a4e

y4 + b4
y5 A 0.4578 0.3511 s5 � a5e

y5 + b5
y6 M 0.9280 1.1347 s6 � a6(− e− y6 ) + b6

Complexity 9



According to the different objective functions of both
suppliers and demanders, a bi-level programming model
with customer satisfaction and enterprise economic benefits
as objective functions is established as follows.

max S � 0.1841s1 + 0.1983s2 + 0.1756s3 + 0.1501s4

+ 0.1671s5 + 0.1246s6,

(21a)

s.t. p � 􏽘
n

i�1
􏽘

ki

j�1
cijxij + 5000⎛⎝ ⎞⎠ ×(1 + 0.091);

s1 � 1.3709 − e
− y1( 􏼁 + 1.4376;

s2 � 1.4766 − e
− y2( 􏼁 + 1.5099;

s3 � 0.8266y3 + 0.0867;

s4 � 0.4112e
y4 + 0.2645;

s5 � 0.4578e
y5 + 0.3511;

s6 � 0.9280 − e
− y6( 􏼁 + 1.1347;

Y � 􏽢RX;

(21b)

max E � 50 × p − 􏽘
n

i�1
􏽘

ki

j�1
cijxij + 5000, (22a)

s.t. 35≤ 􏽘
n

i�1
􏽘

ki

j�1
tijxij ≤ 42;

􏽘

n

i�1
􏽘

ki

j�1
cijxij + 5000≤ 50 × p;

􏽐
6
i�1􏽐

ki

j�1Qijxij

6
≥ 0.86;

0.34x11 + 0.36x12 + 0.29x13 � x1;

0.48x21 + 0.52x22 � x2;

0.31x31 + 0.32x32 + 0.37x33 � x3;

0.48x41 + 0.52x42 � x4;

0.21x51 + 0.23x52 + 0.27x53 + 0.29x54 � x5;

0.45x61 + 0.55x62 � x6;

xij �

1, ECj are assigned to the j-th companies in the
collaborative production enterprise setB,

0, ECj are assigned to the j-th companies in the
collaborative production enterprise setBi.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22b)

Selecting the sum of the upper objective function and the
lower objective function value as the fitness function,
f � S + E; the upper and lower cross-over rate is 0.8; the
upper and lower variability is 0.05; the initial population size
is set to 40. Programming with MATLAB R2016a, the al-
gorithm iterates 500 times, which iterative fitness value is
shown in Figure 6.

It can be seen from Figure 5 that the algorithm obtains
the optimal fitness value individually when iterating to 200
times. -e optimal fitness value was 232924.3. -e optimal
chromosome coding scheme is 0100100101000101, which
means that the production of manufacturing task x1 is
assisted by enterprise B12; the production of manufacturing
task x2 is assisted by enterprise B22; the production of
manufacturing task x3 is assisted by enterprise B33; the
production of manufacturing task x4 is assisted by enterprise
B42; the production of manufacturing task x5 is assisted by
enterprise B54; and the production of manufacturing task x6
is assisted by enterprise B62.

6. Discussion

-is paper takes customer satisfaction and enterprise eco-
nomic benefit as the objective functions, establishes a bi-

Table 5: Quality of House for CA6140 lathe.

Demand characteristics ωi x1 x2 x3 x4 x5 x6
y1 0.1841 0.1861 0.1608 0.1916 0.1707 0.1696 0.1211
y2 0.1983 0.1688 0.1888 0.1875 0.1763 0.1588 0.1200
y3 0.1756 0.1664 0.1534 0.2348 0.1534 0.2052 0.0869
y4 0.1501 0.1480 0.1669 0.1553 0.2177 0.1713 0.1408
y5 0.1671 0.1318 0.1563 0.1793 0.1970 0.1984 0.1372
y6 0.1246 0.1522 0.1700 0.1463 0.2045 0.1534 0.1736

Table 6: Candidate manufacturing enterprise information.

Manufacturing
tasks

Candidate
enterprise

sets

Candidate
enterprises Time Cost Quality

x1 B1

B11 15 44 0.93
B12 12 47 0.96
B13 14 38 0.88

x2 B2
B21 8 24 0.95
B22 5 26 0.93

x3 B3

B31 4 28 0.89
B32 3 29 0.91
B33 2 33 0.87

x4 B4
B41 12 23 0.78
B42 10 25 0.86

x5 B5

B51 10 27 0.75
B52 9 29 0.81
B53 7 34 0.84
B54 7 36 0.87

x6 B6
B61 14 19 0.87
B62 10 23 0.92
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level planning model for manufacturing resource optimi-
zation configuration in cloud manufacturing environment
and solves the model by intelligent algorithm.

However, the customer satisfaction function calculated
in this paper is the absolute satisfaction value, ignoring the
impact of the competitive enterprise on customer satisfac-
tion. Relevant research shows that competing companies in
the same industry will affect customer satisfaction to a
certain extent. If we consider the impact of competing firms
on customer satisfaction values when establishing the upper
objective function, we can establish a new bi-level pro-
gramming model as follows.

max S � 􏽘
n

i�1
ωisi − 􏽘

k

t�1
comt

, (23a)

s.t. p � 􏽘
n

i�1
􏽘

ki

j�1
cijxij + C1 + C2

⎛⎝ ⎞⎠ ×(1 + r);

􏽘

ki

j�1
xij � 1;

􏽘

n

i�1
􏽘

ki

j�1
xij � n;

􏽘

n

i�1
ki � m;

(23b)

max E � N × p − 􏽘
n

i�1
􏽘

ki

j�1
cijxij − C1 + C2( 􏼁, (24a)

s.t. Tmin ≤ 􏽘
n

i�1
􏽘

ki

j�1
tijxij ≤Tmax;

􏽘

n

i�1
􏽘

ki

j�1
cijxij + C1 + C2 ≤N × p;

􏽐
n
i�1􏽐

ki

j�1Qijxij

n
≥Qmin;

􏽘
ki

j�1xij � 1;

􏽘

n

i�1
􏽘

ki

j�1
xij � n;

􏽘

n

i�1
ki � m.

xij �

1, ECj are assigned to the j − th companies in the
collaborative production enterprise setBi,

0, ECj are assigned to the j − th companies in the
collaborative production enterprise setBi,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24b)

where comt indicates the satisfaction given by the customer
when the t-th competition company completes the customer
order. (23a) an increase of 􏽐

k
t�1com

t helps the upper ob-
jective function can clearly describe customer satisfaction. In
this way, scientificity and rationality of the evaluation results
can be effectively improved.

7. Conclusion

-e existing research literature on manufacturing re-
sources optimization configuration considers only the
needs of one side (the product ordering party or the
producer of the product), while ignoring the others. -is
paper is aimed at the deficiency of manufacturing resource
optimization configuration in cloud manufacturing en-
vironment and fully analyzes the process of
manufacturing resource optimization configuration in
cloud manufacturing environment to give a dual-objec-
tive programming model. -e model starts from the ex-
pected goal of both enterprise and customer and obtains
the optimal solution within the feasible range through the
game between the upper object and the lower object. -e
enterprise obtains the most economic benefits, and the
customer obtains the most satisfaction. In this paper, 6
collaborative production tasks and 16 candidate
manufacturing enterprises are studied for optimal re-
source allocation which solved by hybrid genetic
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Figure 6: Individual optimal fitness value.
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algorithm that the time of 500 iterations is 32.21 s. When
we increased the problem size to 10 collaborative pro-
duction tasks and 32 candidate manufacturing companies,
the number of iterations increased to 800 and the time
taken was 54.33 s. It can be seen that when the candidate
company is doubled, the solution efficiency is 1.6 times.
-e model proposed in this paper has the characteristics
of clear thinking, simple operation, and strong practi-
cability. It provides a new way to solve manufacturing
resources optimization configuration in cloud
manufacturing environment.
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