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Control of parallel manipulators is very hard due to their complex dynamic formulations. If part of the complexity is resulting
from uncertainties, an effective manner for coping with these problems is adaptive robust control. In this paper, we proposed three
types of adaptive robust synchronous controllers to solve the trajectory tracking problem for a redundantly actuated parallel
manipulator. ,e inverse kinematic of the parallel manipulator was firstly developed, and the dynamic formulation was further
derived by mean of the principle of virtual work. Furthermore, linear parameterization regression matrix was determined by
virtue of command function “equationsToMatrix” in MATLAB. Secondly, the three adaptive robust synchronous controllers (i.e.,
sliding mode control, high gain control, and high frequency control) are developed, by incorporating the camera sensor technique
into adaptive robust synchronous control architecture. ,e stability of the proposed controllers was proved by utilizing Lyapunov
theory. A sequence of simulation tests were implemented to prove the performance of the controllers presented in this paper. ,e
three proposed controllers can theoretically guarantee the errors including trajectory tracking errors, synchronization errors, and
cross-coupling errors asymptotically converge to zero for a given trajectory, and the estimated unknown parameters can also
approximately converge to their actual values in the presence of unmodeled dynamics and external uncertainties. Moreover, all the
simulation comparative results were presented to illustrate that the adaptive robust synchronous high-frequency controller
possess a much superior comprehensive performance than two other controllers.

1. Introduction

Compared to counterpart serial manipulators, parallel
manipulators exhibit much greater advantages such as high
stiffness, lower inertia, high loading capability, high pre-
cision, high acceleration, and high dexterity, which are
desirable properties for application in high-speed machine,
high-precision-assisted surgery, and high-speed pick and
place of Delta robots, and some other applications [1–4].
However, small workspace and abundant singularities
within the workspace limit their wide applications. Under
such circumstances, parallel manipulators with redundant
actuation are expected to tackle their shortcomings, as re-
dundant actuation can eliminate or decrease singularities,
increase the dexterous workspace, optimize the

configuration of driving force, and so on. At present, the
research studies on redundant actuation mainly focus on the
singularities and the workspace [5, 6]. However, the in-
telligent control strategies in the existing literature are
seldom studied, which just have gotten more attention to
make the most use of their advantages, especially for high-
speed, high-accuracy machine tools. Some advanced in-
telligent control strategies, such as adaptive control and
robust control, are very essential for more prosperous ap-
plication in industries [7–11].

Redundant actuation can be achieved with two different
methods, one is to add the kinematic chain including
nonconstrained subchains or constrained subchains without
increasing the degree of freedom, and the other is to change
the passive joint into active joint [12]. Liu et al. [13] studied
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exhaustively the force/motion transmissibility of re-
dundantly actuated parallel manipulators, and six simula-
tion examples illustrate that the actuation redundancy can
significantly improve the kinematic performance and en-
large the singularity-free workspace. Yao et al. [14] presented
a redundant actuated 5UPS-PRPU parallel manipulator by
adding an actuator to the middle PRPU passive constraint
branch to form a redundant branch; the simulations illus-
trated that redundant actuation can greatly improve the
performance of the parallel manipulator. Boudreau et al.
[15, 16] presented the dynamic model of a cinematically
redundant planar parallel manipulator and optimized to
make the actuator torques minimize when the end-effector is
performing the trajectory tracking. Wang et al. [17] derived
the inverse dynamic model of a spatial 3-DOF parallel
manipulator with redundant actuation by adding actuators
to passive rotational joints, and the driving force was op-
timized in terms of the Moore–Penrose inverse matrix. ,e
motion control is very complicated for the coupled dynamics
of the parallel manipulator with redundant actuation. ,e
preliminary success of controllers design resulted from
planar manipulator and Stewart platform with different
adaptive control methods. Ren et al. [18] proposed a novel
adaptive synchronized control for a planar parallel ma-
nipulator with parametric uncertainty and applied it to
improve the tracking accuracy. Shang and Cong [19] de-
veloped a nonlinear adaptive controller in the task space for
the trajectory tracking of a 2-DOF redundantly actuated
parallel manipulator, and the control law including dy-
namics compensation, adaptive friction compensation and
error elimination items was designed simultaneously. In
[20], Babaghasabha et al. addressed the design and imple-
mentation of adaptive control on a planar cable-driven
parallel manipulator with uncertainties in dynamic and
kinematic parameters based on simplified hypothesis. Zhang
and Wei [21] indicated that adaptive control is generally
divided into three categories, model reference control, self-
tuning control and gain schedule control, and presented a
review and discussion on the model reference control of
parallel manipulator. Wang et al. [22] proposed an adaptive
back-stepping technique for point control of a planar par-
allel robot, and experimental results showed that the
adaptive back-stepping controller outperforms all the other
controllers (mentioned in the paper, i.e., back-stepping
controller, adaptive controller, adaptive PD controller, and
PD controller) in terms of steady-state errors. Honegger
et al. [23] proposed a nonlinear adaptive control algorithm
and conducted parameters identification of a 6-PSS parallel
manipulator employed as a high-speed milling machine.
Zhao et al. [24] developed a fully adaptive feed-forward
feedback synchronized tracking control approach for pre-
cision tracking control of six-degree-of-freedom Stewart
Platform, and the simulation results illustrated that the
proposed cross-coupling approach can guarantee both po-
sition error and synchronization error converge to zero
asymptotically. Hence, synchronous control is expected to
be applied to improve trajectory tracking accuracy.

In recent years, robust control method has been widely
employed in dealing with nonlinear control with

uncertainties and disturbances [25]. Yime et al. [26] pro-
posed a robust adaptive control for the Stewart Gough
platform, and the performance of the control law was
evaluated by using a sinusoidal path for position and ori-
entation of the upper platform. Zhu et al. [27] presented an
adaptive robust posture controller for a parallel manipulator
driven by pneumatic muscles with a redundant degree of
freedom, which can be utilized to deal with parametric
uncertainties and uncertain nonlinearities in the dynamics.
Subsequently, a new adaptive robust control architecture for
a class of uncertain Euler–Lagrange system was proposed to
apply to the wheeled mobile robot, and the experimental
results demonstrated that the proposed controller improves
control performance in comparison to the adaptive sliding
mode control [28]. ,e control scheme makes full advantage
of the adaptive control theory and parameters identification,
which played the key role in adaptive strategy; many effective
parameter estimation techniques were integrated into
adaptive controller design [29]. In addition, the Lyapunov
design method emerged as a popular method for estimation
in an adaptive algorithm. In this method, the parameter
update law was designed in such a way that the time de-
rivative of Lyapunov function was nonpositive [30]. To
achieve the proposed tracking trajectory and chattering
phenomenon elimination, a robust control strategy was
designed for the robotic manipulator based on the sliding
mode function and a continuous adaptive control law. And
the robustness and stability of the systems had been verified
by the Lyapunov theory in [31].

,e motivation of this research is to design a stable
adaptive robust synchronous control scheme for tracking
control of the parallel manipulator with a guaranteed error
convergence and without a requirement for prior knowledge
of the dynamics of the parallel manipulator. ,e main
contribution of this paper is proposing an alternative
adaptive robust synchronous high-frequency control
scheme for a 3-DOF parallel manipulator. ,e synchroni-
zation errors and cross-coupling errors are incorporated
into adaptive robust control architecture through position
and orientation error compensations.,e proposed adaptive
robust synchronous high-frequency control scheme can
obtain the stable tracking performances and synchroniza-
tion performances in the presence of external uncertainties.
A series of simulations were conducted to demonstrate that
the proposed control scheme possesses better comprehen-
sive performance than other controllers.

,e reminder of this paper is organized as follows. In
Section 2, the structure of the redundantly actuated 2RPU-
2SPR parallel manipulator (in which R, P, U, and S stand for
rotational, prismatic, universal, and spherical kinematic
joints, respectively, and the underline format (P) represents
the actuated joint) and the coordinate frames are developed.
,e kinematic relations of the parallel manipulator are
presented in detail in Section 3. In Section 4, the explicit
dynamic model is derived in terms of the principle of virtual
work and d’Alembert formulation. Next, in Section 5, three
adaptive robust synchronous controllers are introduced and
deduced in considerable detail. In Section 6, the comparative
simulation cases are given to verify the effectiveness of the
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proposed three controllers. Finally, some concluding re-
marks and future work are presented in Section 7.

2. System Description

,e parallel manipulator has three degrees of freedom and
mainly consists of the fixed platform, the moving platform,
and four limbs with two of the same identical kinematic
configuration. ,e parallel manipulator module is a good
candidate for engineering application, what’s more, it can
connect X-Y linear rail in series to achieve five-axis serial-
parallel hybrid kinematic machine tool, which can complete
the complex special-shaded surface free machining (as
shown in Figure 1).

In order to conduct experimental verification analysis,
we fabricated a scaled-test prototype (as depicted in
Figure 2) whose kernel module is a 2RPU-2SPR parallel
manipulator with redundant actuation because the number
of actuators is greater than that of the degree of freedom.,e
structural diagram is depicted in Figure 3. ,e prismatic
joints described by the linear joint variables di connect the
fixed platform to the moving platform by a rotational joint
followed by a universal joint or a spherical joint followed by
a rotational joint. It is worth noting that the used spherical
joint is designed by means of three mutually perpendicular
rotational joints in order to enlarge the rotation range.

For modeling purposes, as shown in Figure 3, we assume
a fixed coordinate system B-xyz at the centered point B of
the fixed platform and a moving coordinate system A-uvw

on the square moving platform at the centered point A,
along the z-axis and w-axis perpendicular to the platform
and the x-axis and y-axis parallel to the u-axis and v-axis,
respectively. Both A1A2A3A4 and B1B2B3B4 are designed to
be squares to yield a symmetric architecture of the parallel
manipulator. With these geometric conditions satisfied, the
moving platform of parallel manipulator will possess with
three degrees of freedom in the Cartesian space by con-
trolling the movement of four actuators, that is, two rota-
tional degrees of freedom around x-axis and v-axis, and one
translational degree of freedom along z axis; in this case, the
spatial rotations are coupled along with the change of four
nonidentical limbs. ,e mobility analysis of the parallel
manipulator including initial configuration and general
configuration has been addressed in detail in our previous
work [32] by resorting to the screw theory and modified
Grubler–Kutzbach (G–K) criterion. To avoid repetition,
herein, the mobility regarding the parallel manipulator is not
described in this paper.

3. Kinematics Analysis

,e moving platform can move along z direction and rotate
around the x-axis and v-axis with the consideration of
mobility characteristics. ,e homogeneous transformation
matrix T of the position coordinate point p can be expressed
as follows:

T �
R p

0 1
  � Rot(x, α)Trans(z, d)Rot(v, β)

�

cos β 0 sin β x

sin α sin β cos α − sin α cos β y

− sin β cos α sin α cos α cos β z

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)

where p � [x, y, z]T is the position coordinates of point A in
the fixed coordinate system, α is the rotation angle around
the x-axis, and β is the rotation angle around the v-axis.

Additionally, once the rotation matrix R is obtained,
then the rotational Euler angels will be obtained by

α � arctan 2(R(3, 2), R(2, 2)),

β � arctan 2(R(1, 3), R(1, 1)),
 (2)

Figure 2: ,e 3D model of parallel manipulator.

Figure 1: A five-axis hybrid kinematic machine tool.
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where R(·, ·) represents the row and column elements of the
rotation matrix R.

Moreover, referring to the aforementioned relations in
(1), the coupling relationships can be outlined as

x � 0,

y � − hsα,

z � hsα,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where h is the movement distance along the z direction. So it
is very easy to obtain the parasitic motion of the parallel
manipulator:

y � − z tan α. (4)

Referring to Figure 3, the closed vector constraint
equation of i-th limb can be written as

Li � di · si � p + ai − bi. (5)

In (5), bi is the description of the position vector in the
fixed coordinate system, and Aai is the description of the
position vector in the moving coordinate system, and ai is
the representation of vector Aai in the fixed coordinate

system, namely, ai � R · Aai. To prevent graphics confusion,
we only represent a2 and b2 in Figure 3 as representative.

,e position and orientation of the moving platform can
be represented by independent parameters X � z α β 

T,
the velocity of the i-th limb in the inverse kinematics can be
derived by differentiating (5) with regard to time and dot-
multiplying both sides of (5) by si, as follows [33]:

_d1

_d2

_d3

_d4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

sT
1 a1 × s1 

T

sT
2 a2 × s2 

T

sT
3 a3 × s3 

T

sT
4 a4 × s4 

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vp

wp

⎡⎣ ⎤⎦, (6)

where vp � _x _y _z 
T and wp � wx wy wz 

T
are the

linear and angular velocity of themoving platform defined in
the fixed coordinate system, respectively.

wx

wy

wz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0

0 cos α

0 cos β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_α
_β

 . (7)

It is useful to represent (6) in matrix form as

_q � J0 _X � JqJp
_X, (8)

where _q � [ _d1,
_d2,

_d3,
_d4]

T, J0 is the velocity Jacobain matrix
of the parallel manipulator, and

Jq �

sT
1 a1 × s1 

T

sT
2 a2 × s2 

T

sT
3 a3 × s3 

T

sT
4 a4 × s4 

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Jp �
Jvp

Jwp

⎡⎣ ⎤⎦ �

0 0 0

− tan α − z · sec2 α 0

1 0 0

0 1 0

0 0 cos α

0 0 sin α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

,e derivative of independent coordinate parameters
can be written in the current case:

_X � _z _α _β 
T

. (10)

By differentiating both sides of (8), the acceleration
between the actuated joints and corresponding end-effector
can be expressed as

€q � _J0 _X + J0 €X, (11)

x
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z

uA
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A4

A2
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wMoving
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R
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r1i
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B3
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Figure 3: Structure diagram of parallel manipulator.
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where

_J0 �

w1 × s1 
T wp × a1  × s1 + a1 × w1 × s1(  

T

w2 × s2 
T wp × a2  × s2 + a2 × w2 × s2(  

T

w3 × s3 
T wp × a3  × s3 + a3 × w3 × s3(  

T

w4 × s4 
T wp × a4  × s4 + a4 × w4 × s4(  

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· Jp

+ Jq ·

0 0 0

− 1 − tan2 α(  · _α − _z · sec2 α +
2z · sin α
cos3 α

· _α  0

0 0 0

0 0 0

0 0 − sin α · _α

0 0 cos α · _α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

wherewi is the angular velocity of the i-th limb defined in the
fixed coordinate system.

,e structural diagram of the i-th limb is depicted in
Figure 3 as well, each of that consists of an upper sublimb
and a lower sublimb. Let e1 be the distance between the
centroid Bi and the center of mass of the lower sublimb,
while e2 be the distance of the centroid Ai and the center of
mass of the upper sublimb. ,e position vectors of the
centers of mass of the i-th limb are given with respect to the
fixed coordinate system:

r1i � bi + e1si, (13)

r2i � bi + di − e2( si. (14)

,e inverse kinematics (5) should be differentiated with
respect to time, and the velocity of kinematic joints Ai

connected to the moving platform can be obtained in the
fixed coordinate system:

vai � vp + ωp × ai � Jai · Jp · _X, (15)

where

Jai �

1 0 0 0 aiz − aiy

0 1 0 − aiz 0 aix

0 0 1 aiy − aix 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

,e angular velocity of the i-th limb

ωi �
si × vai

di

� Jwi
_X, (17)

where Jwi � siJaiJp/di, and si is the antisymmetric operator
corresponding to the vector si.

Taking the derivative of (13) and (14) with respect to
time, the velocity of themass center of the lower sublimb and

upper sublimb can be obtained in the fixed coordinate
system:

v1i � e1ωi × si � Jv1i
_X, (18)

where

Jv1i � − e1 · siJwi,

v2i � di − e2( ωi × si + _di · si � Jv2i
_X,

Jv2i � e2 − di(  · siJwi + siJdiJp.

(19)

Combining (17)–(19), one can obtain

Jvω1i �
Jv1i

Jwi

 ,

Jvω2i �
Jv2i

Jwi

 ,

(20)

where Jvω1i and Jvω2i are the velocity Jacobian matrices of the
i-th limb.

Turning to accelerations, the acceleration of the point Ai

can be carried out by differentiating (15) with respect to
time:

_vai � _vp + _ωp × ai + ωp × ωp × ai . (21)

,e angular acceleration velocity of the i-th limb can be
expressed as

_ωi �
si × _vai − 2 _diωi

di

� Jwi
€X + _Jwi

_X, (22)

where

_Jwi �
si

_Jvp − ai
_Jwp  − Jwp

_X × aiJwp  − 2JdiJ0 _XJwi

di

.

(23)

Finally, the acceleration of the mass centers of the i-th
limb can be obtained by differentiating once again (18) and
(19) with respect to time, respectively,

_v1i � e1 _ωi × si + e1ωi × ωi × si(  � Jv1i
€X + _Jv1i

_X, (24)

where
_Jv1i � − e1si

_Jwi − e1si · Jwi
_X 

T
Jwi,

_v2i � €di · si + 2 _di ωi × si(  + di − e2(  _ωi × si + di − e2( ωi × ωi × si( 

� Jv2i
€X + _Jv2i

_X,

_Jv2i � si · _J0i − 2J0i · _X · si · Jwi + e2 − di(  si · _Jwi + Jwi
_X × s · Jwi .

(25)

So far, the velocity and acceleration of the moving
platform and sublimbs have been solved. In the next section,
we will concentrate on the derivation of dynamics of the
proposed manipulator.

4. Dynamics Analysis

,e inverse dynamics problem of the parallel manipulator is
to determine the required driving force under the
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requirement generated a prescribed motion trajectory. For
the 2RPU-2SPR parallel manipulator, the dynamic model in
the Cartesian space can be deduced in the absence of friction
and other disturbances by applying the principle of virtual
work and d’Alembert formulation stated on the previous
work [34], just only the key points are presented, the fol-
lowing dynamic equation can be obtained:

JT
0 τa + Jp

fe + mag − ma _vp

ne − BIp _ωp − ωp × BIpωp 

⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 
i

JT
vω1i

m1ig − m1i _v1i

− BI1i _ωi − ωi × BI1iωi( 
 

+ 
i

JT
vω2i

m2ig − m2i _v2i

− BI2i _ωi − ωi × BI2iωi( 
  � 0.

(26)

By simplifying, the dynamics equation of the manipu-
lator can be further deduced as

FX � − Jp

fe + mag − ma _vp

ne − BIp _ωp − ωp × BIpωp 

⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 
i

Jvω1i
T

m1ig − m1i _v1i

− BI1i _ωi − ωi × BI1iωi( 
 

+ 
i

Jvω2i
T

m2ig − m2i _v2i

− BI2i _ωi − ωi × BI2iωi( 
 ,

(27)

where FX denotes generalized force of the moving platform,
BI1i � BRi

iI1i(
BRi)

T, and BI2i � BRi
iI2i(

BRi)
T.

In the mentioned above, iI1i and iI2i stand for the
moment of inertia matrix of the lower limb and the upper
limb expressed in their own local coordinate system,
respectively.

Equation (27) is a dynamics equation of the parallel
manipulator, which can be simplified into the general form

FX � M(X) €X + C( _X,X) _X + N(X), (28)

where

M(X) � JT
p

maJvp

BIpJwp

⎡⎢⎣ ⎤⎥⎦ + 
4

i

JT
vω1i

m1iJv1i

BI1iJwi

  + 
4

i

JT
vω2i

m2iJv2i

BI2iJwi

 
⎧⎨

⎩

⎫⎬

⎭,

C( _X,X) � JT
p

ma
_Jvp

BIp
_Jwp + Jwp

_X ×  BIpJwp 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + 
i

Jvω1i
T

m1i
_Jv1i

BI1i
_Jvw1i + Jvw1i

_X ×  BI1iJvw1i( 
⎡⎢⎣ ⎤⎥⎦

+ 
i

Jvω2i
T

m2i
_Jv2i

BI2i
_Jvw2i + Jvw2i

_X ×  BI2iJvw2i( 
⎡⎢⎣ ⎤⎥⎦,

N(X) � JT
p

mag

0
  + 

i

Jvω1
T

m1ig

0
  + 

i

Jvω2
T

m2ig

0
  − Jp

T
fe

ne

 ,

(29)

whereM(X) is the positive definite inertia matrix,C( _X,X) is
the nonlinear matrix including the centrifugal and the
Coriolis forces term, and N(X) is the gravitational force and
external force term.

Actually, in order to consider the inertial parameter
uncertainties and unknown disturbances, the dynamic
equation of the parallel robotic manipulator should be
written as

FX � M(X) €X + C( _X,X) _X + N(X) + τd
′, (30)

where τd
′ is a lumped error vector containing unmodeled

dynamics and external disturbances, such as frictions,
clearances, wear, noises, and so on.

In addition, the dynamic model has several properties that
can be exploited to facilitate dynamic controller design, e.g.,

Property 1. ,e inertia matrix M(X) is symmetric and
positive definite for any X ∈ Rn.

Property 2. _M(X) − 2C(X, _X) is skew symmetric for any X,
and the condition should be satisfied

XT
[ _M(X) − 2C(X, _X)]X � 0. (31)

Property 3. ,e dynamic model can be linearly expressed as

M(X) €X + C( _X,X) _X + N(X) � Y( €X, _X,X)Θ, (32)
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where Y is a 3 × 36 known regressor matrix andΘ is a 36 × 1
unknown parameter vector formed by four parameters for
the moving platform and four actuator limbs (upper and
lower limbs) of the parallel manipulator. In general, there are
four independent perturbation parameters, namely, the
mass mi of body and three independent inertia tensors
Ixx,i, Iyy,i, Izz,I, i.e.,

Θi � mi Ixx,i Iyy,i Izz,i 
T
. (33)

Actually, the regression matrix is very complex due to
the coupling relationship [35, 36]; however, it is worth
noting that the expressions can be achieved symbolically
with the command function “equationsToMatrix” in
MATLAB.

Although the dynamics formulation is very complex, the
abovementioned three properties are very important to the
controller design. Some detail proofs have been addressed in
the literature [37].

5. Controller Design

With the consideration of the fact that the dynamic for-
mulation of the redundantly actuated parallel manipulator
meets the same properties as those of serial robots and
nonredundant parallel manipulators, we can apply the
control scheme utilized for serial robots and nonredundant
parallel manipulators to parallel manipulators with re-
dundant actuation [38, 39]. In order to achieve a good
tracking performance of parallel manipulator in the Car-
tesian space, an effective advanced control strategy from
nonlinear control theory is required. In this paper, we
proposed three adaptive robust synchronous controllers to
improve the tracking performance of the redundantly ac-
tuated parallel manipulator.

,e position and orientation tracking error of the task
space can be defined as

ei(t) � X
d
i (t) − Xi(t), i � 1, 2, 3, (34)

where Xd
i (t) and Xi(t) denote the desired position and

orientation and actual position and orientation, re-
spectively. Besides ei(t)⟶ 0, it is aimed to regulate the
motion relationships among the mobility during the
tracking process.

In order to further improve the tracking accuracy, the
motion of moving platform needs to be coordinated to
achieve synchronization. ,erefore, it is essential to in-
troduce the degree-of-freedom synchronization errors.

To guarantee the tracking error, then the synchroniza-
tion error [40] can be defined by utilizing the differential
error between the corresponding tracking error and the
mean value of all the tracking errors:

εi � ei −
e1 + e2 + e3

N
, N � 3. (35)

Expanding equation (35), one can obtain

ε1 �
N − 1

N
e1 −

1
N

e2 −
1
N

e3,

ε2 � −
1
N

e1 +
N − 1

N
e2 −

1
N

e3,

ε3 � −
1
N

e1 −
1
N

e2 +
N − 1

N
e3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Obviously, if ei(t) is given, then the synchronization
error εi can be achieved. Furthermore, we can write equation
(36) in the matrix form:

ε � H(t)e, (37)

where e � e1 e2 e3 
T, and H(t) is the relationship matrix

between trajectory tracking errors and synchronization
errors.

H(t) �
1
N

N − 1 − 1 − 1

− 1 N − 1 − 1

− 1 − 1 N − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (38)

,e cross-coupling error is a compensation term which
can reduce tracking error and improve the accuracy of
tracking effectively by considering both the restriction and
coordination between tracking error and synchronization
error. It can be further defined as

e∗ � e + Pε + Q
t

0
εdt, (39)

where P and Q are the positive definite matrices.
From equation (39), the velocity of cross-coupling error

can be obtained by derivative
_e∗ � _e + P_ε + Qε. (40)

,e reference velocity _Xr and acceleration €Xr of the
upper platform can be defined as

_Xr � _Xd + P_ε + Qε + Λe∗,
€Xr � €Xd + P€ε + Q_ε + Λ _e∗.

⎧⎨

⎩ (41)

Obviously, the reference velocity _Xr is indeed very
important for real-time modification to achieve the desired
trajectory and guarantee the convergence of the tracking
error.

Furthermore, the reference velocity error including
aforementioned hybrid error (i.e., the switched function)
can be defined as

S � _Xr − _X � _e + P_ε + Qε + Λe∗. (42)

,e switched function, similar to a sliding surface, can be
further simplified considering the relationship (39):

S � _e∗ − P_ε − Qε + P_ε + Qε + Λe∗ � _e∗ + Λe∗, (43)

and its differentiation will be
_S � €e∗ + Λ _e∗. (44)
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,e robust synchronization control law based on the
dynamic feed-forward can be expressed by the following
equation:

u � M €Xr + C _Xr + G + KS + uaux. (45)

In fact, the control law in abovementioned equation
contains three terms, namely, the first term is the dynamic
compensation term:

u1 � M €Xr + C _Xr + G, (46)

where M, C, and G are the estimated matrices obtained from
the matrices M, C, and G, respectively.

,e second term is the hybrid error compensation term:

u2 � KS, (47)

and it is important to note that the second term can be
expanded as

u2 � KS � K _e + P_ε + Qε + Λ e + Pε + Q
t

0
εdt  

� K _e + KΛe + KP_ε +(KQ + KΛP)ε + KΛQ
t

0
εdt,

(48)

where u2 contains PD control and PID control, and u2 is of
crucial importance to improve tracking accuracy perfor-
mance. In other words, PD control can eliminate the
tracking errors, and PID control can eliminate the syn-
chronization errors.

,e third term is the robust compensation term that can
improve the system stability in the presence of disturbance
and uncertainties [41]:

u3 � uaux, (49)

where uaux denotes the auxiliary robust control law, and uaux

has three types of manner, as follows:

u1aux � ρ
S

‖S‖
, (50)

where ρ is positive scalar, and S/‖S‖ is a symbolic function
(i.e., sliding surface function) whose variation range is from
− 1 to 1, so the system is also termed adaptive robust syn-
chronous sliding mode control (AS-SMC).

u2aux �
1
δ
ρ2S, (51)

where δ is positive scalar, and the smaller δ is, the bigger
u2aux is, so it is called adaptive robust synchronous high gain
control, or AS-High Gain for short.

u3aux �
ρ2S

ρ‖S‖ + δ
, (52)

u3aux is compared with u1aux, if constant δ � 0, then
u3aux � u1aux. So u1aux is the special case of u3aux. If the
constant δ > 0, then u3aux compared with u1aux illustrates
that the former has a small fluctuation range, and more

importantly its variation range is within − 1 to 1. Co-
incidentally, it also increases the frequency of vibration, so it
is called adaptive robust synchronous high-frequency con-
trol or AS-High Frequency for short.

In a similar manner with (32), the following dynamic
control equation can be written as a linear parameterization
form with respect to these parameters:

M €Xr + C _Xr + G � Y _Xr,
€Xr,

_X,X Θ. (53)

,en the linear parameterization of the dynamic
equation enables us to derive

M €Xr + C _Xr + G � Y _Xr,
€Xr,

_X,X  Θ, (54)

where Θ denotes the estimated values (time-varying) for the
parameter vector Θ, and the parameter estimation error Θ
can be described by

Θ � Θ − Θ. (55)

Consequently, the control law can be also described with
regression matrix, i e.,

u � Y _Xr,
€Xr,

_X,X  Θ + KS + uaux. (56)

We now turn our attention to analyzing the stability of
the closed system with the Lyapunov function candidate

V(t) �
1
2
STMS +

1
2

ΘTΓ− 1 Θ. (57)

,e differentiation of V(t) with respect to time leads to

_V(t) � ST M _S +
1
2

_MS  + ΘTΓ− 1 _Θ. (58)

Considering the relation in equations (41), (43), (53),
and (54) yields

M €Xr + C _Xr − (M €X + C _X) � M_s + Cs

� Y _Xr,
€Xr,

_X,X Θ − FX.

(59)

So the time derivative of V(t) can be further expressed as

_V(t) � ST M _S +
1
2

_MS  + ΘTΓ− 1 _Θ

� ST Y _Xr,
€Xr,

_X,X Θ − FX  +
1
2
ST

( _M − 2C)S + ΘTΓ− 1 _Θ

� ST Y _Xr,
€Xr,

_X,X Θ − FX  + ΘTΓ− 1 _Θ,

(60)

where the skew symmetry of _M − 2C can be utilized to
eliminate the term (1/2)ST _MS which reflects the time-
varying nature of the inertia matrix.

Substituting the control law (54) in the above equation,
we obtain

_V(t) � − STKS − STuaux − STY _Xr,
€Xr,

_X,X  Θ + ΘTΓ− 1 _Θ.

(61)

8 Complexity



It is worth noting that the following relation can be
utilized:

STY _Xr,
€Xr,

_X,X  Θ 
T

� STY _Xr,
€Xr,

_X,X  Θ. (62)

,e result can be further derived as

_V(t) � − STKS − STuaux − ΘT Y _Xr,
€Xr,

_X,X 
T
s − Γ− 1 _Θ .

(63)

Let Y( _Xr,
€Xr,

_X,X)TS − STuaux− Γ− 1 _Θ � 0 satisfy.
,en, one can obtain

_Θ � ΓY _Xr,
€Xr,

_X,X 
T
S. (64)

,e adaptive law, i.e., the unknown dynamic parameters,
can be estimated with

_Θ � _Θ � ΓY _Xr,
€Xr,

_X,X 
T
S. (65)

Equation (63) is finally reduced to
_V(t) � − STKS − STuaux ≤ 0. (66)

As K is a positive definite matrix, so _V(0) � 0 and
_V(t)≤ 0 which is proved to be a seminegative definite
matrix. ,e sliding surface S will asymptotically converge to
zero, t⟶∞, and S � 0. From equations (39) and (40), we
can see that e∗ will be asymptotically zero, _e∗ also converges
to zero. Furthermore, from equation (37), ε, _ε, e, and _e will
converge to zero, and the upper platform can asymptotically
track a desired trajectory in the Cartesian space, i.e.,
X⟶ Xd, the closed-loop system will be globally stable
within finite time.

It is worth noting that the involved manipulator is a
redundantly actuated parallel manipulator, so the driving
force is redundant, which leads to multiple solutions of the
input driving force. In order to reduce the internal force and
improve the system control accuracy, the driving force is
required to optimize and choose the optimal solution from
multiple solutions. Herein, aiming at the minimum driving
force value and reducing the internal force of the manip-
ulator, the Euclidean norm of the driving force is selected to
optimize the driving force. ,e optimized objective function
can be expressed as

f � τT
aNτa, (67)

where τa is the driving forces vector exerted on the actuated
joints, and N is the harmonious matrix of the actuator
motors.

,e optimization is constrained by the condition that
linear mapping relationship between the actuated joint force
and corresponding Cartesian space force, namely,

FX � JT
0 τa. (68)

,e equation can be constructed by the Lagrange
equation:

f � τT
aNτa + λ FX − JT

0 τa . (69)

Partial derivative of the abovementioned equation (77)
yields

zf

zτa
� 2τaN − λJT

0 ,

zf

zλ
� FX − JT

0 τa.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(70)

Let the partial derivative be equal to zero and find the
extreme value

τa �
1
2
N

− TJ0λ
T
,

FX � JT
0 τa.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(71)

Combining the above two equations in (71) leads to

FX �
1
2
JT
0N

− TJ0λ
T
. (72)

One can express with another form as well, namely,

λT
� 2 JT

0N
− TJ0 

− 1
FX. (73)

Substituting equation (73) in the first equation of (71),
one can obtain the optimal driving force:

τa � N
− TJ0 JT

0N
− TJ0 

− 1
FX � J0 JT

0 J0 
− 1
FX. (74)

,erefore, the control law in actuated joints space can be
described as

τa � J0 JT
0 J0 

− 1
FX � J0 JT

0 J0 
− 1
u. (75)

Finally, the overall diagram of the proposed control
scheme is described in Figure 4, from which one can see that
the control scheme consists of three main parts.

,e desired trajectory parameter Xd can be obtained
once the trajectory function is given, while the actual op-
erational task space parameter X can be obtained with two
methods. One is forward kinematics in which the position of
the actuated joints are once known, then the position and
orientations of the moving platform can be obtained by
adopting the back propagation (BP) neural network opti-
mization method or Newton-Raphson iteration, which
converges rather quickly when the initial value is close to the
desired solution [42]. However, the solving procedure of
forward kinematics is very complicated and the computa-
tional efficiency is very low. ,e other efficient method to
require the position and orientations of the moving platform
is exactly what we want to introduce in this paper [43–45].
We know that the position z of the moving platform can be
straightforwardly obtained by the position sensor, yet the
rotational Euler angels cannot be required easily, maybe the
angular velocity can be obtained by gyroscope sensor, but it
is of no use in calculation.,e rotation matrix R defining the
orientation of the moving platform with respect to the fixed
coordinate system can be availably obtained by the camera
sensor technique. We can obtain the rotational Euler angles
α and β by interfacing with MATLAB Stereo Camera
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Calibrator Toolbox [46] with equation (2), and the position
distance can be figured out in real time on the personal
computer. It is computationally simple, and it does not require
measurement of the end-effector velocity and acceleration as
well. ,e advantage of proposed simplified method can effi-
ciently avoid the complex forward kinematics.

6. Simulation Analysis Tests

,e parallel manipulator system in real environment is
fabricated as shown in Figure 5, which mainly consists of a
parallel manipulator, a U2D (or USB2Dynamicel, which is a
small size USB communication converter that enables to
control and to operate the Dynamixel with the personal
computer) controller, a personal computer and a binocular
camera (herein, binocular stereo vision technology are not
discussed temporarily). ,e parallel manipulator can move
by changing the rotation angles of four smart actuators
(Dynamixel MX-12W, which is a high-performance actuator
with a fully integrated DC motor, reduction gearhead,
controller, driver, and network, all in one servo module
actuator).,e real position and velocity of the four actuators
will be transmitted to the computer for data monitoring and
implementing control in real time.

,e Dynamixel actuator needs to be calibrated before the
experiment and connected the personal computer through
U2D (or USB2Dynamixel). ,e actuator information can be
modified in terms of the software RoboPlus, and the in-
formation can be updated in Dynamixel Wizardmodular, as
shown in Figure 6. Some more information can be obtained
on the ROBOTIS e-Manual [47]. In addition, the camera also
needs to be calibrated with a square chessboard; when a
sequence of different chessboard images are given, we can
obtain the camera information (such as camera position and
cameramatrix) so as to detect the position and orientation of

the parallel manipulator. More information has been
addressed in [48] where the authors proposed an automatic
calibration algorithm by virtue of the two Hough transform,
image corners, and invariant properties of the perspective
transformation to determine the calibration points from a
sequence of different images, and herein we do not discuss
this issue in detail.

However, to validate the performance of the proposed
controllers, first of all, the control schemes for the parallel
manipulator are implemented within SimMechanics Tool-
box environment, and the experimental tests will be exe-
cuted in next paper. ,e simplified structural parameters of
the 2RPU-2SPR parallel manipulator are listed in Table 1.
Meanwhile, the constant parameters implemented in the
three robust controllers are presented in Table 2.

To show the performance of the three robust controllers
proposed in this paper, a challenging reference trajectory
was developed. Specifically, the desired trajectory function of
the moving platform generated by the following equations:

α(t) �
π
6
sin(2t),

β(t) �
π
6
cos(2t),

z(t) � 0.5 + 0.04t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

,e initial position and orientation of the moving
platform is z α β 

T
� 0.7 0 0 

T, the simulation time is
8 seconds, the sampling time of the control system is 1
millisecond, and the solver is ode4 (Runge–Kutta) in
Simulink, respectively.

,e comparative experiments are carried out for the
above three controllers. Figure 7 illustrates the desired

e∗ = e + Pε + Q 0
t εdt

X

Manual switch

Parallel manipulator

Camera sensor

Disturbances

Xd

ε = H(t)e

ε̇ = H(t)ė

S = ė∗+ Λe∗

ė∗ = ė + Pε̇ + Qε 

Ẍr = Ẍd + Pε̈ + Qε̇ + Λė∗Ẋ r = Ẋd + Pε̇ + Qε + Λe∗

u1 = Y(Ẋr, Ẍr, Ẋ, X)Θ

u2 = KS

Θ̇ = ΓY(Ẋr, Ẍr, Ẋ, X)TS
Y(Ẋr, Ẍr, Ẋ, X)

u1aux = ρ
S

S
u3aux =

 + δSρ
ρ2S

u2aux =
δ

ρ2S
1

τa = J0(J0
TJ0)–1u

uaux

d/dt

Ẋd
Ẋ

Figure 4: ,e proposed three adaptive robust synchronous control diagram of parallel manipulator.
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trajectory in the Cartesian space, the black dot indicates the
starting point, and the desired trajectories of three degrees of
freedom in the Cartesian space are depicted in Figure 8,
respectively. From these results, it can be seen that the
proposed three controllers can make the tracking error for

the desired trajectory globally asymptotically stable and
achieve good trajectory tracking performance in the Car-
tesian space, since the unknown parameters can be accu-
rately estimated by the adaptive law and then compensate
with the PID and PD feed-forward linear control method.

Dynamixel MX-12W

Parallel manipulatorPersonal computer

DC power supply

U2D2(USB2Dynamixel)

Camera tripod

Figure 5: ,e simulation and experimental platform of the parallel manipulator.

12v power

U2D2

PC USB
port

+
–

USB line

Figure 6: ,e schematic diagram of Dynamixel actuator calibration.
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,e tracking errors in the Cartesian space of three con-
trollers are presented in Figure 9. ,e position errors and
orientation errors are drawn respectively, and the proposed
controllers applied to the parallel manipulator for the prescribed
trajectory tracking control are available. When the control
system reaches a steady state, the errors will decrease gradually
to zero, although the errors oscillated at the beginning or within
some certain time. It is worth noting thatAS-SMCandAS-High
Frequency have better tracking performance than the AS-High
Gain, especially on the z axis, i.e., the tracking error e1. Fur-
thermore, AS-SMC has an equivalent or approximate equiva-
lent tracking performance with AS-High Frequency.

In addition, the synchronous errors in the Cartesian
space of three controllers are presented in Figure 10. By
comparing the synchronous tracking performance ε1 and ε3,
we find that three controllers have approximate equivalent
variation period and sustained time. But from the syn-
chronous tracking error ε2, it can be seen that the AS-High
Gain has great effect on the orientation tracking error in the
Cartesian space but increase the synchronization error
significantly.,at is to say, AS-High Gain relies on high gain
to adjust the error to achieve the goal of tracking.

,e cross-coupling errors of three controllers are
depicted in Figure 11. It is interesting to note that the in-
fluence laws are similar to trajectory tracking errors. In
Figure 11, it is also clear that the change of the cross-
coupling errors always causes a sharp increase before the
cross-coupling errors converge to a very small value or less
than a small value closer to zero.,e developed AS-SMC and
AS-High Frequency controllers show remarkable cross-
coupling performances superior to AS-High Gain control
scheme in three-degree-of-freedom directions.

,e trajectory tracking errors are not only of importance
in Cartesian space, but also important in joint space. ,e

tracking errors in joint space are illustrated in Figure 12,
which shows the experimental trajectory tracking results in
each prismatic joint for all the three controllers. We hope
that all the actuated joints can be controlled to move in a
synchronous way. Otherwise, a sudden impact may occur to
damage the mechanical structures. In Figure 12, we can see
that the errors of the actuated joints are very small, and the
variation mainly appears within 0.5 seconds. In the next 7.5
seconds, the errors almost approach zero approximately,
which demonstrates that the designed controllers have the
advantage of quick response speed and excellent trajectory
tracking results. In addition, the difference between AS-SMC
and AS-High Frequency controllers is almost imperceptible,
and the AS-High Gain controller is restricted to a large
vicinity of the zero. All the tracking errors were limited to a
small region with deviation from zero. ,e tracking errors
are not leaving the zone as shown in Figure 12.

Similarly, the force tracking errors are very important to
validate the controller performance and the simulation results
including four actuators in joint space are illustrated in Figure 13.
We should notice that the rand disturbances (for example,
frictions, noises, clearances, wears, and so on.) are considered in
the simulation process. Herein, we assume that the lumped
uncertainty obeys discrete uniform random distribution, i.e.,

τd′ ∈ unifrnd(mu, sigma), (77)

where unifrnd random obeys the discrete uniform distri-
bution, mu is the minimum value, and sigma is the maxi-
mum value. Herein, we define mu� − 5, sigma� 5.

Further, we can see that the force tracking errors deviate
from zero dramatically and they are driven back to the steady
state fast after 0.5 seconds. However, the errors have a large
fluctuation within 0.5 seconds, especially in the third picture
with the AS-High Gain controller.,e unexpected dash may
destroy the structural components, so we should improve
significantly and pay attention to this problem in the ex-
perimental process. In addition, it can be seen that the AS-
High Frequency controller achieves the best force tracking
performance from the experimental results. ,e tracking
errors are relatively stable, since it introduces high-fre-
quency robust technique into the controller design. ,e AS-
High Frequency controller has better effectiveness compared
with other controllers to guarantee stability in presence of
unknown disturbance.

Table 1: Structural parameters of the parallel manipulator.

Parameter Description Value
ra ,e radius of the moving platform 0.2m
rb ,e radius of the fixed platform 0.339m
ma ,e mass of the moving platform 12.75 kg
e1 ,e distance between centroid and Bi joint 0.23m
e2 ,e distance between centroid and Ai joint 0.22m
Ip ,e inertia matrix of moving platform 0.1 × diag 0.77, 1.07, 1.83{ } kg∗m2

m1 ,e mass of the lower sublimb 0.95 kg
I1 ,e inertia matrix of the lower sublimb 0.01 × diag 2.88, 2.89, 0.05{ } kg∗m2

m2 ,e mass of the upper sublimb 1.1 kg
I2 ,e inertia matrix of the upper sublimb 0.01 × diag 2.65, 2.67, 0.03{ } kg∗m2

g ,e gravity acceleration [0, 0, − 9.81]Tm/s2

Table 2: Control gains of the utilized controllers.

Parameter Value
P diag 0.3, 0.3, 0.3{ }

Q diag 0.5, 0.5, 0.5{ }

K diag 600, 300, 300{ }

Λ diag 100, 50, 50{ }

ρ 10
δ 0.5
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A closer view to the force tracking errors in joint space is
shown in Figure 14, which demonstrates that the AS-High
Frequency controller approaches zero more accurately than
the two other controllers, especially in the fourth picture. In

general, the steady state is relative, and the errors still display
small chattering. Furthermore, the magnitude of the chat-
tering in the error state is directly related to the disturbance
terms. Moreover, the AS-High Gain controller has a high
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Figure 8: Desired trajectory of three degrees of freedom.
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deviation before it reaches zero asymptotically. However, it
is noticeable that the AS-SMC controller has a large variation
nearby zero regions in the steady state compared with the
AS-High Frequency controller, which illustrates that the AS-
SMC controller has a much wider range from zero regions
than the AS-High Frequency controller, and these results are
actually in accordance with the theoretical analysis. ,ree
controllers have no particular rules in response time, but
they are generally compatible systematically. As a whole, the
AS-SMC controller has much greater errors, while the AS-
High Gain controller has much greater gain before the
steady region, so the comparative analysis indicated that the
AS-High Frequency controller has much better compre-
hensive performance.

In addition, the robustness simulation results depicted in
Figure 15 demonstrate the reference trajectory tracking in z
position direction under the different noise cases, i.e.,
noise� 5, noise� 10, and noise� 40. ,e local magnification
illustrates that the high-frequency control system has ap-
proximate robust performance when the noise� 5 and the
noise� 10, while the robust performance will be poor when
the noise� 40, which is mainly because the parameter
ρ � 10, and if the value of noise disturbances is greater than
10, then the robustness will decrease.

From theoretical analysis, we know that adaptive control
law has the advantage that the unknown parameter values can
be estimated and compensated for by real-time estimation, and
the robust terms of the controller can guarantee the system to
maintain a considerable state with the presence of unknown
external disturbances. Herein, we utilized the AS-High Fre-
quency control to estimate the unknown parameters online.
,e partial results are shown in Figures 16–18. In Figure 16, the
estimated parameter (i.e., ma m1 m2) converges to actual value
[12.71, 0.9562, 1.048]T, and the nominal value in Table 1 is
[12.75, 0.95, 1.1]T; then the two results are approximately
equivalent. In Figure 17, the unknown parameter is the mo-
ment of inertia of the moving platform, the estimated values
converge to the actual parameter values [0.07791, 0.0901,
0.1843]T, and the nominal values are [0.077, 0.107, 0.183]T. In

Figure 18, the estimated parameter (i.e., I1xx and I2xx) is the
moment of inertia in the x direction of the upper limb and
lower limb, and steady-state values of the unknown parameters
converge to the estimation value [0.02712, 0.02491]T, while the
nominal value is [0.0288, 0.0265]T. All the abovementioned
estimated results illustrate that the actual values deviate from
the nominal values within a small range due to ignoring
manufacture tolerances, wear, friction, and so on. However, the
proposed AS-High Frequency controller still can achieve sat-
isfactory parameter estimation accuracy even without an ac-
curate dynamic mathematic model, which greatly simplified
the calculation process.

7. Conclusions

In this paper, we proposed three types of adaptive robust
synchronous controllers for 2RPU-2SPR parallel manipu-
lator with redundant actuation, the controllers are effective
and stable when controlling the position and orientations of
the platform, and the main contributions are following:

(1) ,e inverse kinematic analysis of the parallel manip-
ulator has been formulated firstly, the dynamics for-
mulation is derived in terms of the principle of virtual
work, and then the dynamics expression can be further
linear parameterization with regression matrix form.

(2) ,e three types of adaptive robust synchronous
controllers are designed by incorporating the camera
sensor technique into adaptive robust synchronous
control architecture. ,eoretical analysis implies the
tracking errors, synchronization errors, and cross-
coupling errors can converge to zero as were proved
by utilizing the Lyapunov method.

(3) ,e simulation tests are conducted to demonstrate
that the proposed three controllers can substantially
improve the tracking performance when the con-
trollers were implemented in real time. By com-
parative analysis, the adaptive robust synchronous
high-frequency controller showed a better tracking
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Figure 18: ,e moment of inertia of Ixx,1 and Ixx,2.
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performance among three controllers. In future
works, to achieve higher accuracy for the parallel
manipulator, the friction model should be further
considered in the design of the controller, and the
experiments will be executed on the prototype to
verify the performance of the designed controller.
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