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In this paper, a stochastic simulation model for a standalone PV system sizing is replicated and extended to supply a dairy’s power
demand. A detailed hourly-based simulation is conducted considering an hourly load profile and global solar radiation prediction
model. (e stochastic simulation model is based on a thorough statistical analysis of the solar radiation data and simulates the
energy yield, the excess energy curtailed, and the state of charge of the batteries for the sizing month and the whole year, providing
the designer autonomy factor values d to properly size the PV system, finding the optimum combination of installed peak power
(Pm) and battery storage capacity (CL) that meets the application load requirements, considering a preset reliability level at
minimum cost.(emodel makes use of the NASA’S SurfaceMeteorology and Solar Energy database to obtain solar radiation data.
Results show a substantial reduction of 44% in installed peak power and battery storage capacity when compared to conventional
methodologies, considering three days of autonomy, and an 85% reduction considering four days. Considering the goodness of fit
test results, the Wakeby distribution best represents the behavior of historical solar radiation data for the site in almost half of the
months. (is article seeks to contribute to the literature gap in the application of methodologies for the multicomponent power
supply in the dairy industry through the use of renewable energy.

1. Introduction

Over the last decades, the amount of energy consumed by
different types of industries has been growing enormously
due to the economic growth of different countries, which in
turn is triggered by the increase of world population and
consumption patterns [1]. (e environmental impact of
human activities is contributing to rapid climate change due
to CO2 emissions, released as a result of fossil fuel com-
bustion [2]. Solar energy is freely available and environ-
mentally friendly, being widely adopted as an alternative for
conventional electricity generation.

(e sizing of standalone PV systems is an important task
for the designers to find the most reliable and profitable
combination of peak power and battery storage capacity that
properly meets load demand, avoiding an equipment failure
occurrence, considering the random behavior of solar

radiation [3]. (erefore, the objective is to improve energy
efficiency in terms of economic performance and reliability
standards to ensure system autonomy.

In this sense, several methods have been proposed and
developed in the literature to size standalone PV systems,
which differ according to the approach used.

Before PV system sizing, in the design step, it is essential
to identify the inherent losses present in the whole system to
adequately size the system components. As for PV panels,
the input energy may be reduced by shading, reflection due
to the angle of incidence, dust, degradation (ageing), tem-
perature effects, etc. Before the converted energy reaches the
load demand, power losses due to the efficiency of the power
conditioning units (inverters and charge controllers) need to
be considered [4]. As for batteries, the charge/discharge
process may lead to some power losses due to its internal
resistance [5] and others in the battery storage system due to
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the natural degradation of battery capacity [5]. Since the
above thing directly affects PV system performance, the task
consists of controlling the system operation to minimize
output power losses.

It is also important to take into account the balance
between energy yield by the PV array and energy consumed
by the load. Any short-term mismatch between them must
be counterbalanced usually by rechargeable batteries. It is for
this reason that a factor of autonomy days or days of battery
backup, d, has been proposed in the literature [5] to rep-
resent the number of days on which the PV system can meet
the load demand in the absence of power generation and
Peak Sun Hours (PSH). In other words, d represents the
maximum number of days that the PV system can supply
energy to loads independently.

In this sense, the research carried out by Kaplani and
Kaplanis [6] presents a stochastic simulation model to de-
termine the size of autonomous photovoltaic systems in terms
of peak power (Pm) and battery storage capacity (CL) for the
critical month, thus ensuring compliance with annual reli-
ability standards. (e model, in addition to considering the
days of autonomy as an exogenous variable, we consider as
main inputs the analysis and simulation of daily-based solar
radiation and the load profile, obtaining, as a result, the state
of charge of the battery, the excess energy burnt, the energy
losses, and the Pm and CL results for sizing the system.

(emain contribution of this article lies in the lack of the
literature that focuses exclusively on standalone photovoltaic
system sizingmethods and their implementation in the dairy
industry, using direct primary energy to satisfy the simul-
taneous demand of multiple components for the milking
process [7]. Although research such as [8, 9] addresses the
sizing of PV systems in dairies, they only focus on supplying
certain specific components of the milking process, unlike
this research. On the other hand, this article seeks to extend
the original method of [6], incorporating an hourly load
profile, and extending the stochastic simulation elaborated
in this article to consider an hourly basis for the determi-
nation of the capacity indicators. In order to meet these
goals, there were three primary objectives of this study:

(1) To size a standalone PV system for a dairy in the
south of Chile by replicating themethod proposed by
[6], in conjunction with reliable hourly solar radi-
ation prediction data, performing a detailed hourly-
based simulation and deepening, thus, the model
proposed by these authors

(2) To test the hourly-based proposed model for a dif-
ferent geographical location than the original study
to supplement and extend its findings

(3) To validate if the results obtained from the hourly-
based method reach similar reductions in installed
peak power and battery storage capacity as compared
to conventional methodologies, as demonstrated by
the daily-based method proposed by [6]

(e methodology is based on stochastic modeling of the
performance of both of the PV array and the battery storage
system and provides the energy delivered, the excess energy

curtailed, the load profiles, and the state of charge of the
batteries for the sizing month and the whole year, as well as
data on the success rate for the determination of the au-
tonomy factor d and the sizing of the system. To generate
hourly solar radiation data, the model proposed in [10] is
employed.

2. Literature Review

2.1. Standalone Photovoltaic Systems. Photovoltaic (PV)
power generation systems are currently one of the systems
with the fastest growth in the use of direct solar energy,
considering the latter a clean, environmentally friendly
source of energy, and abundantly available in most locations
in the world [11]. (ese systems are fundamentally designed
to transform solar radiation useful energy into electricity,
through the use of photovoltaic panels. In addition to the
panels, PV systems are composed of a current controller, an
inverter to supply direct and alternating current loads, and a
storage battery.

Although PV systems generally require a high initial
investment, they can offer a cost-effective alternative to
certain isolated off-grid locations, in comparison to the
installation of power lines with central distribution [11]. In
such scenarios, standalone photovoltaic (SAPV) systems
become a plausible alternative since they can supply off-grid
power generation. (erefore, the reliability of these systems
becomes a relevant aspect to address, understanding it as the
system capacity to satisfy load demand during a certain
evaluation period [12].

(e sizing of photovoltaic systems seeks to determine the
optimal combination of variables associated with the ar-
rangement of photovoltaic panels, battery storage capacity,
and tilt angle, among other parameters related to the
components, to obtain the best compromise between power
reliability and system cost. Given the vast diversity of ap-
proaches, Khatib et al. [11] classify the different sizing
methods reviewed in the literature into intuitive methods,
numerical methods, analytical methods, computational
tools, computational intelligence methods, and hybrid
methods. Likewise, the evaluation criteria are classified into
technical parameters, considering the loss of load proba-
bility, loss of power supply probability, the state of charge
(SOC), among others; economic parameters, considering the
net present value (NPV) and the annualized cost; and social
parameters, such as portfolio risk or even social acceptance.

Regarding the restrictions related to SAPV, the literature
review developed by Fouad et al. [13] reveals that the factors
with the greatest impact on the performance of photovoltaic
systems analyzed are related to the battery efficiency and
physical photovoltaic panels structure. Meanwhile, Khatib
et al. [11] add physical space budget and energy constraints
related with load profile fulfillment in the case of SAPV as
essential aspects considered in the reviewed literature.

2.2. PV Systems on Daily Farms. (e use of PV systems can
offer more than just a cost-efficient alternative versus
conventional electricity generation systems. Recently, these
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types of alternatives also respond effectively to a requirement
promoted both by the scientific community and by inter-
national organizations for the mitigation of anthropogenic
emissions. One of the strategies recommended in research
such as [14] is the proposal of primary energy saving
measures through the implementation of PV systems for
power generation and consumption in dairy farms.

In this sense, research such as developed by Breen et al.
([15], cited in [7]) reveals the potential of photovoltaic
systems to substantially reduce carbon dioxide emissions in
dairy farms, one of the main current anthropogenic emis-
sions. In the particular case of this industry, a growth of 22%
in milk production is expected for the 2018–2027 period
[16], and 19% in its consumption by 2050 ([17], cited in [7]).
From the energy consumption perspective, it is added the
fact that electrical energy represents one of the items with the
highest consumption for both conventional and organic
dairy farms, representing 14% and 24% of total primary
energy consumption, respectively, according to [18]. Con-
sidering the above, the incentives for photovoltaic system
installation, particularly in the dairy industry, are
considerable.

Regarding the review of related research, case studies
such as De Blas et al. [8] and Zhang et al. [19] address the
implementation and sizing of photovoltaic systems sup-
plying certain components or subsystems within diary
productive system, namely, the pumping system and the
cooling system, respectively. Breen et al. [7], meanwhile,
elaborate a generalizable and scalable optimization model
for PV system sizing in dairy farms, using for the definition
of the objective function the weighted sum method, con-
sidering both a financial criterion and the contribution ratio
in terms of autoconsumed energy with respect to gross
annual electricity consumption, using a trade-off parameter
to search for and analyze Pareto-optimal solutions. Unlike
the previously reviewed models, the model implemented in
this research considers an autonomous system, which is why
the need to ensure reliability and autonomy arises before the
consideration of financial evaluation criteria or the contri-
bution from renewable energy.

2.3. Estimation of Global Solar Radiation. Solar radiation
measuring results are essential for the design and operation
of solar energy technologies, especially for the imple-
mentation of solar collectors and the sizing of photovoltaic
systems. However, the measurement of this magnitude,
despite being accurate, is not always available for modeling
and forecasting, mainly due to the high initial investment
and maintenance costs for its measurement and recording
instruments [20]. For this reason, the alternative that arises
within the scientific community is to correlate radiation with
other available meteorological parameters, developing a
wide variety of models based on this approach.

One of the first empirical models is the one developed by
Angstrom [21] for the measurement of monthly average
daily global radiation, developing an empirical correlation
model considering the effect of the daily average of clear-sky
radiation and the sunlight duration fraction. Meanwhile,

Page [9] decides to modify the correlation model, replacing
the clear-sky radiation with the daily average extraterrestrial
radiation on a horizontal surface. Since then, a series of
empirical models have been developed that have modified
and extended the Angstrom–Page model, including new
parameters or different mathematical expressions to es-
tablish empirical relationships. See, for example, [22, 23]
reviews that demonstrate the great variety of empirical
models carried out to date, as well as the location depen-
dence of the parameters.

Another alternative that has emerged in recent decades
for estimating and forecasting global radiation is the use of
artificial neural networks, where the inputs usually corre-
spond to a great variety of meteorological and geographical
parameters, while the output corresponds to the global solar
radiation for different time scales [24]. (e main advantages
of these models for estimating global radiation are their
location adaptability, and a perceptible accuracy improve-
ment compared to traditional empirical models. However,
the disadvantage of these models is its complexity and the
high number of parameters in order to achieve such ac-
curacy, not clearly establishing the effect of this inclusion, in
comparison to empirical models [20].

In an attempt to classify for the first time the vast variety
of models for global radiation in terms of the time span
contemplated and the type of method approached, Zhang
et al. [20] develop a literature review classifying them
according to the output into monthly average of daily global
radiation, daily global radiation, and hourly global radiation
method. (e authors also consider two main categories
regarding the type of estimation: empirical models, which
are disaggregated into sunlight duration fraction (SDF)
models, modified models (MSDF), nonsunshine duration
fraction (NSDF) models, and artificial neural networks
(ANNs). (e study also presents performance indicators
such as the root mean squared error (RMSE) and the mean
absolute percentage error (MAPE) to determine the accu-
racy of each reviewed model based on observed and pre-
dicted values. (e research concludes that the classical
models of fraction of solar duration (SDF), as well as arti-
ficial neural networks (ANNs), have the best performance in
terms of RMSE and MAPE. Although SDF models have
slightly lower performance than ANN models, the latter
generally requires a large amount of data for the training
phase to improve the performance indicators presented.

Considering this last classification, the model developed
by Kaplani and Kaplanis [6] falls into the category of the
long-run monthly average daily global radiation. (e
methodology obtains a representative value of global daily
radiation throughout a month, then averaging the values
obtained year by year, for each month. (e summarized
methodology associated with this model, as well as the
nomenclature used and replicated in this investigation, is
presented in Section 6 and Appendix A, respectively.

(e aforementioned sizing method considers a monthly
fitting for daily solar radiation using probability distribu-
tions. In this regard, specialized distributions such as the
Wakeby distribution have proven their effectiveness in
particular for power generation modeling in planning
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applications of PV power systems [25]. Also, the Johnson SB
and Generalized Extreme Value distributions are usually
considered for modeling meteorological measurements such
as wind speed, generally providing a superior fit to one-
component probability density functions [26].

3. Design of the Dairy

(e case study is carried out in a dairy located in the city of
Rı́o Bueno, in the south of Chile, with coordinates south
latitude 40.331 and east longitude 72.498. In the economic
field, agricultural equipment prices have substantially in-
creased and, conversely, milk prices have continued to
decrease considering the producer’s perspective. (ere are
few cost-saving opportunities in these industries, being
necessary to analyze more cost-effective options for power
generation. In this respect, Chile is endowed with abundant
solar radiation, and the amount of electrical energy that can
be generated from solar panels is potentially significant.

(e electrical load of the diary consists of equipment for
milking, cooling, cleaning, water heating, illuminating, and
ventilation, among others, such as milking machine, vacuum
and water pump, cooling tank, cleaning systems, and light
bulbs.(e dairy performs twomilkings per day, from 5:30 to
7:15 and from 15:30 to 17:15 considering ordinal hours. (e
milking process is described below, as well as the energy
consumption required by the dairy equipment for this case
study:

(i) Milking machine: its main function is the aspiration
to activate the teat cups, directing the milk obtained
towards the cold tank for subsequent accumulation.
(e machine has 14 units and is equipped with a
vacuum pump, which has a 2.2 kW electric motor
including an additional 10% for the operation of the
pulsators. Also, a 0.5 HPmotor is added to drive the
milk to the cold tank. Its operation time matches the
milking process, from 5:30 to 7:15 and from 15:30 to
17:15.

(ii) Cold tank: it is the device that allows the storage of
milk in optimal conditions. It is equipped with a
4 kW engine and has a capacity of 4,275 liters. It has
two 70W agitators each and a ventilation system,
which consists of two 200W fans each. (e oper-
ation time takes place after the milking, and all its
components operate simultaneously. (e period is
between 7:15 and 11:00 and between 17:45 and 22:
00.

(iii) Lighting: the lighting includes the use of luminaires
for the milking room, a corridor, and the machine
room that contain the devices described above. (is
item gives a total of 472W, but it is estimated that it
reaches around 600W by adding the warehouse and
surroundings. (e lighting schedule coincides with
the milking in the morning, that is, between 5:30
and 7:15 hrs.

(iv) Hot water: the warm water is used for machine
cleaning and to wash the cow’s udders. (e water

heater demands 1500W power supply, and it is
estimated that it works approximately 6.4 hours per
day, to maintain the water temperature at about
65°C. Schedules in which the water heater operates
are between 06:45 and 08:25 and between 16:45 and
18:25 hrs (milking process), and between 13:00
and15:45 hrs (cold tank).

(v) Water pump: in order to supply the dairy with
water, a 1 HP submersible pump is used. It exceeds a
total height of 25 meters, with a flow of 3m3/hr.
Average daily water consumption corresponds to
11m3.(erefore, the pump operates for 3 hours and
40 minutes, consuming approximately 2.74 kW per
day. (e hours are usually between 06: 45 and 09:15
and between 16:45 and 17:55.

(vi) Machine washing: to keep the tank in optimal
conditions, it must be washed after milk collection.
(e closed tanks have an automatic washing system,
which uses hot and cold water combined with acidic
and basic cleaning products. (e motor that allows
this is 1 HP. (e duration of the tank washing is 45
minutes, immediately after the collection by the
collection truck, which occurs around 12:30 pm. In
the case of the milking machine, the washing seeks
to remove organic matter, fats, and minerals for the
milk. (e purpose is to prevent the proliferation of
bacteria. (e automatic washing is carried out,
using a 0.5 HP automatic machine minutes after
each milking. (e period of milking machine
washing is 30 minutes, at 08:00 hrs and 18:00 hrs.

Table 1 summarizes the consumption and operating
times associated with dairy equipment.

(e total load demand for the dairy was estimated to be
59.83 kWh/day, which corresponds to the peak summer
demand. Summer has the highest energy consumption
compared to other seasons. (is is because the cooling tank
has to operate for a longer period to keep milk at an ap-
propriate temperature. Since the dairy operates at certain
times of the day, especially during milking, the building of a
detailed hourly load profile is required and presented in
Figure 1.

4. Solar Radiation

4.1. Solar Radiation Data Analysis. In this study, based on
the model proposed by [6], the daily global solar radiation
data (H) were obtained from the NASA’s Surface Meteo-
rology and Solar Energy database [27] for the dairy located at
south latitude 40.331 and west longitude 72.948, considering
the period between 1985 and 2004. For each of the 20 years,
based on the recommended average days for months [28] as
cited in [29], the average day for each month, including the
day both before and after the average day (i.e., three con-
secutive days), was taken to form the global solar radiation
data for the analysis. (e global solar radiation H for each
month at the site concerned is shown in Figure 2.

For each month, solar radiation data were fitted by MLE
(see Appendix C) considering six continuous probability
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distributions, namely, Beta, Generalized Extreme Value,
Johnson SB, Normal, Wakeby, and Weibull distributions
(see Table 2), and were tested according to the Kolmogor-
ov–Smirnov test (K-S test). (e K-S statistic values are
shown in Table 3. (en, the p value is obtained and used as
selection criteria. It is important to notice that in this case,
the null hypothesis H0 establishes that the data follow the
specified distribution for each distribution; therefore, the
selection must consider a p value that cannot reject that
hypothesis (see Appendix D). Following this observation,

the distribution with the highest possible p value is chosen
for each month.

(e p value was calculated using a novel method named
Exact-KS-FFT, expressing the p value as a double-boundary
noncrossing probability for a homogeneous Poisson process,
which is then efficiently computed using fast Fourier
transform [30]. (e method has proved his accuracy and
numerical efficiency versus the algorithm proposed by
Marsaglia et al. [31]. (e results for the fitted distributions
are presented in Table 4.

Table 1: Consumption and operation times of the diary’s equipment.

Equipment Consumption (kW) Operation times
Cold tank 4.54 07:15–11:00; 17:45–22:00
Milking Machine 2.573 05:30–07:15; 15:30–17:15

Hot water 1.5 06:45–08:23; 16:45–18:23 (milking)
13:00–15:45 (tank)

Lighting 0.6 05:30–07:15
Water pump 0.746 06:45–9:15; 16:45–17:55

Others (Machine washing) 0.373–0.746 08:00–08:30; 18:00–18:30 (milking)
12:30–13:15 (tank)
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Figure 1: Load profile of the dairy.
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Figure 2: Daily global solar radiation H on an average day, including the day both before and after the daily average per month for the years
1985–2004 for the site concerned.
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For the months of January, August, September, October,
and December, theWakeby distribution provides the best fit,
while for the months of February, May, July, and November,
the Gen. Extreme Value distribution works best. For March
and June, the Johnson SB distribution is the most appro-
priate. Finally, for April the Beta distribution provides the
best fit. Although the Normal distribution is often chosen to
fit the data, in this case, it does not present substantial
differences in terms of the statistic for the rest of the fitted
distributions. It has to be emphasized that while this study
considers only these six types of distributions, other alter-
natives may eventually improve the fit.

As already stated, to achieve yearly performance, PV
system sizing is carried out based on the “worst month”
method, i.e., the month with the lowest average solar ra-
diation levels. (us, June is selected for sizing in the fol-
lowing sections.

4.2. Model for Estimating the Hourly Global Solar Radiation.
When hour-by-hour performance calculations need to be
done, it may be necessary to start with daily data and then
obtain hourly values from daily solar radiation estimation.
(e ratio of hourly global solar radiation in a day nj, I(h; nj),
to daily global solar radiation, H(nj), is calculated from
equation (1) [29]. Baig et al. [10] modified the model

proposed by Jain et al. [32] which tries to fit solar radiation to
a Gaussian-type function, to better fit the recorded data
during the start and the end periods of a day, as cited in [33].
In this model, rh is estimated by equation (2), where h is the
solar time, σG is the standard deviation of the Gaussian
curve, and So is the day length of the day nj, at a site with
latitude ϕ, given by equation (3), where δ is the sun’s
declination. So correlates with σG, equations (4) and (5),
based on the second version of the new approach to Jain’s
model as cited in [33]. I(h; nj) is determined from equation
(1), leading to equation (6). (e equations used in this
section are listed as follows:

rh �
I h; nj 

H nj 
, (1)

rh �
1

2σG
���
2π

√ exp −
(h − 12)

2

2σG
  + cos 180

(h − 12)

So − 1( 
  ,

(2)

So �
2
15
cos− 1

(− tanϕ · tan δ), (3)

So � 4.054 · σG, (4)

Table 2: Probability distributions to average daily global solar radiation modeling, for each month.

Distribution Probability density function Parameters

Beta f(x; a, b, α1, α2) � (1/(B(α1, α2))) · ((x − a)α1 − 1(b − x)α2 − 1/(b − a)α1+α2− 1),
B(α1, α2) � 

1
0 tα1 − 1(1 − t)α2 − 1dt;

a, b: distribution Limits
α1, α2 > 0

Generalized Extreme Value f(x, k, μ, σ) �
(1/σ)exp(− (1 + kz)

− (1/k)
(1 + kz)

− 1− (1/k)
), k≠ 0

(1/σ)exp(− z − exp(− z)), k � 0


z � ((x − μ)/σ)

k, μ, σ

Johnson SB f(x; y, δ, c, ξ) � (σ/(λ
���
2π

√
z(1 − z)))exp(− (1/2)( c + δ ln(z/(1 − z)))2)

z � ((x − ξ)/λ)

y, δ, c, ξ
Normal f(x; μ, σ) � (1/(σ

���
2π

√
))e((− (x− μ)2)/(2σ2)) μ, σ

Wakeby f(F; α, β, c, δ, ξ) � ξ + (α/β)(1 − (1 − F)β) − (c/δ)(1 − (1 − F)− δ) α, β, c, δ, ξ
Weibull f(x; α, β) � (α/β)(x/β)α− 1 exp(− (x/β)α) α, β

Table 3: (e K-S statistic values of the fitted distributions on the pdf of each month for the site.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Beta 0.115 0.114 0.093 0.054 0.147 0.079 0.122 0.057 0.052 0.126 0.099 0.079
Gen. Extreme Value 0.073 0.080 0.076 0.074 0.067 0.082 0.061 0.091 0.093 0.086 0.064 0.080
Johnson SB 0.055 0.106 0.072 0.062 0.076 0.055 0.081 0.055 0.050 0.094 0.075 0.085
Normal 0.096 0.175 0.097 0.083 0.071 0.089 0.105 0.107 0.124 0.084 0.072 0.103
Wakeby 0.053 0.107 0.079 0.062 0.069 N/A 0.075 0.054 0.048 0.078 0.081 0.068
Weibull 0.082 0.166 0.111 0.100 0.126 0.087 0.136 0.086 0.172 0.144 0.077 0.166

Table 4: p values associated to the K-S statistic value for the fitted distributions.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Beta 0.377 0.387 0.643 0.991 0.135 0.820 0.308 0.984 0.994 0.273 0.565 0.820
Gen. Extreme Value 0.883 0.808 0.853 0.873 0.934 0.784 0.969 0.669 0.643 0.734 0.953 0.808
Johnson SB 0.989 0.478 0.893 0.964 0.853 0.989 0.796 0.989 0.997 0.630 0.863 0.747
Normal 0.604 0.045 0.591 0.772 0.902 0.695 0.490 0.466 0.290 0.759 0.893 0.515
Wakeby 0.993 0.466 0.820 0.964 0.919 N/A 0.863 0.991 0.998 0.831 0.796 0.926
Weibull 0.784 0.065 0.420 0.552 0.273 0.721 0.198 0.734 0.051 0.150 0.842 0.065
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σG � 0.246 · So, (5)

I h, nj  � rh · H nj . (6)

5. Proposed Standalone PV System

(e schematic representation of the proposed standalone PV
system is shown in Figure 3. (e main components are PV
generator, battery system, and power conditioning units
(inverters and charge controllers).

6. Stochastic PV Sizing Simulation Model

(e stochastic PV sizing methodology corresponds to the
model developed by [6], but considering some modifica-
tions specifically in steps 3 and 6 since a detailed hourly-
based simulation is carried out. It consists of the following
steps:

(1) An essential first step is to obtain a reliable database
that contains appropriate solar radiation and tem-
perature data for the years under consideration. (e
application site is defined by entering latitude and
longitude values. Based on a thorough statistical
analysis of the global solar radiation data H, a
probability density function (pdf) is generated for
each month in such a way as to find the best fitting
curve to the solar radiation data for the site.(en, the
parameters of the fitted distribution are extracted for
all months.

(2) (e global solar radiation mean (Hm) and the
standard deviation (σH) are calculated for each
month.(e one that exhibits the lowest average daily
solar radiation levels is selected for sizing.

(3) Depending on the application type, estimation of the
energy demand is carried out based on technical
datasheets and expert judgment. Unlike [6], an
hourly load profile is used for amore detailed hourly-
based simulation.

(4) Estimation of the correction factor F, which refers to
the energy lost along the path from the PV generator
to the loads during day-to-day operations, and of the
correction factor F′ for the operation route battery-
DC/AC inverter-loads, calculated accordingly to [6].
Estimation of Rm, based on the beam and diffuse
components of the monthly radiation data according
to the Collares-Pereira and Rabl model as cited in
[29] and stated in [6]. To estimate F, CTc is calculated
from equation (7), where TC is the cell temperature
and TC is the temperature coefficient, obtained from
the manufacturer’s specifications. TC is calculated
using equation (8) and can be estimated from the
maximum average ambient temperature Ta, the ir-
radiance G under standard test conditions (STCs),
and the nominal operating cell temperature (NOCT)

as cited in [29]. Combining these two equations leads
to equation (9):

CTc
� TC − 25°C(  · TC,

(7)

TC � Ta +
NOCT − 20°C
0.8 kW/m2

 
⎛⎝ ⎞⎠ · G,

(8)

CTc
� Ta +

NOCT − 20°C
0.8 kW/m2

 
⎛⎝ ⎞⎠ · G⎛⎝ ⎞⎠ − 25°C⎛⎝ ⎞⎠ · TC. (9)

(5) (e lower and upper range values for the autonomy
factor d are set depending on climatic conditions and
the application in question. (e higher the solar
radiation, the lower the autonomy factor. d is set
from dstart to dend, ranging from 1 to 10. (e range
values are taken from [6].

(6) (e simulation algorithm starts with iterating d from
dstart to dend. After each iteration, the corrected peak
power Pm,cor and the corrected battery storage ca-
pacity CL,cor are calculated with the Hm and σH
previously calculated in step 2, as stated in [6]. Each
iteration of d is comprised of 100 simulations for
which the energy delivered EPV, the hourly load
demand QL,h, the energy loss Eloss, and the battery
state of charge SOC are registered, for all hours of the
month selected for sizing, to estimate the success rate
in percentage provided by the specific value of d, for
every hour of the month.
For each day of the month, the global solar radiation
H(nj) is sampled from the selected distribution with
parameters extracted in step 1. (erefore, for all
hours of the month rh is calculated using equation
(2), thus obtaining hourly global radiation I(h, nj)

for a particular day nj . (e hourly clearness index kT
is calculated using equation (10), where Iext is the
hourly extraterrestrial radiation on a horizontal
surface for an hour between hour angles ω1 and ω2
[29]. For converting the hourly solar radiation from
the horizontal surface to the inclined plane, tilted at

PV generator

Charge controller

Inverter

Battery 
system

–

+

DC loads

AC loads

Figure 3: Standalone PV system configuration.
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slope β from the horizontal, R is calculated using the
isotropic diffuse model as derived by [34] from the
isotropic model proposed by [35], as cited in [29],
given by equation (11), where (Ib/I) is the fraction of
the hourly radiation on a horizontal plane which is
the direct beam, Rb is the geometric factor, i.e., the
ratio of beam radiation on the tilted surface to that
on a horizontal surface at any time, calculated based
on the hour angle ω evaluated at the midpoint of the

hour, declination δ for the sampling day, site latitude
ϕ, and slope β, Id/I is the fraction of the hourly
radiation on a horizontal plane which is diffuse,
based on the Erbs et al. correlation [36] as cited in
[10], given by equation (12), and ρg is the reflectance
(the albedo) of the ground:

kT �
I h, nj 

Iext
, (10)

R �
Ib

I
Rb +

Id

I

1 + cos(β)

2
  + ρg

1 − cos(β)

2
 , (11)

Id

I
�

1.0 − 0.09kT, kT ≤ 0,

0.9511 − 0.1604kT + 4.388k
2
T − 16.638k

3
T + 12.336k

4
T, 0.22< kT ≤ 0.80,

0.165, kT > 0.

⎧⎪⎪⎨

⎪⎪⎩
(12)

For each hour, the energy delivered by the PV array EPV
is calculated using equation (13), and the remaining
amount of energy after satisfying all load requirements
is denoted by DE:

EPV � Pm,cor · I · R. (13)

To express the amount of energy remaining after
consumption as a percentage, the auxiliary variable
AUX is defined. In cases where the PV system is not
generating any electricity (EPV � 0), DE is estimated
from equation (14), as the battery system is supplying
the demand loads and AUX is estimated from equation
(15):

DE � EPV − QL,h · F′, (14)

AUX �
DE

CL,cor · V
. (15)

Alternatively, in cases where the PV system is gener-
ating power (EPV > 0), DE is then estimated from
equation (16). For the latter, three different cases are
considered:

DE � EPV − QL,h · F. (16)

(a) If DE< 0, then AUX is calculated using equation (17)
since the battery bank must satisfy the load demand
and the SOC of the battery is decreased:

AUX �
DE · F′

CL,cor · V
. (17)

(b) If DE � 0, then AUX is equal to zero since the energy
yield by the PV system perfectly matches the load
requirements.

(c) If DE> 0, then AUX is estimated using equation (15),
since the PV system managed to cover all the loads
and the SOC of the battery is increased.

(us, the battery state of charge SOC is calculated from
equation (18), considering the remaining energy, where
SOCa is the SOC at the moment immediately before the
current period, that is, the previous hour, considering a
simulation on an hourly basis. Any excess energy
generated by the system is dissipated and is represented
by Eloss, given by equation (19). For each simulation
hour, the SOC is evaluated. If the value drops below the
critical level 1-DOD, then a failure occurs and the
simulation stops. (e same process is repeated until the
last hour of the month, recording the success rate for
each value of d, from dstart to dend:

SOC � SOCa + AUX, (18)

Eloss � (SOC − 1) · CL,cor · V. (19)

(7) Depending on the percentage of the time, it is desired
to meet the load demand, and the minimum value of
d that fulfills the system reliability criterion is
selected.

8 Complexity



(8) Based on the selected value of d obtained in step 7,
the system sizing is carried out by substituting d into

Pm,cor � QL · F ·
1 +

��
d

√
· 2 · σH/Hm( ( 

PSHm · Rm( 
, (20)

CL,cor � QL · F′ ·
1 +

��
d

√
· 2 · σH/Hm( ( 

VDC · DOD( 
, (21)

calculating Pm,cor and CL,cor, as stated in [6].
(9) (e simulation is performed for the remaining

months of the year, taking into account the sizing
parameters obtained in step 8. For each month, the
goal is to obtain the success rate and the system’s
performance, that is, the EPV, QL,h, Eloss, and SOC.

For each month, if simulation findings show that the
system reliability criterion (success rate) for the selected
value of d was not met, then return to step 7 and select the
next incremented d.

(ese last two methodology steps correspond to a
general vision of the system’s performance during the whole
year while ensuring the fulfillment of the criterion of “system
reliability.” (e whole simulation model is presented in
Appendix B. Please note that both flowchart and method-
ology correspond to the model proposed by [6], but with
some modifications consistent with a detailed hourly-based
simulation.

7. Simulation Results

Based on the “worst month” method, the month selected for
sizing is June. (e load demand was estimated to be
59.84 kWh/day. Assuming a maximum average ambient
temperature in the daytime Ta of 8°C, calculated from the
NASA’s database for the years in question (1995 to 2004), as
mentioned in the beginning of this study, the NOCT and the
temperature coefficient TC are taken as (for example, from
the technical specifications for the module PV-UD185MF5)
47.5°C and 0.452%/°C, respectively. Based on equation (9),
CTc is calculated as 0.9215. Ccharger, Cinverter, Cbat− c, Cbat− d,
Cpv− ag, and Cbat− ag are taken as 0.98 [37], 0.9 [37], 0.95 [5],
0.95 [5], 0.9936 [38], and 0.8 [39], respectively. (us, cor-
rection factors F and F′ of 1.30 and 1.46, respectively, were
calculated, based on [6]. It should be kept in mind that these
values are customized to the application in question and are
subject to the design, equipment, and technology used. (e
conversion factor R was calculated considering the photo-
voltaic panels inclined at an angle of 25° above the hori-
zontal. (is slope was calculated based on maximizing the
total estimated energy for the winter months [29]. (e
batteries’ discharge depth DOD was set to 80%, and the DC
transfer voltage V was 120V. (e autonomy factor d was set
from dstart to dend, ranging from 1 to 10, which was increased
by 0.5 each iteration. (e success rates obtained for the
corresponding iteration value of d with the Pm,cor and CL,cor
calculated using equations (20) and (21), respectively, are

shown in Figure 4. From this figure, the minimum value of d

is selected to achieve at least 95% success for noncritical
loads and at least 99% for critical loads. (e success rates
obtained for the Pm,cor and CL,cor, calculated by replacing d

with its corresponding iteration value, are, respectively,
depicted in Figures 5 and 6. It is worth highlighting that the
PV system sizing, apart from being affected by the autonomy
factor d, strongly depends on the weather conditions, since
the Pm,cor and CL,cor are also affected by the correction
parameter (σH/Hm), that is, the global solar radiation data at
the site. Regarding the first claim, it is logical

that the more autonomy days a PV system has, the larger
the size of the PV generator and battery bank will be.

For June, an autonomy factor d of 3 assures at least an
average of 97% success for noncritical loads. (e Pm,cor
calculated is 97.074 kWp and CL,cor is calculated to be
2.308 kAh. Contrasting the results with the conventional
methodology [5], dcr is calculated from linear equation from
[6]. For noncritical loads, dn− cr is estimated to be 4.532.
(us, Pm and CL of 173.443 kWp and 4.124 kAh, respec-
tively, are calculated, based on equations (1) and (2) from
[6]. (e proposed stochastic methodology, based on the
model proposed by [6], far exceeds the conventional
methodology, achieving a 44% reduction in installed peak
power and battery storage capacity. Repeating the same
analysis, for d � 4, the proposed methodology assures at least
an average of 99% success for critical loads for June. In this
case, the Pm,cor and CL,cor obtained are 106.171 kWp and
2.525 kAh, respectively, as summarized in Table 5. From the
conventional point of view, d is calculated using dcr linear
equation from [6], which results in dcr � 18.11 and gives
Pm � 693.083 kWp, based on equation (1) and
CL � 16.481 kAh, based on equation (2) from [6], as sum-
marized in Table 6. Comparing the results, an 85% reduction
in installed peak power and battery storage capacity is
achieved with the proposed methodology, getting better
results than with the conventional methodology.

(e hourly performance of the proposed system
throughout the sizing month June and d � 3, in terms of EPV,
QL,h, Eloss, and SOC, is shown in Figure 7. It can be seen from
Figure 7 that the proposed standalone PV system success-
fully meets the load demand without the SOC falling below
60%. (e battery bank was able to cover the energy demand
for those hours at which no energy was generated by the PV
modules. Besides, the amount of energy dissipated was
considerable.

Conversely, Figure 8 shows a failed case where the low
levels of solar radiation and, thus, the EPV value caused the
batteries to be unable to meet the demand in loads with a
SOC falling below 20%.

7.1. Designed Standalone PV System Hourly Performance for
the Other Months. (e algorithm is run for the remaining
months using the corresponding values of d, Pm,cor, and
CL,cor, as previously calculated, in such a way to achieve at
least 95% and 99% of system autonomy. As the sizing is
based on the month with the lowest solar radiation, it is
expected to perform better.(e success rates for each month

Complexity 9
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Table 5: Success rates SR%, corrected peak power Pm,cor, and corrected battery storage capacity CL,cor values for different values of the
autonomy factor d for the proposed stochastic methodology.

d 1 1, 5 2 2, 5 3 3, 5 4 4, 5 5
SR% 39 70 84 94 97 100 100 100 100
Pm,cor (kWp) 72.22 79.85 86.28 91.95 97.07 101.79 106.17 110.29 114.2
CL,cor (kAh) 1.72 1.90 2.05 2.19 2.31 2.42 2.52 2.62 2.72

Table 6: Success rates SR%, peak power Pm, and battery storage capacity CL values for different values of the autonomy factor d for the
conventional methodology.

d dn− cr � 4.53 dn− cr � 18.11

SR% 95 99
Pm (kWp) 173.44 693.08
CL (kWA) 4.12 16.48
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Figure 7: Designed system hourly performance for all hours of June, with d � 3, in terms of the energy delivered EPV, load demand QL,h,
excess energy curtailed Eloss, and state of charge of the batteries SOC. (a) EPV, (b) QL, (c) SOC, and (d) ELOSS.
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are shown in Table 7, including both critical and noncritical
operation. Although the values are not identical, these
success rates assure a minimum of 95% when operating with
noncritical loads.

8. Discussion

(e results obtained by adopting the proposed methodology
reveal substantive differences with respect to the forecast
made using the conventional approach. However, it is
necessary to discuss the assumptions and considerations

made throughout the research to elucidate the causes of this
difference.

Regarding the estimation of solar radiation, the same
period was considered both for the adjustment using
probability distributions and for determining the Kolmo-
gorov–Smirnov statistic to measure the goodness of the fit.
On the other hand, the number of parameters of the different
distributions was not considered when performing the
statistical test. (is can result in overfitting based on the
period analyzed, affecting its adaptability to estimate or
forecast more recent data.
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Figure 8: Designed system hourly performance for a failed case for June, with d � 3, in terms of the delivered energy EPV, load demand QL,h,
excess energy curtailed Eloss, and state of charge of the batteries SOC. (a) EPV, (b) QL, (c) SOC, and (d) ELOSS.
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(e method considered for estimating radiation is
classified into long-term monthly average of daily solar
radiation. According to the research carried out by [20], this
type of estimate can result in lower estimation errors for the
contemplated period, although the superiority and usability
of the model are questionable. It is mainly because of the
estimation error that a relatively stable and long enough
period was considered in the radiation data to avoid the
problems that the method itself entails. (e aforementioned
one may partially explain the difference between the results
obtained versus conventional methodology. Another addi-
tional aspect to consider is the uncertainty that the use of
meteorological data from sources such as NASA or
METEONORM can provide, according to [40], precisely
because the radiation data have not been routinely observed
in most of the world’s meteorological stations due to the
high cost of instruments and technical requirements.

In the design phase of the dairy, it is necessary to
mention that the proposed scenario combines the month
with the lowest average daily global radiation according to
the data provided, with the summer month with peak
consumption. (erefore, the capacity required to meet the
energy demand is being overestimated. (e scenario,
therefore, delivers a solution that is overestimating the
storage capacity and thus becoming suboptimal, at least for
the critical month, to meet the reliability standards at the
lowest cost.

As in the research proposed in [6], this case considers a
daily estimation method for solar radiation, but the main
difference lies in the update of the different state variables
involved to measure the compliance of reliability standards.
In this sense, while the base method has a daily scale, the
method proposed in this research updates the state variables
and decomposes the global solar radiation considering an
hourly scale. Furthermore, the extended method is not
validated by a real implementation of the case study, not
being able to determine which sizing method is more
accurate.

9. Conclusions

(e results obtained from the stochastic simulation model
show that the proposed standalone PV system can suc-
cessfully meet the dairy’s load demand at specified reliability,
achieving a reduction of 44% in installed peak power and
battery storage capacity for noncritical operation, and an
85% reduction for critical operation, as compared to con-
ventional methodology, which is consistent with the results
obtained in base research, thus validating the hourly-based
method for a different geographical location.

However, given the characteristics of the sizing method,
its result has to be contrasted with sophisticated and highly
accurate models for the estimation and designing phase in
order to overcome the limitations previously analyzed. In
this sense, another aspect that can be expanded is the
consideration of stochastic components for solar radiation
on an hourly scale. (e conditions for the design of this case
study may also consider the possibility of simulating the
energy supplied by the PV system with the estimated load
profile for each month of the year, thus avoiding capacity
overestimation.

One of the characteristics of the sizing of autonomous
photovoltaic systems is the compliance with certain reli-
ability levels; in this sense, it is possible to consider for future
research the incorporation of a multiobjective function that
considers not only the storage capacity, but also the
implementation costs and other relevant performance in-
dicators, as well as the incorporation of budget or size
constraints for the installation of PV modules.

Given the current world energy scenario, it is now de-
sirable to think of different sustainable alternatives for
electricity generation in such a way as to minimize the
environmental impact. Solar energy is widely available, and
its use is increasing enormously, which leads to new chal-
lenges in improving the efficiency of PV systems and bal-
ancing supply and demand. If some loads can be shifted
from night to day, better results can be obtained. (us, the
concept of load management becomes relevant to sizing
standalone PV systems. In this sense, dynamic load man-
agement functionality can be introduced. In more recent
studies, the effect of load profile uncertainty on the off-grid
PV systems optimum design is analyzed, highlighting the
importance when defining load profiles for off-grid PV-
battery systems.

Finally, it is therefore recommended to perform an
hourly, or even a more detailed simulation (e.g., simulation
at minutely resolution), to have better control of the load
profile and the power output fluctuations, clearly identifying
the time when peak demand occurs, and utilize this valuable
information for getting optimal results.

Appendix

A. Nomenclature Used, Based on Kaplanis and
Kaplani [6]

Nomenclature

AUX: auxiliary variable
a: lower bound of beta distribution
b: upper bound of beta distribution

Table 7: Success rates SR% for all months of the year in order to achieve at least 95% and 99% of system autonomy.

d Pm,cor (kWp) CL,cor (kAh)
SR%

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Noncritical loads 3 97.07 2.31 100 100 100 100 96 97 99 100 100 100 100 99
Critical loads 4 106.17 2.52 100 100 100 100 99 100 100 100 100 100 100 100
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Cbat− ag: for the ageing of the battery system due to
cycling
Cbat− c: the efficiency of the batteries during charging
process
Cbat− d: efficiency of the batteries during the dis-
charging process
Ccharger: efficiency of the charger
Cinverter: efficiency of the inverter
CL: battery storage capacity (kAh)
CL,cor: CL corrected (kAh)
Cpv− ag: for the effect of the ageing of the PV
CTc: correction term for the temperature effect on PV
efficiency
DE: the remaining amount of energy after satisfying
all load requirements
DOD: depth of discharge of battery (dimensionless)
d: number of days of autonomy of a PV system
dcr: number of days of autonomy of a PV system
operating with critical loads
dn− cr: number of days of autonomy of a PV system
operating with noncritical loads
Eloss: energy dissipated due to excess energy and fully
charged battery (kWh)
EPV: energy delivered by the PV system (kWh)
F: loss of energy between the route of the PV gen-
erator and load demand (dimensionless)
F′: loss of energy between the route of the battery
bank and loads (dimensionless)
G: irradiance under standard test conditions (STC)
(1 kW/m2)
H: daily global solar radiation on the horizontal
(kWh/m2)
Hm: mean value of H (kWh/m2)
I: hourly global solar radiation on the horizontal in a
day nj (kWh/m2)
Ib: hourly direct beam radiation
Id: hourly diffuse radiation
Iext: hourly extraterrestrial radiation on a horizontal
surface for an hour period
k: shape parameter of Gen. Extreme Value
distribution
kT: hourly clearness index
NOCT: nominal operating cell temperature (°C)
Pm: peak power (kWp)
Pm,cor: Pm corrected (kWp)
PSH: Peak Sun Hours (h/day)
PSHm: mean value of PSH (h/day)

PSHmin: minimum value of PSH (h/day)
QL: total loads in a day (Wh/day)
QL,h: load demand at any time (kWh)
rh: ratio of hourly global solar radiation to daily global
solar radiation (dimensionless)
Rm: factor for converting the global solar radiation
from the horizontal to the inclined plane of the PV
panels, mean value for a specific month
(dimensionless)
R: factor for converting the hourly solar radiation
from the horizontal surface to the inclined plane, for a
specific hour (dimensionless)
Rb: ratio of beam radiation on the tilted surface to that
on a horizontal surface at any time
So: length of the day (h)
SOC: state of charge of battery % (dimensionless)
SOCa: the remaining SOC carried onto the next hour
(dimensionless)
TC: temperature coefficient
Ta: maximum average ambient temperature in the
daytime for the sizing month (°C)
TC: cell temperature (°C)
V: DC transfer voltage. Also, nominal battery oper-
ating voltage (V)

Greek letters

α: scale parameter of Wakeby distribution; shape
parameter of Weibull distribution
α1, α2: shape parameters of beta distribution
β: shape parameter of Wakeby distribution; scale
parameter of Weibull distribution; slope
c: shape parameter of Johnson SB distribution; scale
parameter of Wakeby distribution
δ: declination; shape parameter of Johnson SB dis-
tribution; shape parameter of Wakeby distribution
λ: scale parameter of Johnson SB distribution
ξ: location parameter of Johnson SB and Wakeby
distributions
μ: location parameter of Gen. Extreme Value and
Normal distributions
ρg: albedo
σ: scale parameter of Normal and Gen. Extreme Value
distributions
σH: standard deviation of H
σG: standard deviation of the Gaussian curve
ϕ: site latitude
ω: hour angle
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B. Flowchart of the Stochastic Proposed
Methodology, Based on Kaplani and
Kaplanis [6]

Start

Read month’s data

Calculate Hm and sdH for month.
Calculate parameters of fitted distribution.

Calculate Rm for month.

PSHm = Hm

Set value for QL, DOD, V, F, F′

Nsuccess = 0, Pmcor = 0, CLcor = 0

Pmcor = QL
∗F∗(1+sqrt(d)∗2∗sdH/Hm)/(Rm

∗PSHm)
CLcor = QL

∗F∗(1+sqrt(d)∗2∗sdH/Hm)/(V∗DOD)

SOC = 1, SOCa = 1, Npass = 0, Nfail = 0

Sample PSH from fitted distribution with
specified parameters

I < 0?

SOC_indication

Npass = daysofmonth?

Print Nsuccess for d

End

Nsuccess = Nsuccess + 1

No

No

Yes

Yes

I = 0

n = 1 :100

nhours = 1 :hoursofmonth

I = rh·PSH

d = dstart:dend

SOC_indication begin

EPV = Pm,cor·I·R

DE = EPV – QL,h·F′

AUX = (DE/CL,corV)

AUX = (DE/CL,corV) AUX = (DE·F′/CL,corV) AUX = (DE/CL,corV)

SOC = SOCa + AUXSOC = SOCa + AUX

Yes

Yes

No

No

DE = EPV – QL,h·F

¿EPV?
> 0

> 0

< 0

= 0

= 0

¿DE?

¿SOC ≤
1?

¿SOC < –
DOD?

Passcode = “fail”
Eloss = 0

Passcode = “pass”
Eloss = 0

SOCa = SOC

Passcode = “pass with energy loss”
Eloss = (SOC – 1)·CL,cor·V

SOCa = 1

Store SOC, Eloss, EFV, DE, QL,h

Check
passcode

“fail”“Other”

Npass = Npass + 1 Nfail = Nfail + 1

SOC_indication end

C. Maximum Log-Likelihood Estimation

To adjust the distributions for the subsequent comparison of
the goodness of fit, the parametric estimation of the distri-
butions is performed using the maximum likelihood esti-
mation (MLE). Considering the set Xi, i � 1, . . . , n  of n

independent and identically distributed random variables,
taken from a continuous probability distribution character-
ized by the distribution parameter θ, and representing its
probability density function as f(x|θ), the likelihood func-
tion L is given by the following joint probability function P:

L x1, x2, . . . , xn|θ(  � P X1 � x1, X2 � x2, . . . , Xn � xn|θ( ,

(C.1)

where the realization of said random variables, that is, the
observations, is represented by the set xi n. Developing the
previous expression and considering the condition of ran-
dom variables (iid), the likelihood function is given by

L x1, x2, . . . , xn|θ(  � f x1, x2, . . . , xn|θ(  � f x1|θ( f x2|θ( , . . . , f xn|θ( .

(C.2)

(erefore, the maximum likelihood estimator θML is the
estimator of the parameter θ that maximizes the value of this
joint probability function. (at is,

L x1, x2, . . . , xn|θML  � max
θ

L x1, x2, . . . , xn|θ( . (C.3)

(e above sentence applies without loss of generality for
the parameter vector θ � (θ1, θ2, . . . , θm).

D. Kolmogorov–Smirnov Test

(e Kolmogorov–Smirnov (K-S) test is commonly used to
decide if a sample from a population comes from a deter-
mined continuous probability distribution, from which its
specification parameters are known. (e test is defined by
the hypotheses:

H0: the sample follows a specified distribution
Ha: the sample does not follow a specified distribution

And the K-S statistic Dn is defined as

Dn � sup
x

Fn(x) − F(x)


, (D.1)
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where Fn(x) is the empirical distribution and F(x) is the
theoretical cumulative distribution function calculated over
ordered observations Xi, i � 1, . . . , n  of the sample. (is
value is compared with the K-S tables of two-tailed critical
values Dcr,α for a given significance percentage α, which
usually takes a value of 5%. (erefore, the null hypothesis is
rejected when the condition Dn >Dcr,α is satisfied. To
quantify this decision, avoiding the dependence of the
significance value set a priori by the researcher to reject the
null hypothesis, the p value is calculated to choose between
the fitted distributions.

Data Availability

(e information used in this study is referenced, respec-
tively, and the data from the case study are obtained from a
dairy in southern Chile.
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