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 e positioning accuracy of a robot is of great signi�cance in advanced robotic manufacturing systems.  is paper proposes a
novel calibration method for improving robot positioning accuracy. First of all, geometric parameters are identi�ed on the basis of
the product of exponentials (POE) formula. e errors of the reduction ratio and the coupling ratio are identi�ed at the same time.
 en, joint sti�ness identi�cation is carried out by adding a load to the end-e�ector. Finally, residual errors caused by non-
geometric parameters are compensated by a multilayer perceptron neural network (MLPNN) based on beetle swarm optimization
algorithm.  e calibration is implemented on a SIASUN SR210D robot manipulator. Results show that the proposed method
possesses better performance in terms of faster convergence and higher precision.

1. Introduction

 e positioning accuracy of robots is of great signi�cance in
advanced robotic manufacturing systems. In general, the robot
shows good repeatability, but poor positioning accuracy. Many
factors would result in errors in positioning, including set-up
errors, manufacturing tolerance, wear and tear, transmission
errors, and compliance [1]. erefore, researchers have focused
on how to improve the positioning accuracy of a robot by
errors compensation according to the factorsmentioned above.

 e calibration technique can improve the robot’s
positioning accuracy through software algorithm without
changing its mechanical structure or design. Generally,
calibration can be classi�ed into two types, namely geo-
metric and nongeometric calibration. Almost 80% of robot
positioning errors are caused by errors of geometric pa-
rameters, including link length errors, link twist angle

errors, link o�set, and joint angle o�sets [2].  erefore,
most researches have concentrated on kinematic-based
calibration [3–9]. Most of the researchers employed the
D-Hmodel which employs a minimum set of parameters to
describe the relationship of joint coordinates for calibra-
tion. However, D-H model is not continuous when two
consecutive joint axes are parallel or nearly parallel. In
order to overcome these drawbacks, Hayati proposed a new
model namely MDH model by adding a redundant pa-
rameter to the D-H model [10]. However, both the two
methods are complicated in the process of modeling a
manipulator. Brockett �rstly used the POE formula to
describe an open-chain robot [11].  e POE formula
possesses a simpler expression to describe the relationship
between the joint angles and the end-e�ector’s position and
posture. Additionally, previous studies mostly focused on
the calibration of the link lengths and the joint o�sets, and
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little attention has been paid to the errors of the reduction
ratio and the coupling ratio. .e reduction ratio and
coupling ratio errors mainly caused by the deviation during
manufacturing and assembly process will lead to joint angle
errors, further resulting in a decline in the positioning
accuracy. Moreover, owing to the nonlinear trigonometric
relationship between joint angles and the pose of endpoint,
it is complicated to identify the transmission errors using
the DH model [12]. .e POE formula, however, possesses a
simpler expression.

However, the kinematic-based calibration has the fol-
lowing limitations: (1) the model only takes the geometric
factors into account, but the nongeometric factors such as
backlash and joint compliance, which may have significant
influence on positioning accuracy, are ignored. (2) .e
identification process is a complex numerical procedure
which may suffer from the numerical problem of ill-con-
ditioning. (3) .e implementation of the identified model is
problematic due to the difficulty of modifying the controller
parameters [13].

In fact, the nongeometric errors are an important
component of the parameters identification, especially in
high-precision application scenarios. .e positioning errors
caused by joint stiffness account for 6%∼8% as well as other
nongeometric errors such as gear backlash and temperature
drift [14]. Some researchers investigated both the kinematic
parameters and joint compliance [15, 16]. However, other
nongeometric errors still affect the positioning accuracy
significantly. Especially for a heavy load robot, not only the
joint compliance but also the link compliance affects the
accuracy [17, 18].

Recently, for nonparametric calibration, some intel-
ligent algorithms, such as genetic algorithm [7, 19, 20],
maximum likelihood estimation [21, 22], neural network
[23–29], and various hybrid algorithms [30], have
emerged. Among them, neural network has been widely
employed to build the relationship, especially nonlinear
relationship between inputs and outputs. It can approxi-
mate any nonlinear function with arbitrary precision [31].
.e neural network is utilized to build the relationship
between the end-effector position and the error of the
position in [25]. However, the positioning error depends
on the configurations. In [26], a multilayer perceptron
neural network is utilized to describe the relationship
between the joint angles and the corresponding joint

errors. Nguyen proposed a technique for the calibration of
industrial robots by combining the geometric model-based
calibration method and the ANN to identify the kinematic
errors, joint compliance errors, and the nongeometric
errors [29]. But, at the same time, the BP neural network
has the problem that the performance relies too much on
the input data and initial values of weights and biases and
easily falls into the local optimum. To overcome these
drawbacks, researchers have proposed many hybrid al-
gorithms such as GA-BPNN [32, 33] and PSO-BPNN [34].
But, convergence rate of these algorithms is relatively slow,
and implementation of code is complex.

In this paper, an enhanced POE-based method is pro-
posed for the identification of geometric parameters, re-
duction ratio, and coupling ratio. Joint stiffness
identification is carried out by adding a load to the end-
effector. For the nongeometric errors compensation, an
optimized MLPNN based on a hybrid optimization method
of beetle antennae search algorithm and particle swarm
optimization is proposed. Experiments are carried out on a
SIASUN SR210D robot manipulator to validate the pro-
posed method by using a laser tracker to measure the po-
sition of the Spherical Mounted Retroreflector (SMR)
located at the end flange of the manipulator.

.e rest of the paper is organized as follows. In Section 2,
the kinematic model of the SIASUN SR210D robot ma-
nipulator is presented. In Section 3, the POE-based error
model including the transmission errors is established.
Section 4 proposes the joint stiffness identification method.
In Section 5, a hybrid beetle swarm optimization and
MLPNN algorithm are presented for the nongeometric
errors compensation. In Section 6, Compensation verifica-
tion and analysis are presented. In Section 7, conclusions
and future works are presented.

2. Kinematic Model of the SIASUN SR210D
Robot Manipulator

In this section, a kinematic model of the SIASUN SR210D
robot manipulator is described in detail. .e structure of the
6R manipulator is in Figure 1. L1, L2, L3, L4, andL5 are the
link lengths and ω1,ω2,ω3,ω4,ω5, andω6 are the joint an-
gular velocities, respectively. .e nominal value of robot
structure parameters mentioned above is listed in Table 1.

.en, the screw of each joint is
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.e forward kinematics can be expressed as mentioned
below:

PcT � e
􏽢ξ1θ1 · · · e

􏽢ξnθn PcT0, (2)

where θi is the angle of the ith joint and PcT0 is the end-
effector position in the base frame corresponding to θi � 0.

3. Geometric Parameters and Transmission
Errors Identification

3.1. Model of Geometric Parameters Errors. .e position of
the tool center point (TCP) in the measure frame is shown
below:

P � M · PcT � M · g(θ) · PcT0, (3)

where P is the position of the TCP, M is a homogenous
matrix that represents the transformation from the mea-
suring device frame to the base frame, and PCT represents
the position of TCP expressed in the base frame corre-
sponding to θ � [θ1, θ2, . . . , θn], g(θ) � e􏽢ξ1ϑ1e􏽢ξ2ϑ2 · · · e􏽢ξnϑn .

.en, we have the deviation of the TCP position by
taking the differential on both sides of equation (3):

dP � dM · g · Pcr0 + M · dg · Pcr0 + M · g · dPcr0,

� dM · M
− 1

· P + M · dg · g
− 1

· Pcr + M · g · dPcr0,

(4)

where

g · dPcT0 �
Rg bg

0 0
􏼢 􏼣

dPcT0

0
􏼢 􏼣 �

RgdPcT0

0
􏼢 􏼣. (5)

Taking a close observation of (4), we notice that
dM×M− 1 ∈ se(3), dg × g− 1 ∈ se(3), and the element s be-
longing to lie algebra satisfies

sq
∗

�
􏽢ω V

o 0
􏼢 􏼣

q

1
􏼢 􏼣 �

􏽢ωq + υ

0
􏼢 􏼣 �

I3 − 􏽢q

0 0
􏼢 􏼣

υ

ω
􏼢 􏼣. (6)

dP can be expressed as

dP �
I − 􏽢P

0 0
⎡⎢⎢⎣ ⎤⎥⎥⎦ dM · M

− 1
􏼐 􏼑

V
+ M

I − 􏽢PcT

0 0
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− 1
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V
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RgdPcT0

0
⎡⎢⎣ ⎤⎥⎦.

(7)

Since rigid body motion can be realized by a rotation and
a translation about an axis, M can be expressed as

M � e
􏽢ξϑ0 ∈ SE(3). (8)

Take the differential on both sides:

dM · M
− 1

� de
􏽢ξ0ϑ0 · e

− 􏽢ξ0ϑ0�θ0 􏽚
1

0
e
􏽢ξ0ϑ0sd􏽢ξ0e

− 􏽢ξ0ϑ0sds
.

(9)

.e matrix g is

g �
Rg bg

0 1
􏼢 􏼣 ∈ SE(3). (10)

Take the differential on both sides:

dg · g
− 1

� de
ξ̂1θ1e

− ξ̂1θ1 + e
ξ̂1θ1de

ξ̂2θ2e
− ξ̂2θ2e

− ξ̂1θ1+

· · · + e
ξ̂1θ1e

ξ̂2θ2 . . . e
ξ̂n− 1θn− 1de

ξ̂nθn e
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− ξ̂1θ1 ,

� de
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eξ̂1θ1

de
ξ̂2θ2e

− ξ̂2θ2 + · · · +

Ad
eξ1θ1 eξ̂2θ2 ···eξ̂n− 1θn− 1de

ξ̂nθn e
− ξ̂nθn ,

(11)

where d(e􏽢ξiθi )e− 􏽢ξiθi is

d e
􏽢ξiθi􏼒 􏼓e

− 􏽢ξiθi � 􏽚
1

0
e
􏽢ξiθis d􏽢ξi􏼐 􏼑θie

− 􏽢ξiθisdS + 􏽚
1

0
e
􏽢ξiθis􏽢ξ,

� θi 􏽚
1

0
Ad

e􏽢ξiθi s
d􏽢ξids + 􏽢ξidθi.

(12)

3.2. Model of Transmission Errors. Transmission errors
mainly include the reduction ratio error and coupling ratio
error. .e errors are caused by the process of
manufacturing and assembly. Both the errors lead to po-
sitioning inaccuracy.
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Figure 1: Structure of 6R SIASUN SR210D manipulator.

Table 1: Nominal value of robot structure parameters.

Li, i� 1–5 (mm) 312 1075 235 1282 260
dθi, i� 1–6 (°) 0 0 0 0 0 0
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Considering the transmission errors, the nominal value
of the ith joint angle can be given by

θn
i � θn′

i + 􏽘
n

j�1
c

n
jiθ

n′
j ,

ki �
rn

i

ra
i

�
θm

i /θ
n′
i

θm
i /θ

a′
i

,

hji � c
a
ji − c

n
ji,

(13)

where rn
i and ra

i are the nominal and identified reduction
ratios of the ith joint. cn

ji and ca
ji are the nominal and

identified coupling ratios. θn′
i and θa′

i are the nominal and
actual output angles of the ith joint reducer. θm

i is the ith

joint motor rotation angle. ki and hji are the errors of the
reduction ratio and the coupling ratio, namely the trans-
mission errors.

.en, the ith joint angle θi can be expressed as

θi � θi0 + θa′
i + 􏽘

n

j�1
c

a
jiθ

a∗

j � θi0 + kiθ
n
i

− ki 􏽘

n

j�1
c

n
jiθ

n′
j + 􏽘

n

j�1
c

n
jiθ

a∗

j + 􏽘
n

j�1
hjiθ

a∗

j ,

� θi0 + kiθ
n
i + 􏽘

n

j�1
kj − ki􏼐 􏼑c

n
ijθ

n
j + 􏽘

n

j�1
hijkjθ

n
j ,

(14)

where θi0 is the zero positioning error of the joint angle θi,
namely the ith joint offset and θj is the jth joint angle which
is coupled with θi.

Furthermore, the deviation of the ith joint angle θi can be
deduced as

dθi � dθi0 + θn
i − 􏽘

n

j�1
c

n
jiθ

n
j

⎛⎝ ⎞⎠dki + 􏽘
n

j�1
kjθ

n
jdhjt. (15)

3.3. Linearization of the Error Model. Linearization of the
error model is a premise for parameters identification. .e
error model can be obtained by combining the two error
models mentioned above as

dP � θ0
I − 􏽢P

O 0
⎡⎣ ⎤⎦ 􏽚

1

0
Ad

e􏽢ξ0θ0s
dsdξ0

+ M
I − 􏽢PcT

O 0
⎡⎣ ⎤⎦ dg · g

− 1
􏼐 􏼑

V
+ M

RgdPcr0

0
􏼢 􏼣,

(16)

where

dg · g
− 1

􏼐 􏼑
V

� θ1 􏽚
1

0
Ad

e􏽢ξ1θ1s
dsdξ1 + ξ1dθ1+

Ad
e􏽢ξ1θ1

θ2 􏽚
1

0
Ad

e􏽢ξ2 θ2S

dsdξ2 + ξ2dθ2􏼠 􏼡 + · · · +

Ad
e􏽢ξ1θ1 e􏽢ξ2θ2 ...e􏽢ξn− 1θn− 1

θn 􏽚
1

0
Ad

e
ξnθnSdsdξn + ξndθn􏼠 􏼡,

(17)

where e􏽢ξiθi can be expressed as a homogeneous matrix
through Taylor expansion and the adjoint transformation
associated with e􏽢ξiθi can be expressed as a 6× 6 matrix.
Equation (16) can be deduced as

dP � Ax, (18)

where

dP � P
a

− P
n
, (19)

where Pa is the actual TCP position measured by the laser
tracker and Pn is the nominal TCP position obtained by the
forward kinematics. .e parameters to be identified can be
expressed as

x � dξT
0 , dξT

1 . . . , dξT
n . . . , dθn0 . . . , dkn, dh21 . . . , dhji, dP

T
cT􏽨 􏽩

T
.

(20)

A is the corresponding coefficient matrix which can be
expressed as
A � Q0 | Q1 . . . | Qn | T1 . . . Tn | K1 · · · Kn | H21 . . . Hji | MRg􏽨 􏽩.

(21)

With the measurement of the TCP position at different
configurations, we can get the following equation set:

d􏽥P �

dP1

· · ·

dPn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

A1

· · ·

An

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x � 􏽥Ax, (22)

where n is the number of measurements.
.e least-squares solution for x is

x � 􏽥A
T

· 􏽥A􏼒 􏼓
− 1

· 􏽥A
T

· d􏽥P. (23)

4. Joint Stiffness Identification

.e stiffness of the manipulator arm is much greater than
that of the joint. For this reason, the joint stiffness identi-
fication is investigated in this section.

For a joint, the dynamic model can be described as

M(θ)€θ + C(θ, _θ) + τg(θ) + τf( _θ) � τm, (24)

where M(θ) is the inertial matrix, C(θ, _θ) is the Coriolis
and centrifugal terms, τg(θ) relates to the gravitational
torque, and τf( _θ) is the friction torque in the joint. τm is the
input torque from the joint motor.

On the assumption that the angular deformation of the
reducer is proportional to the input torque, the relationship
between the input torque and the deformation of the reducer
is as follows.

τmi � k
∗
i δθki, (25)

where ki is the stiffness coefficient of the ith joint and δθki is
the angular deformation of the ith joint. .e joint torque τm

is obtained as

τm � CeϕI, (26)

4 Complexity



where I is the motor current that can be read directly from
the controller of the robot. Ce is the motor potential con-
stant, and ϕ is the magnetic flux.

For a manipulator, the stiffness matrix of the robot joint
can be obtained as follows by ignoring the interaction of each
joint.

K �

k1 · · · 0

⋮ ⋱ ⋮

0 · · · kn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (27)

where n is the number of degrees of freedom.
Substitute equation (25) into equation (24), and the

relationship between joint angle deformation and motor
control current can be given by

δθki �
Ceϕ
ki

􏼠 􏼡∗ Ii. (28)

.e flexibility matrix of the robot joint is as follows:

C �

Ce1ϕ1
k1

· · · 0

⋮ ⋱ ⋮

0 · · ·
Cmϕn

kn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

According to the differential error relationship, the joint
angle deviation vector x � [δθk1 · · · , δθkn]T can be obtained.

Since only the gravity load is loaded during the exper-
iment, the direction of gravity is consistent with the di-
rection of the first axis of the robot and the moment of
gravity decomposition to the first axis is 0, and the first axis is
not identified. Similarly, the flexibility coefficient of the sixth
axis is not identified.

Substitute the flexibility matrix into the equation below
to improve the positioning accuracy by compensating the
joint angles.

θ ∗ � θn
+ IC, (30)

where θ∗ is the modified joint angle value of the robot. θn is
the nominal value of the joint angle, and the vector I is the
current value of each joint motor.

5. MLPNN Based on a Hybrid Optimization
Method of Beetle Antennae Search Algorithm
and Particle Swarm Optimization for
Nongeometric Errors Compensation

.e positioning error is still large after the geometric pa-
rameters, transmission errors, and joint stiffness compen-
sation. .e residual positioning errors are caused by
nongeometric errors which is difficult to model. In order to
overcome the drawbacks, in this section, a MLPNN based on

a new hybrid optimization method is proposed. .is new
model will be presented in details.

5.1. Beetle Antennae Search Algorithm (BAS). .e beetle
antennae search algorithm (BAS) is a metaheuristic algo-
rithm that is inspired by the searching behavior of longhorn
beetles [35, 36]. A vector xt at tth time instant (t� 1, 2, . . .)
denotes the position of the beetle. At position x, f(x) is
defined as the fitness function to represent the concentration
of odour. Normally, we can use two rules to simplify the
algorithm, including search and detection behavior. In an
unknown environment, the beetle searches randomly. A
normalized random unit vector b

→
is utilized to model the

searching behavior as follows:

b
→

�
rands(m, 1)

‖rands(m, 1)‖
, (31)

where rands(.) represents a random function and m is the
number of dimensions of the position. xr and x1 are defined
to imitate the searching behavior of both the right and left
antennae:

xr � x
t

+ d
t

b
→

,

xl � x
t

+ d
t

b
→

,

(32)

where d is the sensing length of antennae.
An iterative form is proposed to model the detecting

behavior:

x
t+1

� x
t

+ δt
b
→

sign f xr( 􏼁 − f x1( 􏼁( 􏼁, (33)

where δ is the step size and sign(.) represents a sign function.
.e antennae length d and step size δ are updated

according to the following formula.

d
t

� 0.95d
t− 1

+ 0.01,

δt
� 0.95δt− 1

.
(34)

Compared with other heuristic algorithms such as PSO,
GA, and ABC, the BAS algorithm possesses better perfor-
mance in terms of faster speed and simpler implementation.
A second order Michalewicz function shown below was used
to validate the algorithm.

f(x) � sin x1( 􏼁 sin
x2
1
π

􏼠 􏼡􏼢 􏼣

20

+ sin x2( 􏼁 sin
2x2

2
π

􏼠 􏼡􏼢 􏼣

20

,

(35)

where the minimized value satisfies f(x ∗ ) � − 1.8013, lo-
cating in (x∗ ) � (2.20, 1.57). .e initial values of d and δ are
2 and 0.5. Taking the absolute error less than 0.0001 as the
end evolution, the time these algorithms mentioned above
takes is shown in Table 2.

.e results showed that the search speed of BAS algo-
rithm was tremendous. .e BAS algorithm can fit well for
the real-time task.
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5.2. Beetle Swarm Optimization (BSO). .e performance of
beetle antennae search algorithm relies heavily on the initial
position, and it will easily fall into the local optimum when
dealing with high-dimensional problems [37–39]. In order
to overcome these drawbacks, further improvements are
made by combining the antennae search algorithm and
particle swarm optimization. .at is the beetle swarm op-
timization algorithm.

In beetle swarm optimization, each particle in the
standard PSO is defined as a beetle. Each beetle represents a
potential solution to the optimization problem. In the it-
erative process, the update of the position relies not only on
the individual and global historical best solution but also on
the way of beetle antennae search. .e formula can be
expressed as follows [34]:

X
k+1
is � X

k
is + λV

k
is +(1 − λ)ξk

is, (36)

where i is the ith beetle, s is the sth dimension, k is the
current number of iterations, Vis is the speed of the beetle, ξis

is the increase in movement, and λ is a positive constant. Vis

is expressed as:

V
k+1
is � ωV

k
is + c1rand1 p

k
is − X

k
is􏼐 􏼑 + c2rand2 p

k
gs􏼐 􏼑, (37)

where w is the inertia weight, c1 and c2 are constants, and
rand1 and rand2 are two random functions in (0, 1). Pi and
Pg are the individual and group extremities.

.e inertia weight is decreasing in the process as follows:

ω � ωmax −
ωmax − ωmin

K
∗ k, (38)

where ωmax and ωmin represent the maximum and minimum
values of ω and k and K are the current number of iterations
and the maximum number of iterations.

ξ defines the increase in movement and is expressed as

ξk+1
is � δk∗

V
k∗
is sign f X

k
rs􏼐 􏼑 − f X

k
rs􏼐 􏼑􏼐 􏼑, (39)

where δ is the step size. .e position of the left and right
antenna can be expressed as

X
k+1
rs � X

k
rs + V

k
iS ∗

d

2
,

X
k+1
ls � X

k
ls + V

k
is ∗

d

2
.

(40)

5.3. MLPNN. Artificial neural network and, in particular,
the multilayer perceptron neural networks are widely used in
many application areas over the years. Typically, the mul-
tilayer perceptron neural network contains three kinds of

layers, which are the input layer, hidden layer, and output
layer. It is claimed that a three-layered feed-forward neural
network can approximate any nonlinear function with ar-
bitrary accuracy. .e number of neurons in input and
output layers is normally selected according to the actual
needs. However, the best number of neurons in the hidden
layer can just be determined by trial-and-error methods.

Generally, each neuron can be denoted by the following
equation:

yj � f 􏽘

n

i�1
ωijxi + bj

⎛⎝ ⎞⎠, (41)

where xi and yj are the input and output values of the jth
neuron, respectively; ωij denotes the connection weight
from the ith neuron in the previous layer to the jth neuron in
the latter layer; bj represents bias value in the jth neuron; and
f is normally a sigmoid function as follows:

f(x) �
1

1 + e− x
. (42)

Its derivation is

f′(x) � f(x)(1 − f(x)). (43)

.e error of the kth neuron in the output layer is

ek � Yk − 0k, (44)

where Yk and OK are the desired and actual value of the ith

neuron in the output layer..e total error of the output layer
is

E �
1
2

􏽘

m

k�1
e
2
k, (45)

where m is the number of neurons in the output layer.
For nongeometric errors compensation, the joint angles

are selected as the inputs and the positioning errors in each
axis are selected as the outputs. By using the Jacobianmatrix,
the positioning errors are mapped to the errors of joint
angles. .e compensation process is shown in Figure 2.

5.4. Be MLPNN Optimized by BSO. .e validity and ac-
curacy of MLFNN may be reduced if the weights and biases
are improperly selected. .e BSO algorithm is used to
optimize the network parameters of MLFNN in this process.
In this section, the BSO-MLFNN method is proposed to
overcome the shortcomings of low accuracy. .e process is
shown in Figure 3.

6. Compensation Verification and Analysis

As shown in Figure 4, a spherical mounted retroreflector
(SMR) was mounted at the end flange of the manipulator,
and the position of the SMR, namely, the tool center point
(TCP) position, was measured by a laser tracker (FARO

Table 2: Time comparisons of different algorithms in a two-di-
mensional situation.

Algorithms BAS PSO GA ABC
T (s) 0.087843 0.215134 0.262317 0.132563
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Vantage) with the positioning accuracy of 10 μm+2.5 μm/
m. Experiments were performed on a heavy load SIASUN
SR210D robot.

.e main steps of the experiment were as follows: (1) a
set of 50 robot joint angle values in the controller and the
corresponding positions without any load were obtained in
the measuring coordinate system. Geometric parameters
and transmission errors were identified using the improved
POE model. (2) Identify the joint stiffness by measuring 50
points with a 210 kg load after geometric parameters and
transmission errors compensation. (3) Compensate the
nongeometric errors based on the proposed BSO-MLPNN
by measuring 200 points after the two steps mentioned
above.

.e measurement points should be selected evenly in the
workspace, so that the measuring configurations should go
through all controllable DoFs and close to the boundary of
the workspace, where the maximum errors are most
prominent.

6.1. Geometric Parameters and Transmission Errors
Identification. According to equation (22), the actual
geometric parameters, transmission errors and coupling
ratio can be identified. .e nominal and identified value of
geometric parameters and reduction ratio are shown in
Tables 3 and 4.

.e nominal coupling ratio error is 0 and the iden-
tified coupling ratio error is − 2.5342 × 10− 4. .e posi-
tioning accuracy of the 50 points before and after
calibration is shown in Figure 5. .e average positioning
accuracy of measurement points is enhanced from
1.1288mm to 0.2898mm. For validation, another set of
50 points is selected. .e validation results show that the
average positioning accuracy is 0.3008mm which is

0.011 mm larger than 0.2898 mm. Details are presented in
Table 5.

6.2. Stiffness Identification and Compensation. According to
equation (28), the joint stiffness is identified. .e stiffness
results are shown in Table 6. .e positioning accuracy of
the 50 points before and after calibration is shown in
Figure 6. .e average positioning accuracy is enhanced
from 7.0261mm to 0.9847mm. Details are presented in
Table 7.

6.3. Nongeometric Errors Compensation Based on BSO-
MLPNN. Figure 6 shows that the positioning errors are still
large after the geometric parameters, transmission errors,
and the joint stiffness compensation. .ese errors caused by
nongeometric sources are compensated by the BSO-
MLPNN method. For this purpose, 200 evenly distributed
points in the workspace and corresponding joint angles are
collected for training the BSO-MLPNN. In the training
process, joint angles are selected as the inputs and the re-
sidual positioning errors are selected as the outputs. .e
residual positioning errors in each axis are shown in
Figure 7.

.e positioning accuracy before and after nongeometric
calibration at the measurement points is shown in Figure 8.
.e results show that, after the nongeometric errors com-
pensation at the measurement points, the average posi-
tioning accuracy is enhanced from 0.9262 (mm) to 0.5907
(mm). Details are shown in Table 8.

Normally, the positioning accuracy of the measurement
points is higher than that of the validation points. For
validation, another set of 200 points are selected. .e po-
sitioning errors are shown in Figure 9. .e validation results

Input

Desired
position

Robot inverse 
model

Robot forward
model

Neural network
compensator

Joint
configuration

Output

Jacobian
matrix

Actual
position

q

Δq

Δx, Δy, Δz

Figure 2: NN-based nongeometric errors compensation.
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Start

Calculate the fitness function
for beetle

Is the current fitness value
better that the best position?

Update the best position
with current position

Keep the previous best
position unchanged

Randomly set the
direction of the beetle

Calculate fitness for the left
antennae and right antennae

Is the fitness for left antennae
position better than right?

Take a step to
the left

Take a step to
the right

Meet the
optimize goals?

Yes No

Yes No

No

MLPNN optimal
modelYes

Initialize the topology
of MLPNN

Initialize the range of the weights, the biases

Each particle is defined as a beetle

Update the swarm

Find the optimal particle in the
swarm

Calculate the fitness for each
particle

Randomly initialize the particles as
a swarm

Figure 3: Algorithm flow chart of BSO-MLPNN.
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Figure 4: Experimental scene.

Table 3: Nominal value and identified value of robot geometric parameters.

Nominal parameters
Li (mm), i� 1–5 312 1075 235 1282 260 0
θi0 (°), i� 1–6 0 0 0 0 0 0

Identified parameters
Li
′ (mm), i� 1–5 313.1011 1075.1209 234.2737 1281.3124 260 0
θi0′ (°), i� 1–6 0 0.0044 0.0479 0.4524 − 0.1892 0

Table 4: Nominal and identified value of reduction ratio errors.

Nominal reduction ratio errors
ki, i� 1–6 1 1 1 1 1 1

Identified reduction ratio errors
ki
′, i� 1–6 1.0002 1.0013 1.0004 0.9998 0.9996 1.0003

Accuracy before geometric compensation
Accuracy after geometric compensation of measurement points
Accuracy after geometric compensation of validation points
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Figure 5: Positioning accuracy before and after geometric calibration.
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Table 5: Absolute positioning accuracy of the SIASUN SR210D robot.

Mean (mm) Standard deviation (mm) Maximum (mm)
Before calibration 1.1288 0.4709 2.3640
After robot link geometry and transmission errors
compensation of measurement points 0.2898 0.1464 0.8226

After robot link geometry and transmission errors
compensation of validation points 0.3008 0.1532 0.8436

Table 6: Flexibility factors for stiffness calibration identification.

cii, i� 1–6 0 1.89e − 5 − 2.49e − 5 − 5.35e − 5 − 8.26e − 5 0

Accuracy before joint stiffness compensation
Accuracy after joint stiffness compensation
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Figure 6: Positioning accuracy after the calibration of stiffness parameters under the full load condition.

Table 7: Absolute positioning accuracy of the SIASUN SR210D manipulator.

Mean (mm) Standard deviation (mm) Maximum (mm)
Before joint stiffness compensation 7.0261 1.2351 10.0898
After joint stiffness compensation 0.9847 0.5340 2.4176
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Figure 7: Residual positioning errors in each axis.
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show that the average positioning accuracy is enhanced from
0.9370mm to 0.6522mm. Details are shown in Table 9.

.erefore, the proposed three stages calibration
method including geometric parameters, transmission
errors, joint stiffness, and nongeometric errors compen-
sation is effective.

7. Conclusion and Future Works

.is paper proposed a three-stage calibration method for
enhancing robot positioning accuracy. .e geometric pa-
rameters and transmission errors are identified in the first
stage. .en, joint stiffness compensation is carried out. For

Accuracy before BSO-MLPNN compensation
Accuracy after BSO-MLPNN compensation
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Figure 8: Absolute positioning accuracy before and after nongeometric compensation of measurement points.
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Figure 9: Absolute positioning accuracy before and after nongeometric errors compensation of validation points.

Table 8: Absolute positioning accuracy of the SIASUN SR210D manipulator of measurement points.

Mean (mm) Standard deviation (mm) Maximum (mm)
Before BSO-MLPNN calibration 0.9262 0.1632 1.7435
After BSO-MLPNN calibration 0.5907 0.0760 0.8834
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the nongeometric errors compensation, a hybrid algorithm,
namely, BSO-MLPNN, is introduced.

Experiments were performed on the SIASUN SR210D
robot manipulator. .e average positioning accuracy was
enhanced from 7.0261mm to 0.5907mm. Results demon-
strated the effectiveness and correctness of the proposed
method. In addition, the validation results showed that the
manipulator after calibration has the same level of posi-
tioning accuracy in the entire workspace.

In future, nongeometric factors will be modeled in order
to obtain more accurate knowledge of error sources and
accelerate the convergence rate.
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