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Operating universities under pandemic conditions is a complex undertaking. )e Artificial University (TAU) responds to this need.
TAU is a configurable, open-source computer simulation of a university using a contact network based on publicly available
information about university classes, residences, and activities.)is study evaluates health outcomes for an array of interventions and
testing protocols in an artificial university of 6,500 students, faculty, and staff. Findings suggest that physical distancing and
centralized contact tracing are most effective at reducing infections, but there is a tipping point for compliance below which physical
distancing is less effective. If student compliance is anything short of high, it helps to have separate buildings for quarantining infected
students, thereby gracefully increasing compliance. Hybrid in-person and online classes and closing fitness centers do not sig-
nificantly change cumulative infections but do significantly decrease the number of the infected at any given time, indicating
strategies for “flattening the curve” to protect limited resources. Supplementing physical distancing with centralized contact tracing
decreases infected individuals by an additional 14%; boosting frequency of testing for student-facing staff yields a further 7% decrease.
A trade-off exists between increasing the sheer number of infection tests and targeting testing for key nodes in the contact network
(i.e., student-facing staff). )ere are significant advantages to getting and acting on test results quickly. )e costs and benefits to
universities of these findings are discussed. Artificial universities can be an important decision support tool for universities,
generating useful policy insights into the challenges of operating universities under pandemic conditions.

1. Introduction: The Crying Need for Insight

Operating institutions of higher education under SARS-
CoV-2 pandemic conditions is a perilous, complex, and
expensive undertaking. Simple simulations of epidemio-
logical models can be adapted to allow university admin-
istrators to test combinations of interventions but such
models typically neglect the human factors (e.g., social

networks and multiple dimensions of compliance) that
heavily influence whether interventions fail or succeed.
Bespoke policy simulations incorporating confidential data
about students and staff are prohibitive for many schools in
terms of their cost and the expertise needed to build them,
and they cannot be shared, duplicating effort. Dashboards
offering generic advice do not take account of the facts that
universities vary widely in what interventions are politically
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feasible (e.g., shutting down football is unthinkable in some
places, and centralized contact tracing is too controversial in
others) or financially achievable (a massive testing, tracing,
and quarantine regimen can be prohibitively expensive in
terms of materials, space, and personnel). Most dashboards
are using available data to support smart extrapolation into
the future, while such data are typically not available for
universities. Moreover, universities are diverse in terms of
what counts as success, and thus they would naturally apply
different metrics to evaluate the effectiveness of combina-
tions of interventions (e.g., minimizing infections, or op-
timizing good outcomes versus bad outcomes). )ere is an
urgent need for flexible and timely policy modeling that can
be applied in a host of different institutional contexts.

To respond to this need, the Human Simulation Group
created )e Artificial University (TAU). TAU is a flexible
computer simulation of a university based solely on publicly
available web-scraped data about typical class schedules,
residence and dining arrangements, age distributions of
faculty and staff, on-campus and off-campus activities, gyms,
clubs, and commuting. TAU has a threefold configuration
process to render the artificial university a close match to any
real-world university (Figure 1).

First, TAU can be configured to match university
characteristics. TAU handles schools of any size and com-
position, both two-year and four-year colleges without
graduate students and research universities with graduate
students. )e simulation takes account of faculty and staff
age distributions, class schedules, a complex variety of on-
campus and off-campus residences with diverse bathroom-
sharing arrangements, campus dining halls, specialized
quarantine buildings and floors, on-campus gyms and clubs,
on-campus sports and public events, and off-campus con-
tacts and commutes. )e simulation-based approach per-
mits the application of various knowledge-based
prognostication methods and is not limited to smart ex-
trapolation of data.

Second, TAU can be configured to match the range of
feasible interventions for a given university setting. Inter-
ventions in TAU include allowing or closing gyms, sports,
student clubs, and on-campus events; hybrid classes to
dedensify classrooms while maintaining live education both
in-person and online; testing regimens of varying capacities
and reliabilities, both for infection and antibodies, and with
varying delays in getting results as well as the possibility of
boosting the frequency of infection testing based on anti-
body testing results, or on whether staff have student-facing
jobs; contact tracing of varying intensities, from anonymous
apps to centralized tracking by university administrators;
and varying intensities of quarantine from self-isolation to
placing symptomatic people in quarantine buildings sup-
ported by staff. TAU also takes account of compliance with
physical distancing requirements, with reporting symptoms
to a contact-tracing app, and with self-isolation expectations.
)ese critical human factors can vitiate the effectiveness of
interventions.

)ird, TAU can be configured to respond to the value-
laden perspectives of universities, which yield very different
metrics for assessing whether a combination of interventions

is successful. Universities might emphasize the danger of
COVID-19 for vulnerable people, including older faculty
and staff and people of all ages with preexisting conditions,
in which case they will seek to maximize the number of
people never infected. Some might prefer a hybrid metric
that optimizes the difference between positive outcomes
(never infected or recovered) and negative outcomes (deaths
or reinfections). Still others might want to take account
equity and distributive justice concerns and all will need to
account for financial realities. )e outcome metrics matter,
in the specific sense that they lead to different priorities for
intervention arrays. TAU supports all viewpoints on what is
an intricately complex, multiattribute, multivalue decision
problem. )e modeling process itself helps to make prob-
lems and solution methods tangible by describing them in
the common language of the simulation, so that trade-offs
and compromises become clearer and unintended conse-
quences in other value domains may be avoided.

2. Materials and Methods

2.1. Computational Simulation Design. )e computational
policy simulation that powers TAU is an agent-based epi-
demiological model (just as for [1]). Each individual agent,
whether student, faculty, or staff, moves between states of
being susceptible, infected, recovered, and resusceptible,
depending in part on biological factors. (It should be noted
that these are individual agent states used to trace whether an
agent is likely to infect another agent. TAU is not a pop-
ulation-compartmental model, as often used in epidemiology
simulation.) Since there have been confirmed reinfections
(i.e., the virus causing the second infection is genetically
different from the virus causing the first), it is important to
allow for the possibility that periods of immunity are short.

TAU is not a spatial model; it is a contact-network
model. Network links are the pathways for possible meetings
with infectious people. )us, two agent nodes are linked
when there is physical contact and therefore the possibility of
infection, indicated by being in class together, living together
in a dorm, or both going to the gym or a university event.
Links are weighted according to the likelihood of infection.
Because universities have a rhythmic schedule over the
course of a week, the network is static. Interventions modify
network links, reducing the likelihood of meetings, and
therefore also of infection. For example, physical distancing,
mask-wearing, closing gyms, and dedensifying classrooms
by using a hybrid in-person and remote teaching system
reduce the probability of infection and thus lighten link
weights, or sometimes eliminate links altogether. )e higher
the levels of compliance, the lower the probabilities of in-
fection. Additional networks can be added, such as family,
friends, or other social connections, but, for these networks,
usually no data exist on the university level. Further details
about TAU’s design—including complete documentation of
entities, state variables, time scales, networks, network link
types, process scheduling, parameters, and ini-
tialization—are provided in the online model documenta-
tion at https://github.com/centerformindandculture/
)eArtificialUniversity.

2 Complexity
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Note that the networks employed in this model are based
on copresence (approximating contact on the basis of oc-
cupying spaces at the same time) rather than relationship
data (social connections such as friendship and familial ties).
Copresence data addresses both modeling and practical
concerns. With respect to modeling the spread of SARS-
CoV-2, sustained copresence (such as seated in close
proximity in a classroom) or joint living circumstances (such
as suitemates or floor-mates with shared bathroom facilities)
are crucial vectors of transmission. Practically speaking,
relationship data on ties such as friendship can be highly
sensitive to social contexts and, consequently, difficult to
generalize. Moreover, relational data are resource intensive
whereas copresence data are easier to assume based on the
distribution of events and living conditions.

2.2. Design of Experiments: Exploratory Analysis. TAU is
highly stochastic and thus we built a large dataset by
sweeping the parameter space with 30 replications for each
combination of parameter settings, seeking 95% confidence
in the outcome variables. )is technique of exploratory
analysis is often used in areas of deep uncertainty (e.g., [2]).
It surfaces emergent behavior and changes in the meta-
behavior of the system over the solution space, including
tipping points defining the borders of behavior regimes. By

surfacing such information and being clear about as-
sumptions, TAU promotes thinking deeply into a complex
situation rather than delivering straightforward answers to
important questions (see [3]). TAU’s capacity to promote
deeper understanding of a complex management problem is
particularly important given that real-world data for uni-
versities does not exist to validate epidemiological models in
a quantitative way. Prominent university closures in Sep-
tember 2020 confirm that failures of compliance can
comprehensively undermine a COVID-management plan,
and this is a useful qualitative confirmation of TAU’s finding
that compliance is the single most important explanatory
factor, but quantitative validation must wait for new kinds of
datasets to emerge.

We present an evaluation of an array of interventions
using health-outcome metrics (e.g., minimizing infections)
for two artificial universities, a four-year college and a re-
search university (see Table 1). Most configurable aspects of
the universities (e.g., residence arrangements, commuting,
class schedules, and activities) are linearly scaled with the
population so that the main difference between the two
universities is size.

Results for the two artificial universities are similar, so
we report here on the smaller university of 6,500 people
unless otherwise noted. We do not report on different
configurations for universities of the same type and size (e.g.,

�e Artificial University

TAU is a hightly configurable artificial representation
of colleges and universities that takes account of

University policy arrays

Each university wants to investigate the effects of a
specific array of policies that leaders deem feasible.
important consideration include the following:

University values and metrics

Each university has distinctive values that determine
what counts as policy success. �is makes one-size-
fits-all policy approaches irrelevant to local concerns.
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 Classes of differnt kinds and sizes
 Living arrangements from dorms to apartments
 Gyms, dining halls, special events
 Students, faculty, and staff–age and vulnerability

Cost-benefit analysis of policy combinations
Non-linea interaction of policy combinations
Evaluation in terms of local values and metrics

Sometimes financial realities are critical
Sometimes avoiding infection is top priority
Sometimes equity and fairness are crucial

Figure 1: Diagram of TAU, a decision support tool for colleges and universities. )e threefold configuration process is at the top, the
simulation and social network feeding TAU is at the bottom left, and the virtual experimental platform is at the bottom right.
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mostly commuter students versus mostly on-campus resi-
dents). TAU surfaces surprising and helpful information
about interventions and tipping points for their effective-
ness, which should be useful to university planners.

We varied parameters related to specific interventions.
Using a Latin-hypercube-sampling method, we identified 500
parameter combinations to explore in a parameter sweep. We
ran each parameter combination 30 times or until 95%
confidence was achieved for three output metrics: the number
of people never infected, the total number of infections
(including reinfections), and the hybrid metric that measures
the difference between positive outcomes (never infected or
recovered) and negative outcomes (deaths or reinfections).
)e resulting 15,000 runs took several days on amachine with
a maximum availability of 128 cores and 1TB RAM.We then
ran analyses of the simulated dataset through the statistical
package R, beginning with a sensitivity analysis of inter-
vention parameters and passing to more specific tests.

We set epidemiological parameters based on reviews of
epidemiological and virology literature. For the 6,500-per-
son university reported on here, we fixed a lot of other
parameters using findings from scraped data: staff-faculty-
student ratios, proportion of students in on-campus dorms,
distribution of types of dorms and the number of students
sharing bathrooms, distributions of dining halls, frequency
of campus events, clubs and sports, class schedules, and off-
campus events.

TAU was developed in AnyLogic version 8.5.2. )e open-
source model and documentation are available at https://
github.com/centerformindandculture/)eArtificialUniversity.
A dashboard for TAU is presented at http://mindandculture.
org/projects/modeling-social-systems/vivid/vivid-dashboard/.
)e dashboard facilitates the exploration of the impact of a
variety of specific interventions on the university population
using two different health-outcome metrics.

3. Results

3.1. IdentifyingWhich InterventionsHave theGreatest Impact.
)e single most important intervention is high compliance
with physical distancing. In TAU, physical distancing re-
duces the probability of an infection through a network link
and corresponds in the real world to wearing masks and

keeping physically separate from others. Using the “mini-
mize infections” metric with the adjusted-R2 test, high
compliance with physical distancing explains 70% of the
variance (Figure 2).

Adding the variant of contract tracing that involves
centralized tracking and strong follow-up to ensure self-
isolation brings the total variance explained to 83%. Adding
a policy to boost testing frequency of staff with student-
facing jobs (e.g., people working in dining halls, cleaning
student areas, and meeting intensively with students) further
increases the variance explained to 86%.

Note that the adjusted-R2 test incorporates a penalty for
adding additional factors into the regression, so there is a
convergence effect as more interventions are included. It
follows that the less important interventions in the hierarchy
of Figure 2 could still be important when considered alone or
in combination with high compliance with physical dis-
tancing. To explore this possibility, the TAU dashboard
(http://mindandculture.org/projects/modeling-social-systems/
vivid/vivid-dashboard/) allows users to visualize the projected
health effects of varying individual interventions.

If we assume student compliance with social distancing
will not be better than 50% (probably a reasonable as-
sumption), do the other interventions still rank order the
same way? To answer this question, we fixed faculty and staff
compliance of all kinds at a high level and fixed student
compliance of all kinds at 50% (save for compliance with
forced quarantine in a separate building for infected stu-
dents, which was fixed to high, and the intervention itself
was allowed to be on or off). Under those circumstances, five
factors explain the bulk of variance in the “number never
infected” metric. )e top three hit in the same order as
before (after compliance factors are eliminated), though the
variance explained is lower, a reminder of how important
compliance is as follows:

(1) Centrally monitor contact tracing (adj-R2 � 0.64)

(2) Add: boost testing for student-facing staff
(adj-R2 � 0.75)

(3) Add: hybrid classes to dedensify rooms
(adj-R2 � 0.78)

)e next two factors are as follows:

Table 1: Basic characteristics of the two types of universities tested.

Characteristic Four-year college Large research university
Size and
composition 6,500 students, faculty, and staff, no graduate students 37,200 students, graduate students, faculty, and staff

Student-facing
staff

10% of staff are student-facing, with 100 interactions per
day with students

10% of staff are student-facing, with 200 interactions per
day with students

Testing Maximum 1,000 infection tests and maximum 100
antibody tests per day

Maximum 5,000 infection tests and maximum 500
antibody tests per day

Living
arrangements

3 dining halls serving a mix of large dorms sharing
bathrooms and apartment style living for on-campus

residents; others commute from apartments and homes

15 dining halls serving a mix of large dorms sharing
bathrooms and apartment style living for on-campus

residents; others commute from apartments and homes;
same ratios as for the four-year college

Note. Most configurable aspects of the universities are scaled with population size in a nearly linear fashion.
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(4) Add: forcing quarantine of infected students in a
separate building, which improves compliance
(adj-R2 � 0.78)

(5) Add: deprioritizing infection testing for people who
test positive for antibodies, freeing tests for others
(adj-R2 � 0.78)

Change the metric to “number infected (including re-
infections)” and the last two factors switch order.

We also asked what would happen if centralized contact
tracing was not used, thereby addressing a big concern for
colleges and universities having students, faculty, or staff
who are hyperconscious about privacy. In that case, inter-
ventions line up in a similar way, with a slightly different
order, andmuch lower adj-R2 values. Note the appearance of
a new factor in fourth place, increasing testing frequency for
older faculty and staff:

(1) Boost infection testing for student-facing staff (adj-
R2 � 0.31)

(2) Add: forcing quarantine of infected students in a
separate building, which improves compliance
(adj-R2 � 0.42)

(3) Add: hybrid classes to dedensify rooms
(adj-R2 � 0.50)

(4) Add: boost infection testing for older faculty and
staff (adj-R2 � 0.52)

)ese results drive home the importance of high student
compliance with every aspect of the university intervention
program, the impact of centralized contact tracing, and the
value of “gracefully forcing” infected students into high-
compliance mode by using a separate quarantine space.

It is also important to notice which interventions had
relatively lower effects on health outcomes. )ey include the
following:

Closing fitness centers
Closing student groups and clubs
Canceling large sport events
Canceling large events over a threshold size
Boosting testing frequency for people with health
vulnerabilities
Lengthen contact-tracing history from 7 days to 14 days

In the large research university, TAU produced a similar
but not identical list of factors accounting for variance in
health outcomes. Here are the top six factors (note the higher
values for adj-R2):

(1) High compliance: physical distancing (adj-R2 � 0.79)
(2) Add: boost infection testing for student-facing staff

(adj-R2 � 0.87)
(3) Add: boost infection testing for older faculty and

staff (adj-R2 � 0.90)
(4) Add: centrally monitor contact tracing

(adj-R2 � 0.93)
(5) Add: high compliance: testing regimen

(adj-R2 � 0.94)
(6) Add: high compliance: report symptoms

(adj-R2 � 0.95).

3.2. Hybrid Class Structures. With universities facing
countless class-action lawsuits alleging failure to provide the
promised educational experience due to a switch early in
2020 to remote education, being able to provide a safe, high-
quality education that is live and in-person is a priority for
university administrators. One way to achieve this is a hybrid
system that conducts live classes with two groups simulta-
neously, one in person and the other remote. )is approach
dedensifies classrooms while remotely including vulnerable
students and students in quarantine. )e hybrid system also
permits international students who may not be allowed into
the country to continue their education.

In TAU, hybrid classrooms work by splitting classes that
meet three times a week into three equal-sized, nonover-
lapping platoons of students who attend class face to face one
day per week and attend remotely for the other two days—all
occurring in a room capable of holding the entire class at
once. Classes that meet twice per week use two platoons of
students, and long classes that meet once per week have two
platoons that alternate weeks attending in person. Figure 3
assesses the effectiveness of this intervention strategy. )e
number never infected by the end of the simulation
(Figure 3(a)) is not significantly improved with hybrid
classes, but the maximum number infected at any given time
(Figure 3(b)) is significantly reduced (by about 30%). It
follows that university administrators should not expect

High compliance: physical distancing (adj-R2 = 0.70)
+ Centrally monitor cotact tracing (adj-R2 = 0.83)
+ Boost testing for student-facing staff (adj-R2 = 0.86)
+ High compliance: report symptoms (adj-R2 = 0.88)
+ High compliance: testing regimen (adj-R2 = 0.91)
+ High compliance: self-isolation (adj-R2 = 0.91)

+ High compliance: quarantine (adj-R2 = 0.92)
+ Hybrid classes to dedensify rooms (adj-R2 = 0.91)

Figure 2: Regression-subset diagram for TAU using the “minimize infections” metric on a university of 6,500 people. )e single most
important intervention is on the top row, explaining 70% of the variance in the outcomemetric according to the adjusted-R2 test.)e second
row shows the effect of adding the second most important explanatory factor into the regression (adjusted-R2 lifts to 0.83). As each new
factor is added, there are marginal gains in the adjusted-R2 value.
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hybrid classes to dramatically lower overall infections, but
they can reasonably expect to “flatten the curve” by slowing
down the rate of infection.

We hypothesize that platoons in classrooms have a
limited impact on increasing the total number of people
never infected because most students still live in on-campus
housing. It may be possible to select platoons in such a way
that they correspond to campus regions, and the resulting
spatial compartmentalization might help to confine the
spread of any outbreaks. But this is difficult, probably
prohibitively difficult, to implement in a real-world class
schedule with different class frequencies and compositions,
so TAU does not evaluate this possibility.

Hospital emergency departments critically require
slowing the rate of infection to avoid overrunning resources.
Depending on their policies, universities can face a similar
challenge, particularly if they set aside a certain number of
buildings with bathroom-equipped rooms for people with
symptoms who are quarantined. Hybrid classes can flatten
the curve to avoid overrunning those vital and limited re-
sources, even if they only marginally increase the number of
people who are never infected. Much the same applies to
closing fitness centers, which ought to be vectors of trans-
mission through surfaces and heavy breathing. Such in-
terventions do not appreciably lower the total number
eventually infected but they do slow the rate of infection. If
flattening the curve is important, then these policies make
sense.

3.3. Tipping Points for Compliance with Physical-Distancing
Guidelines. Human beings exhibit a rich variety of per-
sonalities, convictions, ideologies, and degrees of proso-
ciality, resulting in varying willingness to comply with
physical-distancing guidelines. Physical distancing is the
single most important intervention for optimizing social-
health metrics, but it requires sustained compliance, which
young adults in particular often find trying. Consequently,
there is an important question about how much of a dif-
ference physical distancing really makes.

Figure 4 shows the number of infections at simulation
end against the degree of compliance with physical dis-
tancing, over all parameter combinations. )ere is a tipping
point around 0.6 (in the simulation, this means 60%
probability of being compliant). While the tipping point
varies slightly depending on the precise parameter set in
play, the response curve always has this shape and indicates
that university administrators should expect increased gains
with high compliance but few gains with low compliance.
)at is, if physical distancing is not done well, there is little
point in doing it at all. It follows that universities should
make physical distancing as easy as possible with masks,
spacing marked for queues, and one-way people traffic
where possible. University communities (including students
themselves) need to promote the benefits of compliance with
physical distancing guidelines—particularly with younger
people in their community.

3.4. Supplementing Physical Distancing with Testing and
Contact Tracing. On the “minimize infections” metric, the
next best interventions (after high compliance with physical
distancing) are rigorous contact-tracing and flexible testing
strategies. How much of a difference do they make on
minimizing the number of infections? Findings from TAU
suggest the following:

Central tracking (i.e.,, centralized information about
contact tracing, followed by enforcement of isolation
among traced individuals) increases the number of
people never infected by 14% (this is all of the policy
variations with central tracking compared to all of the
policy variations without central tracking)
Testing student-facing staff members more often ad-
ditionally increases the number of people never in-
fected by 7.6%
High compliance with contact-tracing demands, which
means reporting when COVID-19 symptoms are expe-
rienced or when a test result indicates infection, further
increases the number of people never infected by 4.5%
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Figure 3: Box plots illustrating the effect of introducing hybrid university classrooms. )e left image in (a) shows that there is little
difference in the number never infected, while the right image in (b) shows that the maximum number infected at any given time is
significantly lower with a hybrid class system. )e lower and upper hinges correspond to the first and third quartiles (the 25th and 75th

percentiles). )e upper whisker extends from the hinge to the largest value no further than 1.5 ∗ IQR from the hinge (where IQR is the
interquartile range or distance between the first and third quartiles); similarly for the lower whisker. Data beyond the end of the whiskers are
outlying points and are plotted individually.
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Increasing the frequency of testing staff with student-
facing jobs poses an important cost-benefit analysis puzzle
because testing is expensive and frequent testing is pro-
portionally more costly. We asked TAU how increasing the
frequency of testing for staff-with student-facing jobs affects
the number of infections (Figure 5). )ere is an inflection
point around a boost of 4 times, taking account of all pa-
rameter combinations, suggesting that there is little gain
from testing student-facing staff more than about four times
more frequently than others.

3.5. Optimizing Testing. TAU examines the scenario where
there is no infection testing alongside 16 infection-testing
strategies, incorporating an antibody testing strategy. )e 16
infection-testing strategies depend on the following:

Decreasing infection-testing frequency after a positive
antibody test (YES if antibody testing is activated, and
NO otherwise; positive antibody tests are not possible
until at least four weeks after recovery)
Boosting infection-testing frequency for student-facing
staff (YES/NO)
Boosting infection-testing frequency for people with
health vulnerabilities (YES/NO)
Boosting infection-testing frequency for older people
on campus (YES/NO)

)ere is a delay in receiving infection test results, varying
from 24 to 72 hours. Both types of tests vary in cost with the
more expensive being more accurate, and there is an
economy of scale whereby testing more yields lower per-test
cost. TAU is supplied with a fixed number of tests of both
types per day, which yields a fixed cost for testing with a
specified cost uncertainty (important for universities

standing up internal testing facilities where costs are un-
certain). TAU is also supplied with measures of accuracy
(the likelihood of false positives and false negatives).

Analysis suggests that any testing regimen is far better than
none. For infection testing, the most important factor is the
number of tests per week, followed by boosting testing fre-
quency for high-contact nodes in the physical contact network.
Other testing options produce marginal returns by compari-
son. Figure 6 shows the situation in the artificial university after
120 days for six different testing configurations.)e horizontal
axis shows the average weekly testing frequency for student-
facing staff members, the vertical axis shows the number never
infected at the simulation end, and each curve shows the
number of tests per week.)e shape of these curves shows that
there is a trade-off between these two considerations such that
testing key people more often can be more cost-effective than
simply increasing the number of tests.

Figure 7 shows the situation in the artificial university
after 120 days for three different testing configurations. )e
horizontal axis shows the number of viral tests per day, the
vertical axis shows the number never infected, the color
indicates the testing frequency boost for student-facing
staff, and the shape indicates the delay in receiving testing
results (24 hours or 72 hours). Getting infection-test results
quickly (24 hours rather than 72 hours) makes a significant
difference.

3.6. Downstream Consequences of Traced Isolation. In the
event of an outbreak on campus, many people will be identified
through contact tracing but under most circumstances (as-
suming proper physical distancing protocols are followed), only
a fraction of those individuals will be infected. In some model
runs, up to one-third of students needed to self-isolate fol-
lowing contact tracing, despite not being infected.
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Figure 4: )e number of infections against the degree of compliance with physical-distancing requirements (including mask-wearing).
Note that the “number of infections” metric includes reinfections, so the score can exceed the number of people in the university (6,500).
Numerous runs are binned and the color indicates clustering of runs, with darker colors corresponding to a greater number of runs.
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)is finding suggests that universities instituting rig-
orous contact tracing and isolation procedures will have to
be ready for large numbers of students in isolation and will
need to prepare critical systems accordingly. )ese include
education about the need for self-isolation, food services,

emotional support for people in quarantine (COVID-19
research already shows emotional factors associated with
isolation and anxiety are critical for mental health, both
acutely and long-term) and infrastructure to facilitate on-
going classroom participation remotely.
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Figure 5: )e number of infections (or reinfections) against the factor of testing frequency increases for staff with student-facing jobs.
Numerous runs are binned and the color indicates clustering of runs, with darker colors corresponding to a greater number of runs.
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Figure 6: Health outcomes for six different testing configurations showing a trade-off between the weekly total number of tests and the
testing frequency for student-facing staff. In this figure, each curve is a line of fixed cost, illustrating that better health outcomes can be
achieved for lower cost, depending on how testing is performed.
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Such support systems can be expensive, especially in
personnel costs. )erefore, it is also important to keep in
mind that traced isolation does not imply infection and that
moving trace-flagged students to even more expensive
dedicated housing is probably not cost-effective until
symptoms appear or testing of self-isolated people shows an
infection, at which point people can be moved to avoid
spreading the virus through roommates and shared
bathrooms.

3.7. Comparing Metrics. Metrics used to assess policy suc-
cess reflect underlying values, which are critical human
factors in a pandemic. To show that metrics matter, we ran a
regression-subset analysis for the “minimize infections”
metric (Figure 2) and also for the “hybrid” metric that tracks
the difference between positive and negative outcomes
(described above). Some factors are similarly important for
both metrics:

High compliance with physical distancing
Hybrid (remote and in-person) classes

Other factors differ in importance:

Lengthening the history of contact tracing is more
important for the hybrid metric
Boosting frequency of infection testing for student-
facing staff is significantly more important on the
“minimize infections” metric

It follows that university administrators need to review
their values carefully and select the most relevant metrics for
their contexts in full awareness that alternative metrics
would likely yield different findings for intervention
effectiveness.

4. Discussion and Conclusion

Using TAU, we evaluate the possible effects of social dis-
tancing, contact tracing, testing, activity closures, dedensi-
fying strategies, and a variety of other interventions. TAU
shows that social-distancing requirements (including mask-
wearing) have the most significant effect on infections,
followed by central tracking and boosting testing frequency
for critical networks nodes, which include staff with in-
tensive student contact. However, high compliance is needed
for optimal effect. For social distancing, we see a tipping
point of effectiveness around a compliance rate of 60%,
showing the need to create “buy in” among students, staff,
and faculty, which calls for targeted publicity campaigns.

)e use of a variety of metrics allows us to take different
viewpoints into account, promoting amultivalue perspective
in which alternatives can be compared and side effects
identified. Suchmultivalue perspectives contest the tendency
to focus on one or two domains that capture immediate
attention, to the exclusion of others.

We would like to validate TAU against real-world data
from universities. Unfortunately, such datasets do not yet
exist, though TAU’s finding about the importance of
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Figure 7: Health outcomes for three testing configurations showing the relative importance of increasing testing frequency for student-
facing staff and decreasing the delay in getting test results. In this figure, each curve is a line of fixed cost, illustrating that better health
outcomes can be achieved for lower cost, depending on how testing is performed and how rapidly results are received and acted on.
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compliance has been amply confirmed by the fact that the
numerous university closures in September 2020 were di-
rectly attributable to compliance failures. )e New York
Times data on universities from September 2020 onwards
only report infections and test results and supply no data on
policies in place, or on compliance, so cannot be employed
to validate TAU.

It is worth thinking further about the role of compu-
tational simulations in the absence of the complete real-
world datasets needed for comprehensive validation. As
noted earlier, even without validation against relevant
university data, TAU’s architecture, from parameters to
processes, are themselves well grounded, so TAU is useful as
a way to think deeply into the problem of university
management under pandemic conditions, detecting critical
explanatory factors and tipping points for intervention ef-
fectiveness.)is point has beenmade in a series of important
publications, beginning with Troitzsch [4]. More recent
practical recommendations for validation can be found in
Davis et al. [5], which directly addresses the meaning of
simulations like TAU, which are well validated at the low
level of causal architecture but cannot be validated at the
high level for want of quantitative data of the right kinds.)e
same point is explored in depth by Saldanha et al. [6].

TAU has limits, which we think of as opportunities for
extension. For example, we aim to integrate TAU with
county-level data from the COVID-19 Health Care Coali-
tion’s dashboard (c19hcc.org) to introduce greater realism in
the way TAU handles the porousness of university campuses.
We would want to add real-time calibration against university
infection statistics. A formal cost-benefit analysis module and
an equity-and-justice metric are currently under development
for inclusion in the simulation. Additionally, enriching the
dashboard at http://mindandculture.org/projects/modeling-
social-systems/vivid/vivid-dashboard/ would simplify the
threefold process of configuring TAU, running analyses on
TAU-simulated data, and generating visualizations to help
communicate policies. )ere are also a few variations on
interventions already included that might prove useful for
some universities, such as more intensive contact tracing that
attempts to locate superspreaders. In June 2020, we released
TAU as an open-source product to allow others to make such
adjustments and thereby contribute to the project of helping
colleges and universities manage the pandemic.

Despite these limitations, TAU is already a powerful
decision support tool for universities. It demonstrates that
an artificial university—implemented as an agent-based
model using contact networks, integrating an epidemio-
logical model with sensitivity to human factors, and cali-
brated against publicly available data, following the
guidelines of Diallo et al. [7]—can generate valuable insights
into the challenge of operating universities under pandemic
conditions.

Data Availability

Adashboard interface for exploring TAU is available at http://
mindandculture.org/projects/modeling-social-systems/vivid/
vivid-dashboard/. )is site includes links to the model,

documentation, and data (see https://github.com/
centerformindandculture/)eArtificialUniversity).
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