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Risk management is a key factor for smart city running. There are many risk events in a strict process like transportation
management of a smart city or a medical surgery in a smart hospital, and every step may lead to one kind of risk or more. In view of
the fact that the occurrence of the flow risks follows the sequence formed by each process step, this paper presents a Bayesian
network under strict chain (BN_SC) to model this situation. In this model, the probabilistic reasoning formula is given according
to the sequence of process steps, and the probabilities given by the model can do risk factor analysis to support the system to find
an effective way to improve the process like machine manufacturing or a medical surgery. Finally, an example is analyzed based on
the information given by doctors according to the situation of LC in their hospital located in Sichuan Province of China, which

shows the effectiveness and rationality of the proposed BN_SC model.

1. Introduction

Machine learning has applications in various fields for smart
city running, such as machinery manufacturing, especially in
probability evaluation [1-3]. Bayesian learning as a machine
learning method can estimate the probabilities of risk oc-
currence like medical risk events in the medical process
[4-7]. One or more of which will lead to the occurrence of
other risk events, for example, in laparoscopic cholecys-
tectomy, trocar puncture may cause intestinal injury, which
often leads to infection.

In this kind of situation, the correlations of events can be
quantified in a Bayesian network [8, 9]. However, the oc-
currence of risk events connected with the medical process,
for example, LC must follow the surgical steps that construct
a strict chain for the Bayesian net to follow. Existing
quantitative research rarely studies on models for this special
feature. According to this situation, we present a Bayesian
network under strict chain (BN_SC) model for the first time.
In this model, the probabilistic reasoning formula according
to the sequence of surgical steps processes the logical

inference for the probability of each risk subjected to the
strict chain constructed by the surgical steps of LC. BN_SC
model can calculate the probabilities of risk flow more ef-
fectively than the traditional Bayesian network.

The remainder of the paper is organized as follows.
Section 2 will review the research about the Bayesian net-
work and we will illustrate the process of LC with a directed
acyclic graph in Section 3. In Section 4, the BN_SC model
will be proposed, including the logical inference of the risks
events and the formula to compute the probabilities of risks
in LC. Finally, an example is analyzed based on the infor-
mation given by doctors according to the situation of lap-
aroscopic cholecystectomy in their hospital, which shows the
effectiveness and rationality of the BN_SC in Section 5.

2. Related Works

Previous studies have comprehensively expounded the
concept and related properties of Bayesian networks. Tuyls
and Maes pointed out that a Bayesian network is a directed
acyclic graph, which consists of a set of random variables.
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The meaning from node X to node Y is that node X has a
direct influence on node Y [10]. The main feature of the
Bayesian network is that it shows the interdependent rela-
tionship between variables. Koller and Friedman et al.,
Meinshausen and Btihlmann, and Wainwright and Jordan
pointed out that the graph connected by undirected edges
between variables is an undirected graph known as Markov
network [11-13]. These graphs produce undirected graph
models, which are more suitable for analyzing the similarity
and related behavior between variables. Ghahramani,
Heckerman et al., and Neapolitan pointed out that a graph
connected by a directed edge of variables is a “directed
graph,” and a directed graph without a cycle is a “directed
acyclic graph” (DAG) [14-16]. Directed acyclic graphs are
usually based on the concept of family order. For example, in
A—>B—C, A is the parent node of B, Cis the child node of
B, A and B are the ancestors of C, and B and C are the
descendants of A. This ranking clearly expresses causality,
and these figures produce a class of models called Bayesian
networks. Andersson et al., Gillispie and Perlman, and Pearl
have pointed out that some directed acyclic graphs have two-
way edges, which are suitable for situations where some
variables interact with each other [17-19]. They represent a
class of Markov equivalent directed acyclic graphs.

Bayesian network is widely used in risk evaluation re-
search. Ronald et al. show that chains of events can lead to
increased or critical emissions of volatile organic com-
pounds by assessing risks based on the Bayesian network
[20]. Bhattacharjee applied a Bayesian model that can handle
death data analysis without stratifying in the presence of
competing risks [21]. Sanchez et al. develop a general
framework and a method to estimate the impact of project
management maturity on project performance by using
Bayesian networks to formalize project management ex-
perts’ knowledge [22]. Masmoudi et al. used a discrete
Bayesian network with a latent variable to model the pay-
ment default of loan subscribers [23]. Punyamurthula and
Badurdeen represented operational risks of production line
and their causal relationships based on Bayesian Belief
Networks [24].

3. Process of LC

Laparoscopic surgery is a new method of minimally invasive
surgery, which is the inevitable trend of the future devel-
opment of surgical methods. Cholecystectomy is one of the
most common abdominal operations, which is usually
performed in laparoscopic surgery in developed countries.
For example, 90% of cholecystectomy in the United States is
performed by laparoscopy. Laparoscopic cholecystectomy is
regarded as the “gold standard” for surgical treatment of
cholelithiasis [25, 26].

Laparoscopic cholecystectomy is divided into five steps,
which include trocar puncture (into the abdomen), sepa-
ration of adhesion, anatomy bile triangle, dissection of
gallbladder bed, and removal and suture of gallbladder. In
the surgery, intestinal injury may be caused by trocar
puncture, bile duct injury may be caused by separation of
adhesion, anatomy of bile triangle, and dissection of
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gallbladder, and vascular injury may be caused by removal
and suture of gallbladder. Moreover, the three kinds of
injuries may lead to infection and massive hemorrhage,
which can eventually lead to death. In order to describe the
risk probability in LC surgery more succinctly, Table 1 shows
the mathematical symbols in this paper.

According to analysis, we can get the directed acyclic
graph of LC operation as shown in Figure 1.

Figure 1 describes the specific process how the LC works.
We can build a special model by following the logic derived
from the strict chain. As shown in the figure, the risk of R,
happened in the process of Step 2. Moreover, the occurrence
of R, means the failure of Step 1, which means the surgery
cannot be performed and R, cannot occur. The five surgery
steps formed a chain above the Bayesian network of risks in
the surgery. The occurrence of each risk needs to follow the
order of the steps in the chain strictly. This changes the rule
of the traditional inference of Bayesian network. To solve the
problem, we present a new model in Section 4.

4. Bayesian Network under Strict
Chain (BN_SC)

According to the analysis in Section 2, we build a Bayesian
network to model the LC process. Different from the
traditional Bayesian network, in many medical proce-
dures, the risk Bayesian network is developed under the
surgical process such as the Bayesian network of LC
surgery in Section 2, and the surgical process is charac-
terized by the fact that the next step can only be taken after
the previous step surgical procedure is successful. So those
medical steps construct a strict process chain naturally
such as §; to S5 of LC, and more importantly, the Bayesian
network of surgery risks should follow the steps of the
chain model. According to this characteristic, this paper
proposes Bayesian network under strict chain model.
Under BN_SC model, if j=i+ 1, then surgical step j can
only begin after surgical Step i completes successfully. The
formula for calculating the probability of the risk oc-
currence of the event j is as follows:

P(S;) = ﬁP(Sl)P(Si). (1)

Here, P(D;) means the probability of the surgical Step i
completed successfully. This paper assumed that only when
the surgical Step i causes the risk i will lead to the unsuc-
cessful surgery, and some other unexpected factors such as
power outages are not under consideration. So, P(D;) and
P(R;) form complementary relationship, that i,
P(Rj) =1-P(D;). In laparoscopic surgery, the patient is
bound to have the first surgical step after entering the
procedure, so the first surgical step is bound to occur here,
that is, P(S;)=1.

Therefore, the probability of intestinal injury risk P (R;)
caused by the first surgical procedure can be represented as
follows:

P(R,) = P(R,|S,)P(S,) = P(R,]S,). (2)
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TaBLE 1: List of symbol notations and description.

Symbols Descriptions

S: Trocar puncture (into the abdomen) happened

S, Separation of adhesion happened

Ss Anatomy of bile triangle happened

Sa Dissection of gallbladder bed happened

Ss Removal and suture of gallbladder happened

D Trocar puncture (into the abdomen) has done
! successfully

D, Separation of adhesion has done successfully

D, Anatomy of bile triangle has done successfully

D, Dissection of gallbladder bed has done successfully

D Removal and suture of gallbladder has done
> successfully

R, Intestinal injury

R, Bile duct injury

Rs Vascular injury

R, Infection

Rs Massive hemorrhage

Rg Death

W, W,,W, Contribution ratio of R;,R,,R; to R,

W, Wi, W, Contribution ratio of R, R,,R; to R

Strict chain

FIGURE 1: Bayesian network under a strict chain.

The probability of bile duct injury risk P(R,) caused by
multiple surgical procedures S,, S;, and S, can be repre-
sented as follows:

P(R,) = P(R,|S,)P(S,) + P(R, | S5)P(S, ] S,)P(S,)+

P(R,|S,)P(S4]S5)P(S5]5,)P(S,)
=(1-P(D,))P(D,) + (1 - P(D;))P(D,)P(D,)+
(1-P(D,))P(D;)P(D,)P(Dy)
= P(D,)(1 - P(D,)P(D5)P(D,)).
(3)

Moreover, the probability of incision tear risk P (R;) can
be represented as follows:
P(R;) = P(Ry | $5)P(S5) @
= P(Rs |SS)P(D4)P(D3)P(D2)P(D1)-

According to the DAG of LC, three risks can lead to the
risk of infection R, and the risk of massive hemorrhage R;.
However, this conditional probability cannot be calculated
by statistics. It can only be quantitatively judged based on the
experience accumulated by doctors in completed cases. In
order to get this judgement value, two sets of comparison
matrices are given by doctors who are allowed to score 1-9.
The numbers 3, 5, 7, and 9 correspond to the verbal
judgments “moderately more dominant,” “strongly more
dominant,” “very strongly more dominant,” and “extremely
more dominant” (with 2, 4, 6, and 8 for compromise be-
tween the previous values). We are permitted to interpolate
values between the integers, if desired, or use numbers from
an actual ratio scale of measurement. This scale is mathe-
matically derived from stimulus-response theory and has
been extended through the use of structuring and decom-
position to assume arbitrarily large values as necessary.
Firstly, for risk R,, we use pairwise comparison to research
which risk R;,R,, R; is more likely to cause R,. After en-
tering scores given by doctors into matrix, the contribution
ratio of three kinds of risk R;, R,, R; to R, is obtained by
calculating the eigenvector, and the contribution ratio of
R, R,, R; can be represented as w,, w,, ws:

M Ry Ry Ry

R, w, (5)
R, R;; — | W

R, ws

By the same token, the contribution ratio of R;, R,, R; to
Rs can be represented as w,, ws, wg:

M Ry R, Ry

R, wy (©)
R, R;; — | Ws

Ry We

In addition, by comparing the risk of massive bleeding
and the risk of infection leading to death, the weight of risk
R,, R; can be obtained, which can be represented by C,, C;:

Rg| Ry Rs
=) 7
c, /)

RS

Then, the final weight C,,C;,C, of Ry, R,,R; can be
obtained by the following formula:

C, = Cow, + Cywy, (8)
C; = Cyw, + C,ws, 9)
C, = Cyw; + C wg. (10)

Based on the above formula, we can use
P(D,),P(D,),P(Ds),P(D,),P(Ds) to express the proba-
bility of death. According to the following formula, we



analyze the relations between each surgery step and death
risk:

P(Rs) = CyP(Ry) + C,P(Rs) = C,P(R,)

+C3P(R,) + C,P(Rs)

=C,(1-P(Dy)) + C5P(Dy) (1 - P(D,)P(D5)P (D))
+Cy(1 - P(D5))P(D,)P(D;)P(D,)P(Dy)

=C, +(C5 - C,)P(Dy) +(C, = C5)P(Dy)P
- (D,)P(D5)P (D)
= C,P(D,)P(D,)P(D;)P(D,)P(Ds).

(11)

5. Application: Validating Our BN_SC Model

To further illustrate the calculation process of proposed
method, we implement the BN_SC model to a hospital in
Sichuan Province of China. According to the existing lap-
aroscopic cholecystectomy records of surgical cases, the
hospital counted 1166 cases in the past year. The statistical
results demonstrate the success ratios of trocar puncture,
separation of adhesion, anatomy of bile triangle, dissection
of gallbladder bed, and removal and suture of gallbladder
were 0.990, 0.970, 0.873, 0.830, and 0.821. The probability of
intestinal injury is 0.010 according to formula (2), and the
probability of bile duct injury and vascular injury is 0.294
and 0.125 according to formula (3).

In addition, information about death, infection, and
massive bleeding involves the privacy of patients, so doctors
can only judge the relationship between them based on
experience instead of providing specific values. According to
the method given in Section 3, we asked the attending
physician of laparoscopic cholecystectomy operation to give
the subjective evaluation as follows:

Three surgical risk comparison matrices for infection are
described as follows:

R,| R R, R,
R, /1 1/6 1/4
(12)
R,[6 1 3
Ry \4 13 1

By finding the eigenvector of the matrix, the weight is
obtained:

w, = 0.09
w, =0.64 |. (13)
w; = 0.27

Three surgical risk comparison matrices for massive
hemorrhage are described as follows:

E Ry R, Ry
R 1 3 1/5
! (14)
Ry| 17131 1/7
R,\ 5 7 1
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By finding the eigenvector of the matrix, the weight is
obtained:

w, =0.19
ws =0.08 |. (15)
wg = 0.73

The surgical risk comparison matrices for death are
described as follows:
Rs| Ry Ry

R4<1 1/2) (16)
R \2 1)

By finding the eigenvector of the matrix, the weight is
obtained:

C, = 0.333,
(17)
C, = 0.666.
We can obtain C,, C;,C, by formulas (8)-(10):
C, =0.157,
C, = 0.267, (18)
C, = 0.576.

According to the analysis, the death risk of laparoscopic
cholecystectomy surgery in a hospital in Sichuan can be
obtained as follows:

P(Rg) = CyP(Ry) + C,P(Rs) = C,P(R,) + CsP(R,) + C,P (R;)
=G, +(C3 - G)P(Dy) +(Cy - C5)P(Dy)P
- (D;)P(D5)P (D)
- C4P(D,)P(D,)P(D;)P(D,)P(Ds)
=0.157x 0.010 + 0.267 x 0.294 + 0.576 x 0.125
=0.152.
(19)
The BN_SC model is more effective than the traditional
Bayesian model in reducing the computations of the particular
conditional probabilities, because some of the conditional
probabilities can be replaced by the probabilities of ex-step.
Sensitivity analysis for the quantitative relationships
between the success rates of each laparoscopic cholecys-

tectomy surgery step and the probability of death are as
follows from Figure 2 to Figure 11:

P(R4) = 0.157 - 0.005P (D,
P(Rq) = 0.266 — 0.117P (D,
P(Rg) = 0.266 — 0.130P (D,
P(Rg) = 0.266 — 0.137P (D),
P(R4) = 0.215 - 0.077P (D).

>

>

; (20)

~— ~— ~— —

Through the above experimental results, it can be ob-
served that the most effective way to reduce the risk of death
is to improve the success rate of dissection of gallbladder,
and the second is to improve the success rate of anatomical
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FIGURE 2: Sensitivity analysis of D, — D,
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FIGURE 3: Sensitivity analysis of D, — D;.
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FIGURE 5: Sensitivity analysis of D; — Ds.
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FIGURE 6: Sensitivity analysis of D, — D;.
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FIGURE 9: Sensitivity analysis of D; — D,
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FIGURE 11: Sensitivity analysis of D, — Ds.

bile triangle. In addition, the least efficient way to reduce the risk
of death is to improve the success rate of trocar puncture surgery.
These conclusions have certain guiding significance for the
improvement of laparoscopic surgery of a hospital in Sichuan.

6. Conclusion

As a crucial factor of running smart city, risk flow man-
agement need to calculate accurately. Our BN_SC model
modeled a special situation for risks flow in Bayesian net,
which logical inference has to follow a strict chain. This is to
describe surge process especially LC in this paper. The
BN_SC computed the probabilities of risks in LC by
Bayesian inference follow the particular process. Our model
is a special Bayesian model for the specific system, limiting to
the structure of the process, but can reduce computations in
the suitable situations by the formula we presented.

The application of the BN_SC has proved its rationality and
practicality. The method also has a way to combine the
judgments and data of several hospitals to representative group
judgments to deal with the weights of risks. Our model can be
applied in other probabilities inference problems that have a
strict chain to follow; for example, stock prices follow a timeline
or story events follow a plotline.
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