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We consider an optimal decision problem of the service providers in public mail service systems subject to virus attacks. Two
scenarios, i.e., free service systems and payment systems, are investigated in the paper. We first formulate the considered system as
a partially observable M/G/1 queue with Bernoulli vacations, and by the supplementary variable method, we obtain some
performance measures of the system. In the case of free service systems, the service provider aims to maximize the expected social
welfare. Correspondingly, we obtain a joint optimum value of scan rate and scan probability from the viewpoint of social welfare
maximization and carry out a sensitivity analysis of the joint optimum value on some input parameters. In the case of payment
systems, senders are assumed to be boundedly rational, and we obtain a three-dimensional (3D) optimal strategy by combining the
Stackelberg game approach and the logit choice model. Our results provide managerial insight and are helpful for service
providers to optimally select parameters of the system and make optimal pricing decisions in various situations.

1. Introduction

We consider an antivirus mail service system subject to virus
attacks. Senders send their e-mails to a mail service system
by mobile facilities such as mobile phones, laptops, or PADs.
+e system transmits these messages to the corresponding
recipients. To make the mail server work smoothly, the
manager of the system needs to scan virus at a certain rate.
Frequent scans will hamper the system performance,
whereas, if the scan rate is small, the system may be affected
by virus attacks. A so-called stochastic scan is proposed in
this paper, namely, after each service completion, the system
will perform a scan with a certain probability that is called
scan probability throughout the paper. A natural question is
whether the most appropriate rate exists to perform virus
scanning? In addition, the system’s security also depends on
the scan level. Compared with the deep scanning, rapid
scanning may not be able to detect the virus completely. To
capture the degree of scanning, a so-called scan rate, which is
an indicator reflecting the speed of the scan, is also proposed

in this paper. If the scan rate is large, the system will perform
a fast but a low-level scan. So, a second question is how to
determine the optimal scan rate if it does exist? +e above
two questions are both worthy of studying. In this paper, we
consider a public mail service system, in which the service
provider wants to maximize the social welfare. At the same
time, the service provider has to take into account the service
fees. Although a public mail service system is not profitable,
it is necessary to impose a certain service fee on each cus-
tomer for maintaining the systems. +is is a trade-off, and
the service provider has to balance the social welfare
maximization issue against the imposition of service fees.

In the literature, mail service systems usually are
modeled as various queueing systems. Liu and Wang [1]
modeled a mail service system using an M/M/1 queue with
Bernoulli vacations. +ey investigated customers’ equilib-
rium strategies under different levels of information of the
system. Zhu and Wang [2] extended the work of [1] by
assuming that the service time follows a general distribution.
+ey obtained the individually as well as the socially optimal
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decisions. In this paper, a mail service system subject to virus
attacks is considered as an almost unobservable M/G/1
queuing system with Bernoulli vacations, in which the in-
formation, about whether the system is busy (i.e., handling a
mail), is available to customers, but the number of mails
waiting for service in the system is not available. With this
setting, we study the performance measures of the system,
the optimal decisions, and the optimal pricing strategies.

In this paper, we focus on a public mail service system in
which the service provider wants to maximize the social
welfare by optimizing the scan rate and the scan probability.
In recent years, a large amount of literature studied the social
optimization problem of queueing systems. +e related
literature includes Economou and Kanta [3], Shi and Lian
[4], and Guo and Hassin [5] among others. In these studies,
several methods solving various queueing problems have
been widely adopted, including the generating function
method, the supplementary variable method, the pure
probability method, and the QBD method, as well as other
matrix analytic methods. Interested readers can refer to Gray
et al. [6], Mitrany and Avi-Itzhak [7], Economou andManou
[8], Caldentey and Wein [9], and Wang et al. [10], among
others. In this paper, we combine the supplementary vari-
able method and the partial generating function method to
obtain the performance measures of the mail service system
at first. Based on these characteristics, the optimal decisions
and the optimal pricing strategies are studies and
established.

In practice, it is hard for the service provider to operate
and maintain the service system taking into account only the
social welfare. +at is, the service provider needs to impose a
certain service fee on the customers: the social welfare and
the service fees both are necessary to run the system. Ob-
viously, there exists a trade-off between social welfare
maximization and profit maximization. At the same time, to
capture the limited cognitive ability of customers in eval-
uating some unknown measures such as wait time, we as-
sume that senders are boundedly rational in this paper (see,
for example, Huang et al. [11], Li et al. [12], and Li et al. [13]),
and we use the logit choice model to describe senders’
choices. By the logit choice model, a Stackelberg game is
formulated and used to obtain a 3D optimal decision in-
cluding the optimal scan rate, the scan probability, and the
optimal pricing. +e details about Stackelberg game can be
found in the work of Gibbons [14]. Interested readers can
refer to Li et al. [15], Do et al. [16], and Tran et al. [17] for the
Stackelberg game applications in different queueing systems.

To summarize, the main contributions of this paper are
listed as follows:

(i) We built a rather general model for mail service
systems subject to virus attacks. Our model gen-
eralizes the work of Zhu andWang [2], in which the
strategic sensitivity of users to different system state
information was ignored. We derive the partial
generating functions of the joint distribution of the
server state and the queue length and obtain the
formulas of some important performance measures
of mail service systems.

(ii) We provide two different models for free mail
service systems: basic social welfare model and
extended social welfare model. +e joint optimum
value of scan rate and scan probability is obtained
for the first time from the perspective of social
welfare maximization.

(iii) For payment systems, service providers face a di-
lemma between profit maximization and social
welfare maximization. We propose a queueing
system with boundedly rational customers to
characterize the payment systems and then discuss
the optimal decision and pricing by combining the
Stackelberg game and the logit choice model. To the
best of our knowledge, a model that combines a
queueing system with boundedly rational cus-
tomers, the Stackelberg game, and the logit choice
model is not considered in the literature.

+e paper is organized as follows. In Section 2, we de-
scribe the mathematical model of public mail service sys-
tems. Section 3 derives the partial generating functions of the
joint distribution of the server state and queue length and
then obtains performance measures. In Section 4, we study
the optimum values of scan rate and scan probability in the
case of free service, and we explore the sensitivity of the
optimums on some parameters. Section 5 considers the case
that each served sender needs to pay a certain service fee, and
we obtain 3D optimal strategy. Finally, conclusions are given
in Section 6.

2. Model Description

We consider a mail service system subject to virus attacks, in
which senders’ mails randomly arrive in the system and are
served by the mail server according to the order of arrivals.
We assume that mails’ arrivals follow a Poisson process. +e
service time, which is the period beginning when a mail
arrives in the system and ending when the mail is completely
transmitted, is assumed to be independent and identically
distributed with probability distribution function B(·),
probability density function b(x), and finite first two mo-
ments: βk, k � 1, 2. Let c(x) � b(x)/(1 − B(x)) be the ser-
vice completion rate function. Upon completion of a mail
service, the server begins a scan with p or serves the next
sender’s mail with 1 − p, where p is called the scan prob-
ability. +e bigger the value of p is, the higher the frequency
of scans is. We assume that the level of each scan is sto-
chastic, and its scan time follows an exponential distribution
with scan rate θ. Just as stated in Section 1, the scan rate can
reflect the scan level. For example, if θ is very big, the scan
will be completed at a rapid rate (i.e., the so-called fast scan),
but it is unwary. +e viruses may not have been fully de-
tected. After completing a scan, the mail server will im-
mediately serve the first mail waiting in the queue if there are
other mails waiting for service in the system; otherwise, the
server will perform another scan. Arrival process, service
process, and scan process are mutually independent.
According to the above statement, we can use an almost
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unobservable M/G/1 queueing system with Bernoulli va-
cations to model our proposed model.

+e difference between our model and Zhu and Wang
[2] lies in the fact that the information about the queue
length and the state of the server (i.e., handling mails,
virus scanning, or idle) is ignored in the latter. +erefore,
the mails’ arrival rate is a constant in [2], regardless of
whether the server is busy, idle, or is performing virus
scanning. Evidently, this paper takes into account the
sensitivity of users to different system state information.
In this paper, we assume that the system is almost un-
observable, namely, the state is observable, but the queue
length is invisible. In this setting, it is a natural as-
sumption that mails’ arrival intensity is different under
different system state information, which reflects users’
sensitivity to different levels of information. We assume
that mails’ arrivals follow a Poisson process with intensity
λ0 if the server is performing virus scanning or idle, while
mails’ arrivals follow a Poisson process with intensity λ1 if
the server is handling a mail. +ese assumptions imply
that users will adopt different joining strategies when
facing different system states. Obviously, it is more natural
and reasonable. In addition, if λ0 and λ1 are set to the same
value λ (i.e., λ0 � λ1 � λ), our model will degenerate to [2].
Our objective is to explore the optimal decision and
pricing strategy in the mail service system subject to virus
attacks. If the mail service operates correctly, we will
derive the joint optimum value of the scan rate and the
scan probability from the perspective of maximizing the
expected social welfare. For the case of levying service fees,
we assume that senders are boundedly rational and obtain
the optimal decision and pricing strategy of the service
provider based on the logit choice model and the
Stackelberg game.

3. Performance Measures

In this section, we consider performance measures of the
mail service system under the condition that the system is
stable.

Let N(t) be the number of mails in the system at time t
and X(t) be the elapsed service time of the serving mail at
time t. I(t) denotes the state of the server, where

I(t) �
0, the server is performing virus scanning or idle,

1, the server is handling amail.
􏼨

(1)

+e stochastic process (I(t), N(t), X(t)), t≥ 0{ } is a
Markovian process with the state space

Ω � (0, 0), (0, j), (1, j, x) x≥ 0, j ∈ Z+
􏼌􏼌􏼌􏼌􏽮 􏽯. (2)

Here, the state (0, 0) denotes that the system is idle; (0, j)

means that the system is performing a scan and j mails are
waiting for services; (1, j, x) denotes that there are jmails in
the system, one of which is being served, and the elapsed
service time of the serving mail is x. Figure 1 shows the
transition rate diagram in the mail service system. For
convenience of narration, we can also divide the state of the
server into three categories, that is,

I(t) �

idle, the server is idle,

busy, the server is handling amail,

under scan, the server is performing virus scanning.

⎧⎪⎪⎨

⎪⎪⎩

(3)

Let Pn(t, x)dx be the joint probability that, at time t, there
are nmails in the system and amail is being servedwith elapsed
service time between x and x + dx, namely, Pn(t, x)dx≜
Pr(I(t) � 1, N(t) � n, x≤X(t)< x + dx). Qn(t) denotes the
probability that, at time t, the server is performing virus
scanning and there are n customers in the system, i.e.,
Qn(t)≜Pr(I(t) � 0, N(t) � n). In this paper, we consider the
case that the system is stable. In this situation, limt⟶∞Qn(t)

and limt⟶∞Qn(t, x) both exist. Let Qn � limt⟶∞Qn(t) and
Pn(x) � limt⟶∞Qn(t, x). By considering transitions of the
process between time t and t + Δt and letting Δt⟶ 0 and
t⟶∞, we have

d

dx
+ λ1 + c(x)􏼢 􏼣P1(x) � 0,

λ0Q0 � 􏽚
∞

0
P1(x)c(x)dx,

d

dx
+ λ1 + c(x)􏼢 􏼣Pn(x) � λ1Pn− 1(x), n � 2, 3, . . . ,

λ0 + θ( 􏼁Qn � 􏽚
∞

0
Pn+1(x)c(x)pdx + λ0Qn− 1, n � 1, 2, . . . ,

Pn(0) � θQn + 􏽚
∞

0
Pn+1(x)c(x)(1 − p)dx, n � 1, 2, . . . ,

􏽘

∞

n�0
Qn + 􏽘

∞

n�1
􏽚
∞

0
Pn(x)dx � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where the last equation in (4) can be obtained from the
normalizing equation. Let Q(z) � 􏽐

∞
n�0 Qnzn, P(z, x) �

􏽐
∞
n�1 Pn(x)zn, |z|≤ 1, and P(z) � 􏽒

∞
0 P(z, x)dx. After some

derivations, (4) can be rewritten as
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d
dx

+ λ1 + c(x)􏼢 􏼣P(z, x) � λ1zP(z, x),

λ0 + θ( 􏼁 Q(z) − Q0( 􏼁 �
1
z

􏽚
∞

0
c(x)p P(z, x) − P1(x)z( 􏼁dx + λ0zQ(z),

P(z, 0) � θQ(z) − θQ0 +
1
z

􏽚
∞

0
c(x)(1 − p) P(z, x) − P1(x)z( 􏼁dx.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Solving (5), we obtain

Q0 �
θ 1 − λ1β1( 􏼁 − λ0p

θ + λ0(1 − p)􏼂 􏼃 1 + λ0β1 − λ1β1􏼂 􏼃
, (6)

Q(z) �
θ 1 − λ1β1( 􏼁 − λ0p􏼂 􏼃 B∗ λ1(1 − z)( 􏼁 − z􏼂 􏼃

1 + λ0β1 − λ1β1􏼂 􏼃 θ B∗ λ1(1 − z)( 􏼁 − z( 􏼁 − λ0(1 − z) z − (1 − p)B∗ λ1(1 − z)( 􏼁( 􏼁􏼂 􏼃
, (7)

P(z, x) �
ze− λ1(1− z)xB(x)

z − (1 − p)B∗ λ1(1 − z)( 􏼁
θQ(z) −

θ 1 − λ1β1( 􏼁 − λ0p
1 + λ0β1 − λ1β1

􏼢 􏼣, (8)

where B∗(s) is the Laplace–Stieltjes transform (LST) of
B(x), and B(x) � 1 − B(x). From (8), we get

P(z) � 􏽚
∞

0
P(z, x)dx �

z 1 − B∗ λ1(1 − z)( 􏼁􏼂 􏼃 θQ(z) − θ 1 − λ1β1( 􏼁 − λ0p/1 + λ0β1 − λ1β1( 􏼁􏼂 􏼃

λ1(1 − z) z − (1 − p)B∗ λ1(1 − z)( 􏼁􏼂 􏼃
. (9)

Actually, Q(z), P(z) are the partial generating functions of
the joint distribution of the server state and the queue length.
+e above results are summarized in the following theorem.

Theorem 1. For a mail service system, the partial generating
functions of the joint distribution of the server state and the
queue length can be computed from

Q(z) �
κ1 B∗ λ1(1 − z)( 􏼁 − z􏼂 􏼃

κ2 θ B∗ λ1(1 − z)( 􏼁 − z( 􏼁 − λ0(1 − z) z − (1 − p)B∗ λ1(1 − z)( 􏼁( 􏼁􏼂 􏼃
,

P(z) �
z 1 − B∗ λ1(1 − z)( 􏼁􏼂 􏼃 θQ(z) − κ1/κ2( 􏼁􏼂 􏼃

λ1(1 − z) z − (1 − p)B∗ λ1(1 − z)( 􏼁􏼂 􏼃
,

(10)

(1, 1, x)

pγ(x)

λ1
(1, 2, x)

pγ(x)

λ1

(1 – p)γ(x)
(1, 3, x)

pγ(x)

λ1

(1 – p)γ(x)

λ1

(1 – p)γ(x)
(1, n, x)

pγ(x)

λ1

(1 – p)γ(x) (1 – p)γ(x)

(0, 0)
λ0 (0, 1)

λ0 (0, 2)
λ0 (0, 3)

λ0 λ0 (0, n)
λ0 ……

… …

θ θθθ

Figure 1: Transition rate diagram in the mail service system.
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where κ1 � θ(1 − λ1β1) − λ0p and κ2 � 1 + λ0β1 − λ1β1.
Let Πi, i � 0, s, b, respectively, be the probabilities that the

server is idle, scanning, and busy. According to +eorem 1, we
can obtain the probabilities that the server is in different states.

Theorem 2. In the steady-state situation, the following re-
sults hold:

(a) 8e probability that the server is idle, Π0, can be
obtained from

Π0 �
θ 1 − λ1β1( 􏼁 − λ0p

θ + λ0(1 − p)􏼂 􏼃 1 + λ0β1 − λ1β1􏼂 􏼃
. (11)

(b) 8e probability that the server is busy is

Πb �
λ0β1

1 + λ0β1 − λ1β1
. (12)

(c) 8e probability that the server is performing virus
scanning can be computed from

Πs �
λ0 1 − (1 − p)λ1β1􏼂 􏼃

θ + λ0(1 − p)􏼂 􏼃 1 + λ0β1 − λ1β1􏼂 􏼃
. (13)

Proof.

(a) +e probability that the server is idle
Π0 � limt⟶∞Pr(I(t) � 0, N(t) � 0) � Q0. From
(6), we immediately get (11).

(b) +e probability that the server is busy can be written as

Πb � lim
t⟶∞

􏽘

∞

n�1
􏽚
∞

0
Pr(I(t) � 1, N(t) � n, X(t) � x)dx

� 􏽚
∞

0
􏽘

∞

n�1
lim

t⟶∞
Pn(t, x)dx

� 􏽘
∞

n�1
􏽚
∞

0
Pn(x)dx

� 􏽘
∞

n�1
Pn

� P(1).

(14)

Let h(z) � z[1 − B∗(λ1(1 − z))][θQ(z) − (κ1/κ2)] and
v(z) � λ1(1 − z)[z − (1 − p)B∗(λ1(1 − z))]. Accord-
ing to +eorem 1, we have Π1 � limz↑1(h(z)/v(z)).
Since h(1) � v(1) � 0, we can compute Πb by L’Ho-
spital rule, namely,

Πb � lim
z↑1

h′(z)

v′(z)
, (15)

where

h′(z) � 1 − B
∗ λ1(1 − z)( 􏼁􏼂 􏼃 θQ(z) −

κ1
κ2

􏼢 􏼣

+ zλ1 θQ(z) −
κ1
κ2

􏼢 􏼣B
∗′ λ1(1 − z)( 􏼁

+ z 1 − B
∗ λ1(1 − z)( 􏼁􏼂 􏼃θQ′(z),

(16)

v′(z) � − λ1 z − (1 − p)B
∗ λ1(1 − z)( 􏼁 + λ1(1 − z)1􏼂

+(1 − p)λ1B
∗′ λ1(1 − z)( 􏼁􏽩.

(17)

+rough simple computations, we obtain (12).
(c) +e probability that the server is performing virus

scanning equals one minus the probability that the
server is busy or idle, that is,Πs � 1 − Π0 − Πb. +en,
we obtain (13). +is completes the proof. □

Theorem 3. 8e mail service system is stable if and only if
Γ(λ0, λ1, θ, p)≜ (θ(1 − λ1β1) − λ0p)(1 + λ0β1 − λ1β1)> 0.

Proof. +e system is stable if and only if the number of mails
in the mail service system does not trend infinite as t⟶∞.
In other words, the system is stable if and only if the
probability that the system has no mail waiting for service is
positive. According to +eorem 2 (a), Π0 > 0 if and only if
(θ(1 − λ1β1) − λ0p)(1 + λ0β1 − λ1β1)> 0 since
θ + λ0(1 − p)> 0. +en, we get +eorem 3. +is completes
the proof. □

Remark 1. If λ0 � λ1, the mail service system is stable if and
only if θ(1 − λβ1) − λp> 0. +is result is the same as +e-
orem 4.1 of Zhu and Wang [2], which is a special case of
+eorem 3 present in this paper.

Now, we explore the expected queue length of mails
waiting in the system and the expected waiting time of an
arriving sender. La(λ0, λ1, β1, β2, θ, p) is assumed to be the
expected queue length of the mail service system.

Theorem 4. Under the condition that the system is stable, the
expected queue length of mails waiting in the system can be
given by

La λ0, λ1, β1, β2, θ, p( 􏼁 �
ω1 + ω2

ω3
, (18)

where ω1 � λ0(2 + 2β1(θ + (1 − p)λ0 − (2 − p)λ1), ω2 �

− 2λ1β
2
1(θ + (1 − p)λ0 − (1 − p)λ1) + β2λ1(θ − λ0p + λ1p),

and ω3 � 2(1 + λ0β1 − λ1β1)(θ(1 − λ1β1) − λ0p).

Proof. According to the definitions of Pn(x) and Qn, we can
compute the expected queue length of the system from
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La λ0, λ1, β1, β2, θ, p( 􏼁 � 􏽘
∞

n�0
􏽚
∞

0
nPn(x)dx + 􏽘

∞

n�0
nQn

� 􏽚
∞

0

zP(z, x)

zz

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�1
dx +

dQ(z)

dz

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�1
� P′(1) + Q′(1).

(19)

Let f(z) � κ1[B∗(λ1(1 − z)) − z] and g(z) � κ2[θ(B∗

(λ1(1 − z)) − z) − λ0(1 − z)(z − (1 − p)B∗ (λ1(1 − z)))];
thus, Q(z) � f(z)/g(z) and

Q′(1) � lim
z⟶1

Q′(z) � lim
z⟶1

f′(z)g(z) − f(z)g′(z)

(g(z))2
,

(20)

where

f′(z) � κ1 − λ1
dB∗ λ1(1 − z)( 􏼁

dz
− 1􏼠 􏼡, (21)

g′(z) � κ2 θ − λ1
dB∗ λ1(1 − z)( 􏼁

dz
− 1􏼠 􏼡􏼢

+ λ0 z − (1 − p)B
∗ λ1(1 − z)( 􏼁( 􏼁

− λ0(1 − z) 1 + λ1(1 − p)
dB∗ λ1(1 − z)( 􏼁

dz
􏼠 􏼡􏼣.

(22)

Since f(1) � g(1) � 0, the above equation can be
computed by L’Hospital rule:

Q′(1) � lim
z⟶1

f″(z)g(z) − f(z)g″(z)

2g(z)g′(z)

� lim
z⟶1

f‴(z)g(z) + f″(z)g′(z) − f′(z)g″(z) − f(z)g‴(z)

2 g′(z)( 􏼁
2

+ 2g(z)g″(z)
,

(23)

where f′(z) andg′(z) can be determined in (21) and (22),
respectively, f″(z) � κ1λ

2
1(d

2B∗(λ1(1 − z))/dz2), and

g″(z) � κ2 θλ21
d2B∗ λ1(1 − z)( 􏼁

dz2􏼢

+ 2λ0 1 + λ1(1 − p)
dB∗ λ1(1 − z)( 􏼁

dz
􏼠 􏼡

+ λ0(1 − z)λ21(1 − p)
d2B∗ λ1(1 − z)( 􏼁

dz2 􏼣.

(24)

From (3), we have

Q′(1) �
f″(1)g′(1) − f′(1)g″(1)

2 g′(1)( 􏼁
2 , (25)

where f′(1) � κ1(λ1β1 − 1), g′(1) � κ2[θ(λ1β1 − 1) + λ0p],
f″(1) � κ1λ

2
1β2, and g″(1) � κ2[θλ

2
1β2 + 2λ0(1 − λ1(1 −

p)β1)]. After some deviations, we get

Q′(1) �
κ1λ

2
1β2κ2 θ λ1β1 − 1( 􏼁 + λ0p􏼂 􏼃 − κ1 λ1β1 − 1( 􏼁κ2 θλ21β2 + 2λ0 1 − λ1(1 − p)β1( 􏼁􏽨 􏽩

2 κ2 θ λ1β1 − 1( 􏼁 + λ0p􏼂 􏼃( 􏼁
2

�
λ0 2 + 2(p − 2)λ1β1 + 2(1 − p)λ21β

2
1 − pλ21β2􏼐 􏼑

2 1 + λ0β1 − λ1β1( 􏼁 θ 1 − λ1β1( 􏼁 − λ0p( 􏼁
.

(26)

Now, we compute P′(1). Let h(z) � z[1 − B∗(λ1(1 −

z))][θQ(z) − (κ1/κ2)] and v(z) � λ1(1 − z)[z − (1 − p)B∗

(λ1(1 − z))].

P′(1) � lim
z⟶1

P′(z) � lim
z⟶1

h″(z)v(z) − h(z)v″(z)

2v(z)v′(z)

� lim
z⟶1

h‴(z)v(z) + h″(z)v′(z) − h′(z)v″(z) − h(z)v‴(z)

2 v′(z)( 􏼁
2

+ 2v(z)v″(z)
,

(27)
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where h′(z) and v′(z) can be determined by (16) and (17),
respectively, and the second-order derivatives of h(z) and
v(z) can be written as

h″(z) � λ1B
∗′ λ1(1 − z)( 􏼁 θQ(z) −

κ1
κ2

􏼠 􏼡􏼢 􏼣 + 1 − B
∗ λ1(1 − z)( 􏼁􏼂 􏼃θQ′(z)

+ λ1 θQ(z) −
κ1
κ2

􏼠 􏼡􏼢 􏼣B
∗′ λ1(1 − z)( 􏼁 + zλ1θQ′(z)B

∗′ λ1(1 − z)( 􏼁

− zλ21 θQ(z) −
κ1
κ2

􏼠 􏼡􏼢 􏼣B
∗″ λ1(1 − z)( 􏼁 + 1 − B

∗ λ1(1 − z)( 􏼁􏼂 􏼃θQ′(z)

+ zλ1B
∗′ λ1(1 − z)( 􏼁θQ′(z) + z 1 − B

∗ λ1(1 − z)( 􏼁􏼂 􏼃θQ″(z),

(28)

v″(z) � − λ1 1 +(1 − p)λ1B
∗′ λ1(1 − z)( 􏼁􏽨 􏽩 − λ1 1 +(1 − p)λ1B

∗′ λ1(1 − z)( 􏼁􏽨 􏽩

− λ31(1 − z)(1 − p)B
∗″ λ1(1 − z)( 􏼁􏼕.

(29)

From (27)–(29), we have

P′(1) �
λ0 2β1 θ +(1 − p)λ0( 􏼁 − 2λ1β

2
1 θ +(1 − p)λ0( 􏼁 + λ1β2 θ − λ0p( 􏼁􏼐 􏼑

2 1 + λ0β1 − λ1β1( 􏼁 θ 1 − λ1β1( 􏼁 − λ0p( 􏼁
. (30)

Substituting (26) and (30) into (19) yields (18). +is
completes the proof. □

Remark 2. Our model degenerates to Zhu and Wang [2] if
λ0 � λ1.We can obtain the related performancemeasures in the
work of Zhu andWang [2] by replacing λ1 and λ2 in our model
with λ. For example, we can obtain the expected queue length of
mails in the systemby replacing λ1 and λ2 in (18)with λ, namely,

La λ, λ, β1, β2, θ, p( 􏼁 � λβ1 +
λ2 θβ2 − 2(1 − p)β1􏼂 􏼃 + 2λ

2 θ 1 − λβ1( 􏼁 − λp􏼂 􏼃
,

(31)

which is consistent with equation (44) in Zhu andWang [2].
We assume that L(λ0, λ1, β1, β2, θ, p | I) is the expected

queue length of mails in the system under the condition that
the server is performing virus scanning or idle, and L(λ0, λ1,
β1, β2, θ, p | B) denotes the expected queue length under the
condition that the system is busy. L(λ0, λ1, β1, β2, θ, p | I) and
L(λ0, λ1, β1, β2, θ, p | B) can be, respectively, computed from

L λ0, λ1, β1, β2, θ, p | I( 􏼁 �
􏽐
∞
n�0 nQn

Π0 +Πs

�
Q′(1)

Π0 + Πs

,

L λ0, λ1, β1, β2, θ, p | B( 􏼁 �
􏽒
∞
0 􏽐
∞
n�1 nPn(x)dx

Πb

�
􏽒
∞
0 z 􏽐

∞
n�1 Pn(x)zn( 􏼁/zz( 􏼁

􏼌􏼌􏼌􏼌z�1dx

Πb

�
z 􏽒
∞
0 􏽐
∞
n�1 Pn(x)zndx/zz􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌z�1
Πb

�
P′(1)

Πb

,

(32)

where Π0,Πb,Πs, Q′(1), andP′(1) can be determined by
(11), (12), (13), (26), and (30), respectively.

Let W(λ0, λ1, β1, β2, θ, p | I) be the expected waiting time
of an arriving sender under the condition that the server is
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performing virus scanning or idle upon arrival.
W(λ0, λ1, β1, β2, θ, p | B) is assumed to be the expected

waiting time of an arriving sender under the condition that
the system is busy upon arrival. By Little’s formula, we have

W λ0, λ1, β1, β2, θ, p | I( 􏼁 �
L λ0, λ1, β1, β2, θ, p | I( 􏼁

λ0
�

Q′(1)

λ0 Π0 + Πs( 􏼁

�
2 − 2(2 − p)λ1β1 + 2(1 − p)λ21β

2
1 + λ21β2p

2 1 − λ1β1( 􏼁 θ 1 − λ1β1( 􏼁 − λ0p( 􏼁
,

W λ0, λ1, β1, β2, θ, p | B( 􏼁 �
L λ0, λ1, β1, β2, θ, p | B( 􏼁

λ1
�

P′(1)

λ1Πb

�
2β1 θ + λ0(1 − p)( 􏼁 − 2λ1β

2
1 θ + λ0(1 − p)( 􏼁 − λ1β2 λ0p − θ( 􏼁

2λ1β1 θ 1 − λ1β1( 􏼁 − λ0p( 􏼁
.

(33)

+e above performance measures of the system provide a
basis for exploring the optimal decision of the service provider.
In the sequel, we will consider two cases according to whether
to impose a certain service fee on each customer, respectively.

4. Free for Services: 2D Optimal Decision

In this section, we consider the optimal decision problem of
the service provider in the case of free service. All potential
senders are assumed to prefer to enter the system for services
since the services are free. Our proposed system is the public
mail service system like themail service system for education
departments, so the objective of the service provider is to
maximize the expected social welfare. We first give two
models of social welfare: basic social welfare model and
extended social welfare model, where only the second model
takes into account the energy assumption.

(i) Basic Social Welfare Model. +e social welfare is
assumed to be the expected total net benefit of
senders minus the expected lost due to virus attacks

(ii) Extended Social Welfare Model. +e social welfare is
customers’ expected total net benefit minus the
expected lost due to virus attacks and the expected
energy consumption of the mail service system

Compared with the basic social welfare model, the ex-
tended model takes into account the effect of the energy
consumption on the social welfare. We assume that C0
denotes the waiting cost per time unit under the condition
that the server is performing virus scanning or idle, and C1 is
the waiting cost per time unit under the condition that the
system is busy. Note that regardless of whether the server is
performing virus scanning or idle, the waiting cost per time
unit is consistent. It is because an arriving sender cannot
distinguish the system whether it is in the scanning state or
the idle state. +e waiting cost per time unit depends on the
server state observed by the senders. In different states, the
waiting costs per time unit are different. +is assumption is
based on the result of Maister [18], who considered the
psychology of waiting lines and believed that the

psychological state of anxiety results in higher waiting cost.
Let UB(θ, p), UE(θ, p), respectively, be the expected social
welfares in the basic and extended social welfare models.

When the server is performing virus scanning or idle, the
expected waiting time of an arriving mail is W(λ0, λ1, β1,
β2, θ, p | I). After completing the service of the mail, the sender
receives the reward of R, which reflects the satisfactory degree of
the served sender. +us, in this situation, the expected net
benefit equals R − C0W(λ0, λ1, β1, β2, θ, p | I). When the sys-
tem is busy, the expected waiting time of an arriving mail is
W(λ0, λ1, β1, β2, θ, p | B), and then the expected net benefit is
R − C1W(λ0, λ1, β1, β2, θ, p | B). According to +eorem 2, the
probability that the server is performing virus scanning or idle is
Π0 + Πs, and the probability that the system is busy isΠb.+en,
the effective arrival rate of mails is λ0(Π0 + Πs) if the server is
performing virus scanning or idle, and the effective arrival rate is
λ1Πb if busy.+e expected loss due to virus attacks depends on
the scan probability and the scan rate. In practice, the loss
increases with the scan rate and decreases with the scan
probability. We construct a mathematical expression C2p

− cθδ
tomodel the loss, whereC2, c, and δ can be obtained by statistic
inference.+erefore, the expected social welfare under the basic
social welfare model can be computed from
UB(θ, p) � λ0 Π0 + Πs( 􏼁 R − C0W λ0, λ1, β1, β2, θ, p | I( 􏼁􏼂 􏼃

+ λ1Πb R − C1W λ0, λ1, β1, β2, θ, p | B( 􏼁􏼂 􏼃 − C2p
− cθδ.

(34)

Let C3, C4, andC5, respectively, be the costs of energy
consumption per time unit when the server is idle, scanning,
and busy. +en, the expected social welfare under the ex-
tended social welfare model UE(θ, p) can be written as

UE(θ, p) � λ0 Π0 + Πs( 􏼁 R − C0W λ0, λ1, β1, β2, θ, p | I( 􏼁􏼂 􏼃

+ λ1Πb R − C1W λ0, λ1, β1, β2, θ, p | B( 􏼁􏼂 􏼃

− C2p
− cθδ − C3Π0 − C4Πs − C5Πb.

(35)

Now, we explore the optimal scan rate/scan probability
to maximize the expected social welfare. +e scan rate θ (or
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scan probability p) is a unique optimization variable if all
other parameters are given. Let θ∗B|p and θ∗E|p, respectively, be
the optimal scan rates for fixed p under the basic and ex-
tended models. p∗B|θ and p∗E|θ are, respectively, assumed to be
the optimal scan probabilities for fixed θ under the basic and
extended models. +us, the optimal solutions can be ob-
tained from

θ ∗i|p � argmax
θ

Ui(θ, p)
􏼌􏼌􏼌􏼌 θ≥ 0, Γ λ0, λ1, θ, p( 􏼁> 0􏽮 􏽯,

p
∗
i|θ � argmax

p
Ui(θ, p)

􏼌􏼌􏼌􏼌 0≤p≤ 1, Γ λ0, λ1, θ, p( 􏼁> 0􏽮 􏽯,

(36)

where i � B, E. Figures 2(a) and 2(b) show that the expected
social welfare UB(θ, p) is concave in the scan rate θ for fixed
p, and it is concave in the scan probability p for fixed θ.
+erefore, the optimal scan rate/scan probability exists and
is unique. Similarly, Figure 3(a) shows that the expected
social welfare UE(θ, p) is concave in θ. It can also be found
that UE(θ, p) is concave in p from Figure 3(b). +erefore,
there exists a unique optimal solution of θ (or p) for a given
scan probability p (or scan rate θ).

However, in real-life situation, the scan rate and the
scan probability both are determined by the manager of
the mail service system. Hence, a joint optimum value of
the scan probability and the scan rate needs to be ex-
plored. We summarize our optimization problem as
follows:

max
p,θ

Ui(θ, p)

s.t.

0≤p≤ 1,

θ≥ 0,

Γ λ0, λ1, θ, p( 􏼁> 0,

(37)

where i � B, E. In the above optimization problem, (θ, p) is a
two-dimensional (2D) decision variable. Let (θ∗B , p∗B ) and
(θ∗E , p∗E ), respectively, be the joint optimums of the scan
probability and the scan rate under the basic and extended
models. +us, these 2D optimal solutions can be computed
from

θ∗i , p
∗
i( 􏼁 � argmax

θ,p
Ui(θ, p)

􏼌􏼌􏼌􏼌 0≤p≤ 1, θ􏽮

≥ 0, Γ λ0, λ1, θ, p( 􏼁> 0􏼉,

(38)

where i � B, E. +e solutions of our proposed optimal
problems can be obtained by Matlab or Mathematica.
Figures 4(a) and 4(b) show the relationship among the ex-
pected welfare Ui(θ, p), the scan probability p, and the scan
rate θ for R � 5, C0 � 0.2, C1 � 0.3, C2 � 0.1, λ0 � 0.5, λ1 �

0.6, β1 � 0.8, β2 � 0.4, c � 0.5, and δ � 0.8. From Figure 4(a)
and Table 1, we find that the expected social welfare under the
basic social welfaremodel is jointly concave in the scan rate and
the scan probability via numerical analysis; thus, we can obtain
a unique joint optimum value. Observing Table 1, the joint
optimum value of the scan probability and the scan rate
(θ∗B , p∗B ) � (2.6, 0.8), and the corresponding expected social
welfare is 2.17944. Similar to the basic social welfare model, in

the extended model, a unique joint optimum value can also be
obtained by numerical analysis. From Table 2, UE(θ, p) is
maximized as (θ∗E , p∗E ) � (3.2, 1), so the optimal decision of
the manager is to implement a virus scanning at scan rate θ �

3.2 after each service completion.
Now, we explore the sensitivities of the joint optimum

value on λ0, λ1, β1, β2, C0, C1, and C2, respectively. We only
consider the case of the basic social welfare model. Similar
analysis is also suitable for the extended model. Figure 5(a)
shows that the optimal scan rate θ∗B is increasing in λ0, and the
optimal scan probability p∗B decreases with λ0 for R � 5, C0 �

0.2, C1 � 0.3, C2 � 0.1, λ1 � 0.6, β1 � 0.8, β2 � 0.4, c � 0.5,

and δ � 0.8.+e scan rate embodies the speed when each scan
is implemented, and it reflects the level of scan. Big scan rate
means the scan level is low, i.e., the system has implemented a
fast scan. In addition, the scan probability denotes the prob-
ability that the mail system has implemented a scan after a
service completion, so it embodies the frequency of scans.
Figure 5(a) implies that the manager of the system should
implement fast scans and reduce scanning frequency as λ0
grows. Figures 5(b)–5(d) show the optimal scan rate θ ∗B and the
optimal scan probability p∗B both are decreasing in
λ1, β1, and β2.+is implies the optimal decision of themanager
is to implement deep scans and reduce scan frequency as λ1, β1,
or β2 is very big. Figures 5(e) and 5(f) show that the optimal
scan rate θ ∗B and p∗B is increasing in both C0 and C1. To
maximize the expected social welfare, the manager should
frequently implement a fast scan with the increase of C0 or C1.

5. Make a Charge for Service: 3D
Optimal Decision

In this section, we consider the case that each served sender needs
to pay a charge for mail service. +e social welfare is one of the
important concerns for a nonprofit company, but it is necessary
to operate and improve themail service system by levying service
fees, whichmay reduce the social welfare. An ideal scenario is that
both the social welfare and the revenue of the service provider are
simultaneouslymaximized, but this cannot be achieved generally.
Howdowedetermine the optimal scan rate, scan probability, and
price? It is a question worth studying.

In Section 4, we have discussed the case of free service, in
which we did not consider senders’ strategic behavior since
all mail services are free and all potential senders are as-
sumed to prefer to enter the system. Once the mail service is
not free, senders need to decide whether to seek services or
leave the system. We assume that senders are boundedly
rational, namely, senders have limited cognitive ability in
evaluating their own waiting time. We use the logit choice
model to characterize senders’ choices (the related literature
includes Huang et al. [11], Li et al. [12], and Li et al. [13],
among others). Let ϕB be the probability that a sender sends
his mail to the mail service system when the system is busy
upon arrival. ϕI is assumed to be the probability that a sender
sends his mail to the mail service system when the server is
not handling a mail upon arrival. We assume that senders
are pessimists, who believe all other senders choose to enter
the system. According to the logit choice model, ϕI,ϕB can
be computed from
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Figure 4: +e relationship among Ui(θ, p), θ, and p for R � 5, C0 � 0.2, C1 � 0.3, C2 � 0.1, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, β2 � 0.4, c �

0.5, and δ � 0.8. (a) +e basic social welfare model. (b) +e extended social welfare model.
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Figure 3: +e extended social welfare model: the expected total social welfare UE(θ, p) vs. θ and p for R � 5, C0 � 0.2, C1 � 0.3, C2 �

0.1, C3 � 0.1, C4 � 0.2, C5 � 0.3, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, β2 � 0.4, c � 0.5, and δ � 0.8.
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Figure 2: +e basic social welfare model: the expected total social welfare UB(θ, p) vs. θ and p for R � 5, C0 � 0.2, C1 � 0.3, C2 �

0.1, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, β2 � 0.4, c � 0.5, and δ � 0.8.
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ϕi �
eR− P− C0W λ0 ,λ1 ,β1 ,β2 ,θ,p | i( )

1 + eR− P− C0W λ0 ,λ1 ,β1 ,β2 ,θ,p | I( ) + eR− P− C1W λ0 ,λ1 ,β1 ,β2 ,θ,p | B( )
,

i � I, B,

(39)

where P denotes the service fee for each service request. +en,
the effective arrival rate of mails when the server is scanning or
idle is λ0ϕI. Similarly, λ1ϕB is the effective arrival rate when the
server is handling a mail. Let Us(P, θ, p) be the expected social
welfare in the case of making a charge for each service.
Adopting the basic social welfaremodel, we obtain the expected
social welfare as follows:

Us(P, θ, p) � λ0ϕI Π0 λ0ϕI, λ1ϕB( 􏼁 + Πs λ0ϕI, λ1ϕB( 􏼁( 􏼁 R[

− P − C0W λ0ϕI, λ1ϕB, β1, β2, θ, p | I( 􏼁􏼃

+ λ1ϕBΠb λ0ϕI, λ1ϕB( 􏼁 R − P[

− C1W λ0ϕI, λ1ϕB, β1, β2, θ, p | B( 􏼁􏼃 − C2p
− cθδ.
(40)

For given P, the joint optimum value of θ and p can be
computed by

argmax
(θ,p)

Us(P, θ, p)
􏼌􏼌􏼌􏼌 θ≥ 0, 0≤p≤ 1, Γ λ0ϕI, λ1ϕB, θ, p( 􏼁> 0􏽮 􏽯.

(41)

On the contrary, the nonprofit mail service provider also
hopes to get more income to operate and improve the mail

service system.+e income of the service provider equals the
effective arrival rate λ0ϕI + λ1ϕB times the service fee P; thus,
the provider needs to consider the following optimization
problem:

max
P

λ0ϕI + λ1ϕB( 􏼁P

s.t. P≥ 0.
(42)

For the above optimization problem, θ, p are two given
values. +en, for fixed θ, p, the optimal price is
argmaxP (λ0ϕI + λ1ϕB)P | P≥ 0􏼈 􏼉.

From the viewpoint of the public welfare service pro-
vider, the social welfare and the income are two concerns.
Increasing the income results in the reduction of the social
welfare. How to balance these two interests? It is a dilemma
and also is a game problem existing in the mind of the
manager.We adopt the Stackelberg game to characterize this
problem. +e idea of “maximizing the expected social
welfare” is the Stackelberg leader while the idea of “maxi-
mizing the income” is the Stackelberg follower. We will
derive the recursion formulas of optimal strategy. In the
formulas, optimal price, scan rate, and scan probability can
be obtained. Let θ(n), p(n), and P(n), respectively, be the
values of θ, p, and P after n iterations. Let θ∗ � limn⟶∞θ

(n),
p∗ � limn⟶∞p(n), and P∗ � limn⟶∞P(n). To make our
approach easy to understand, we provide the computational
algorithm of the 3D optimal strategy (P∗, θ∗, p∗) as follows.

Step 1: set P(1) � 0, and then compute (θ(1), p(1)) by
using

Table 2: +e extended social welfare model: the expected social welfare for R � 5, C0 � 0.2, C1 � 0.3, C2 � 0.1, C3 � 0.1, C4 � 0.2, C5 �

0.3, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, β2 � 0.4, c � 0.5, and δ � 0.8.

p\θ 2 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4
0.1 1.53413 1.49966 1.46477 1.42964 1.39439 1.3591 1.32384 1.28863 1.25352 1.21853 1.18365
0.2 1.75123 1.73122 1.71013 1.68826 1.66586 1.64307 1.62 1.59675 1.57337 1.54991 1.52641
0.3 1.83851 1.82615 1.81212 1.79688 1.78078 1.76402 1.74679 1.72919 1.71131 1.69323 1.67499
0.4 1.88301 1.87637 1.86742 1.85681 1.845 1.83229 1.81888 1.80495 1.79061 1.77596 1.76105
0.5 1.90632 1.90479 1.90019 1.89342 1.88506 1.87552 1.86507 1.85393 1.84224 1.83012 1.81765
0.6 1.91651 1.92009 1.91965 1.9164 1.91112 1.90434 1.89641 1.8876 1.8781 1.86804 1.85755
0.7 1.91714 1.92621 1.93005 1.9303 1.92798 1.92378 1.91816 1.91144 1.90387 1.89561 1.88681
0.8 1.90975 1.92507 1.93357 1.93749 1.93819 1.93654 1.93314 1.9284 1.92262 1.91601 1.90874
0.8 1.89481 1.91756 1.93136 1.9393 1.94319 1.94417 1.94301 1.94022 1.93617 1.93113 1.9253
1.0 1.87198 1.90389 1.92393 1.93641 1.94381 1.94761 1.94878 1.94798 1.94567 1.94217 1.93772

Table 1: +e basic social welfare model: the expected social welfare for R � 5, C0 � 0.2, C1 � 0.3, C2 � 0.1, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, β2 �

0.4, c � 0.5, and δ � 0.8.

p\θ 2 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4
0.1 1.9272 1.89038 1.85316 1.81576 1.7783 1.74087 1.70354 1.66635 1.62932 1.59247 1.55581
0.2 2.07664 2.0541 2.03061 2.0065 1.98196 1.95716 1.9322 1.90714 1.88205 1.85696 1.83191
0.3 2.13494 2.11986 2.10331 2.08575 2.06749 2.04874 2.02962 2.01026 1.99073 1.97108 1.95137
0.4 2.16282 2.15326 2.14167 2.12865 2.11462 2.09987 2.08457 2.06888 2.05289 2.03669 2.02033
0.5 2.17532 2.17067 2.16328 2.15399 2.14334 2.1317 2.11932 2.10639 2.09304 2.07937 2.06546
0.6 2.17796 2.17822 2.17483 2.16894 2.16129 2.15234 2.14243 2.13179 2.1206 2.10898 2.09703
0.7 2.1731 2.17864 2.17937 2.17685 2.17206 2.16562 2.15796 2.14937 2.14007 2.13023 2.11995
0.8 2.16164 2.1732 2.17842 2.17944 2.17756 2.17359 2.16808 2.16142 2.15388 2.14565 2.13687
0.9 2.14366 2.16241 2.17274 2.17763 2.17883 2.1774 2.17407 2.1693 2.16345 2.15675 2.14938
1.0 2.11856 2.14622 2.16259 2.17189 2.17647 2.17776 2.17668 2.17384 2.16968 2.16448 2.15847
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Figure 5: +e sensitivities of θ∗B , p∗B , and U∗ on λ0, λ1, β1, β2, C0, C1 for R � 5, C2 � 0.1, c � 0.5, and δ � 0.8: (a) C0 � 0.2, C1 � 0.3, λ1 �

0.6, β1 � 0.8, and β2 � 0.4; (b) C0 � 0.2, C1 � 0.3, λ0 � 0.5, β1 � 0.8, and β2 � 0.4; (c) C0 � 0.2, C1 � 0.3, λ0 � 0.5, λ1 � 0.6, and β2 � 0.4; (d)
C0 � 0.2, C1 � 0.3, λ0 � 0.5, λ1 � 0.6, and β1 � 0.8; (e) C1 � 0.3, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, and β2 � 0.4; (f ) C0 � 0.2, λ0 � 0.5, λ1 �

0.6, β1 � 0.8, and β2 � 0.4.
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θ(1)
, p

(1)
􏼐 􏼑 � argmax

(θ,p)
Us P

(1)
, θ, p􏼐 􏼑 θ, p

􏼌􏼌􏼌􏼌􏽮

≥ 0, Γ λ0ϕI, λ1ϕB, θ, p( 􏼁> 0}.

(43)

Step 2: obtain P(2) from P(2) � argmaxP Us(P, θ(1),􏽮

p(1)) | P≥ 0}. +en, compute (θ(2), p(2)) by using

θ(2)
, p

(2)
􏼐 􏼑 � argmax

(θ,p)
Us P

(2)
, θ, p􏼐 􏼑 θ, p

􏼌􏼌􏼌􏼌􏽮

≥ 0, Γ λ0ϕI, λ1ϕB, θ, p( 􏼁> 0􏼉.

(44)

Step 3: compute recursively P(n) from

P
(n)

� argmax
P

Us P, θ(n− 1)
, p

(n− 1)
􏼐 􏼑 | P≥ 0􏽮 􏽯, n≥ 3.

(45)

+en, compute recursively (θ(n), p(n)) by

θ(n)
, p

(n)
􏼐 􏼑 � argmax

(θ,p)
Us P

(n)
, θ, p􏼐 􏼑 θ, p

􏼌􏼌􏼌􏼌􏽮

≥ 0, Γ λ0ϕI, λ1ϕB, θ, p( 􏼁〉0􏼉, n≥ 3.

(46)

Step 4: if |P(n) − P(n− 1)|< ε1, |θ(n) − θ(n− 1)|< ε2, and
|p(n) − p(n− 1)|< ε3, stop iterative calculations; other-
wise, return to Step 3. Here, ε1, ε2, and ε3 are three given
sufficient small values.

To check the above computational algorithm, we provide
a numerical example. Observing Figure 6, we find that, after
six iterations, (θ(n), p(n), P(n)) tends to be stable as n grows.
More specifically, Table 3 shows that (θ(n), p(n), P(n)) re-
mains constant as n≥ 8. +erefore, the optimal strategy
under the Stackelberg game (P∗, θ∗, p∗) � (3.976, 2.298, 1) for

R � 5, C0 � 0.2, C1 � 0.3, C2 � 0.1, λ0 � 0.5, λ1 � 0.6, β1 �

0.8, β2 � 0.4, c � 0.5, and δ � 0.8. In this case, it is quite dif-
ficult to say whether the expected social welfare is jointly
concave in the scan rate and the scan probability by theoretical
derivation. However, we can obtain a unique optimum value
through numerical analysis which shows that the optimum
value is convergent with the increase of the number of iter-
ations and independent of the initial value of P(1).

Remark 3. +e expected social welfare Us(P, θ, p) has been
obtained by adopting the basic social welfare model. A
natural extension is to obtain Us(P, θ, p) by adopting the
extended model. In this case, Us(P, θ, p) can be computed
from

Us(P, θ, p) � λ0ϕI Π0 λ0ϕI, λ1ϕB( 􏼁 + Πs λ0ϕI, λ1ϕB( 􏼁( 􏼁 R − P − C0W λ0ϕI, λ1ϕB, β1, β2, θ, p | I( 􏼁􏼂 􏼃

+ λ1ϕBΠb λ0ϕI, λ1ϕB( 􏼁 R − P − C1W λ0ϕI, λ1ϕB, β1, β2, θ, p | B( 􏼁􏼂 􏼃 − C2p
− cθδ

− C3Π0 Π0 λ0ϕI, λ1ϕB( 􏼁( − C4Πs Π0 λ0ϕI, λ1ϕB( 􏼁( − C5Πb Π0 λ0ϕI, λ1ϕB( 􏼁( ,

(47)

and the 3D optimal decision can be obtained by replacing
(40) with (47).

Remark 4. In this section, senders are assumed to be pes-
simists and believe that all other senders choose to enter the

system. Based on this assumption, we obtain ϕI,ϕB by the
logit choice model. However, if each sender believes that all
other senders adopt the same strategy as him, the corre-
sponding probabilities ϕI,ϕB can be computed from

ϕi �
eR− P− C0W λ0ϕI,λ1ϕB,β1 ,β2 ,θ,p | i( )

1 + eR− P− C0W λ0ϕI,λ1ϕB,β1 ,β2 ,θ,p|I( ) + eR− P− C1W λ0ϕI,λ1ϕB,β1 ,β2 ,θ,p|B( )
≜fi ϕI, ϕB( 􏼁, (48)
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Figure 6: P∗, θ∗, p∗ vs. the number of iterations for R � 5, C0 �

0.2, C1 � 0.3, C2 � 0.1, λ0 � 0.5, λ1 � 0.6, β1 � 0.8, β2 � 0.4, c � 0.5,

and δ � 0.8.
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where i � I, B. +e above equation can be written as
(ϕI, ϕB) � (fI(ϕI,ϕB), fB(ϕI, ϕB)). We can get ϕI, ϕB by
iterative computations. In this case, the 3D optimal strategy
can be obtained by replacing (39) with (48).

6. Conclusions

In this paper, we study a public mail service system subject to
virus attacks by formulating it as an Mn/G/1 queue with
Bernoulli vacations. With the supplementary variable
method, we obtain the partial generating functions of the
joint distribution of the server state and the queue length,
and then we derive the probabilities that the system is in
different states. We consider two scenarios: (1) the service
provider does not charge the senders and (2) levying service
fees. For the first case, we adopt two different social welfare
models to obtain the joint optimum values of the scan rate
and the scan probability. For the second case, we assume that
senders are pessimistic, boundedly rational, and we obtain a
3D optimal strategy under the formulation of the Stackel-
berg game. +e corresponding computational algorithm is
provided, and we also show some extensions (see Remarks 3
and 4). +e results obtained in this paper can provide some
managerial insight not only for the mail service provider but
also for the optimal management concerning the wireless
sensor network, web-clouding service, file transfer service,
and so on. For future work, onemay extend our model to the
unreliable mail service system with service interruptions in
which the optimal decision and pricing issues are still im-
portant and worthy of further investigation. Furthermore,
the reliability analysis of the system deserves to be studied.
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