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Data centers, which provide computing services and gain profits, are indispensable to every city in the information era. (ey offer
computation and storage while consuming energy and generate thermal discharges. To maximize the economic benefit, the
existing research studies on the data center workload management mostly leverage the dynamical power model, i.e., the power-
aware workload allocation. Nevertheless, we argue that for the complex relationship between the economic benefit and so many
attributes, such as computation, energy consumption, thermal distribution, cooling, and equipment life, the thermal distribution
dominates the others. (us, thermal-aware workload allocation is more efficient. From the perspective of economic benefits, we
propose a mathematical model for thermal distribution of a data center and study which workload distribution could deter-
minately change the thermal distribution in the dynamic data center runtime, so as to reduce the cost and improve the economic
benefits under the guarantee of service provisioning. By solving the thermal environment evaluation indexes, RHI (Return Heat
Index) and RTI (Return Temperature Index), as well as heat dissipation models, we define quantitative models for the economic
analysis such as energy consumption model for the busy servers and cooling, energy price model, and the profit model of data
centers. Numerical simulation results validate our propositions and show that the average temperature of the data center reaches
the best values, and the local hot spots are avoided effectively in various situations. As a conclusion, our studies contribute to the
thermal management of the dynamic data center runtime for better economic benefits.

1. Introduction

Data center (DC) is an information service platform with
efficient equipment and perfect management mechanisms.
Under the background of the high-speed information age,
the global demand for Internet business and information
services is increasing year by year. According to statistics, the
global Internet Data Center (IDC) business market as a
whole will exceed 130 billion dollars in 2020, and DCs
around the world will consume 8% of the world’s electricity
and put a heavy environmental burden on society [1].

(e huge energy consumption accompanies extremely
low resource utilization, which is reported to be between 5%
and 25% in typical DCs [2]. (e main reason for this is that

DC operators often adopt redundant resource deployment
strategies in pursuit of high performance, quality of ser-
vice, and reliability. (erefore, all servers will be at the
highest busy ratio regardless of the load. (e low utili-
zation of these multidimensional resources (CPU, storage,
memory, and network bandwidth) leads directly to huge
resource waste. At the same time, it also increases the cost
of other supporting equipment such as cooling system and
power distribution unit. Under this development trend,
how to reduce the high cost and high energy consumption
caused by the high demands has been concerned by
scholars.

(e key to the cost control of facility operation and
maintenance in a DC is the electricity cost of the equipment,
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and the main influencing factors are the running time,
quantity, and distribution of high-power equipment [3]. In
addition, as the main components of a DC, IT equipment
and cooling equipment account for about 90% of the energy
consumption of the DC, among which the cooling equip-
ment accounts for about 40%–60% [4, 5]. In the optimi-
zation scheme, the optimized workload allocation is adopted
to improve the cooling capacity and adjust the temperature
distribution in the DC, so as to reduce the running time of
the air-conditioning equipment and the electricity cost,
reduce the hot spot of temperature, and further reduce the
possibility of equipment damages andmake the effect of full-
life cycle cost control of the DC more obvious. (erefore,
there is a very complex relationship between economic
benefit and calculation, energy consumption, heat distri-
bution, cooling, and equipment life, among which heat
distribution dynamically dominates other properties [6].

It is necessary to analyze the economic effects of the
improvements in energy efficiency achieved by existing
methods. In this paper, the steady and transient numerical
simulation is used to seek the switch strategy of energy-
saving operation, and the two main problems of improving
the airflow organization mode and busy servers distribution
mode are studied. To improve the economic performance of
the DC cooling strategy from the perspective of dynamic
thermal environment, the following research contents are
studied:

(1) A reasonable calculation model and a calculation
method are selected, the temperature and velocity
distribution of airflow in the DC are simulated, and
the temperature distribution and airflow velocity
distribution of the specified section of the DC are
obtained;

(2) (e influence of power distribution, workload al-
location, and overall busy ratio on the thermal en-
vironment of the DC is studied, and the optimized
switch strategy is analyzed;

(3) (e influence of power and cooling quantity changes
on transient temperature rise of busy servers is
analyzed, and transient switch strategy analysis is
carried out under the condition of dynamic change
of switch quantity.

(4) Based on the heat distribution of the DC, the in-
fluence factors and the influence of thermal envi-
ronment on the economic benefit of the DC are
analyzed. (e complex economic benefit problem,
which is expressed as a nonlinear optimization
problem with multiparameters and multiconstraints,
is solved.

(e rest of the paper is organized as follows. Section 2
introduces the related works about thermal environment and
the economic benefit of DCs. Section 3 proposes the math-
ematical model and thermal evaluation metrics for modeling
thermal environment. Section 4 gives workload allocation for
servers according to the mathematical thermal model and
evaluates the influence of busy ratio. Section 5 discusses the
transient analysis of the dynamic switch strategy and Section 6

analyzes the economic effects. Finally, the conclusions and
future works are summarized in Section 7.

2. Related Works

In this section, we provide a brief overview of some existing
works on two major topics: the first is the thermal opti-
mization for DCs, and the second is the economic benefit
optimization for DCs.

(e thermal environment of DCs has been studied in
existing literature from the aspects of air distribution,
construction of hot and cold enclosed aisles, and reduction
of inefficiencies of the equipment. In terms of air distri-
bution, many researchers have conducted a lot of studies on
air supply methods, perforated tiles, equipment layout, and
so on. Chu et al. [7] studied the thermal influence of air
intake flow and inlet layout on the DC with the enclosed
cold aisle. (ey found that the uniformity of inlet flow did
not improve with the strength of flow, the power con-
sumption increased instead. However, when the inlet di-
rection was deflected to the rack direction, the flow
uniformity in the rack was greatly improved. In terms of
cold aisles design, Cho and Woo [8] designed the new row-
based cooling system, in which the air conditionings, racks,
and cold and hot aisles are all enclosed in one line. (e
cooling efficiency of this model, RHI, and RTI are 20%,
73.2%, and 50% higher than those of the open aisle, re-
spectively. In terms of reducing the energy consumption of
equipment, Jin et al. [9] summarized the important in-
fluence of the accurate server’s power model on the energy
saving and reliability of the DCs. In the model, the effects of
cooling output, inlet temperature, and energy saving of the
server are considered. It is pointed out that the peak power
of the server accounts for 40%–50% of the rated power.
Energy-saving technology can reduce idle power from 55%
of rated power to 15%. With the improvement of heat
dissipation requirements, the placement of racks in DC has
gradually developed from the extensive form to the orderly
form, that is, the racks are arranged in order to naturally
form cold aisles and hot aisles [10, 11]. Because the
enclosed cold aisles can effectively contain the cold flow
loss caused by mixing of cold and hot air in the cold aisles, it
has been gradually accepted and popularized in engi-
neering practice [12].

In most studies, the modeling studies focused strictly on
steady-state analysis of DCs, and fixed workload allocation
and rack powers are imposed. For transient analyzes, the
switch coefficient of servers is crucial as it significantly affects
the amount of time it takes to reach the steady state [13].
(erefore, in terms of the energy efficiency optimization, we
are interested in the thermal impact of various switch
strategies [14, 15].

(e maximization of economic benefit for DCs is a
complex problem because it is with many factors and re-
strictions. Classic solution only takes one-time investment
and operation cost into consideration [16]. (e former
includes investment on servers, network, accessories,
buildings, power generators, and computer room air con-
ditionings (CRAC). Such investment is static and is not
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considered in our researches. (e latter mainly includes cost
of equipment’s maintenance and energy. Such cost is dy-
namic and is considered in our researches. (e sophisticated
economic benefit models can effectively estimate and even
predict the total investment and annual operation cost of a
DC. Besides, economic benefit optimization can be reached
by several approaches, for example, a model based on a
resource management technique and semi-Markov decision
process [17], green scheduling for cloud data centers in an
economical way by renewable energy trading with the power
grid [18], scheduling of data-oriented tasks in geographically
distributed cloud data centers [19], transmission cost re-
duction from the perspective of DC users [20], and replica
factor dynamical adjustment to reduce the resource con-
sumption and guarantee the economic profit [21]. However,
to the best of our knowledge, there are few researches
leveraged the thermal management for economic benefit
optimization. (ere are few researches modeled economic
benefit as a maximization problem and took the thermal
distribution, profits, energy cost of servers, and cooling
system into consideration. Otherwise, the economic benefit
models are very challenging to be accurate, quantitative, and
efficient. (e thermal optimization is mainly associated with
energy optimization, for example, MirhoseiniNejad et al.
[22] considered thermal effects of server workloads, which in
conjunction with control parameters of the cooling unit,
save more power than optimizing each of them separately.

3. Mathematical Model and Thermal
Evaluation Metrics

In this paper, the airflow distribution model of a DC is
“airflow supplied from the lower side and returned from the
upper side via the enclosed cold aisle”, as shown in Figure 1.
Comparing with other airflow modes, our choice has ob-
vious advantages [23, 24]. In Figure 1, all dimensions are
listed in X×Y×Z order. (e size of the DC is 14×12× 2.5
(m), in which there are 4 (columns)× 11 (racks) with the size
of 0.6×1.1× 2 (m). (e size of the enclosed cold aisle is
6.6×1.2 (m) and width on each side of hot aisles is 1.4 (m).
(e size of the server is 0.5×1× 0.0495 (m) and the CRAC is
0.9×1.92× 2 (m). (e size of the front rack is 1.82×1.1× 2
(m). In addition, the cooling inlet and outlet of the rack are
fully open, and they are in the same size of 0.6× 2 (m), and
the size of each air conditioner’s outlet is 0.8× 0.9 (m). (e
air at 17°C supplied from the floor inlet refrigerates servers
through two columns of standard 42U racks and then
returns to the CRAC on top of the hot aisle; the cold aisle is
enclosed. (ere are two air outlets placed on top of each air
conditioner. (e ambient temperature is set at 20°C. (e
average temperature difference of return air is predicted to
be 10°C. When air flows through the rack, the cooling loss
can be considered as sensible heat exchange, which could be
calculated by equation (1) to predict the air supply volume in
numerical simulation:

Q � cpGΔT, (1)

where cp is the specific heat capacity of the fluid at constant
pressure (J/kg·K), G is the air volume (kg/s), and ΔT is the
average temperature difference of return air (°C).

We design an extreme condition that 20 highly inte-
grated servers (1U for each) are distributed in each rack in
the model. (e cooling capacity in this paper depends on the
heat conversion rate of ITequipment, which is about 80%. In
the numerical simulation model, the rated power of the 1U
server is 200W/U and the idle power is 20W/U. Figure 2
shows the heat load of the DC with different busy ratios and
the designed cooling flow rate.

In this paper, thermal analysis software IcePak is used for
numerical simulation analysis. (e finite element volume
method is used for the discrete form and the SIMPLE al-
gorithm is used for solution. (e minimum cell’s size was
3mm× 1mm× 6mm, and the total number of grids was
1.9×106. As for the selection of turbulence models, the zero
equation has the advantage of less computation, obtaining
more accurate results than other models [25]. (e assumed
conditions are as the follows:

(1) (e low-speed air in the DC can be regarded as
Newtonian fluid, and the dissipation work caused by
the viscous force of the fluid can be ignored

(2) (e fluid domain is steady turbulence
(3) (e nonslip boundary condition is applied on the air

inside the DC
(4) (e air tightness of the DC is good, and the influence

of air leakage is ignored
(5) According to the Boussinesq hypothesis, the change

of fluid density only affects the buoyancy

In this paper, a three-dimensional incompressible fluid
model is established, which follows the laws of mass
conservation, momentum conservation, and energy con-
servation. Combined with the Reynolds-averaged Navier-
Stokes method, the governing equations are as follows
[26]:

(1) Continuity equation
zρ
zt

+ ρ
zvi

zxi

� 0, (2)

where t is the time (s), vi, vj are vector speeds (m/s),
and xi, xj are vector coordinates (m).

(2) Momentum equation

ρ
zvi

zt
+ vj

zvi

zxj

  � ρfi −
zp

zxi

+
z

zxj

μ
zvj

zxj

− ρvi
′ vj
′ , (3)

where fi is the body force (N), μ is the dynamic viscosity
of the fluid (Pa·s), and ρ is the fluid density (kg/m3). It is
worth noting that ρvi

′ vj
′ in momentum equation (3) is

the turbulent stress. In order to determine its value, it
needs to be solved by combining the turbulent zero-
equation mode, i.e., equation (4).
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(e turbulence model: zero-equation mode
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(3) Energy conservation equation

z(ρT)

zt
+

z ρviT( 

zxi

�
λ
cp

z2T

zxj 
2 − ρvi
′T′ + S, (5)

where T is the fluid temperature (°C), λ is the thermal
conductivity of the fluid (W/m·K), S is the source item,
and ρvi
′T′ is the turbulent thermal diffusion term, the

expression of which is shown in the following
equation:

ρvi
′T′ �

υT

Prt

, (6)

where υT is the turbulent viscosity (Pa·s), Prt is an
empirical coefficient, the value of which is greatly af-
fected by the material thermal properties and turbulent
intensity. l is the mixing length (m).
Equations (7)–(11) give the boundary conditions of the
model:

vz�0 � v0, (7)

pz�H � p0, (8)

Tair z�0
 � T0, (9)

qw � 0, (10)

λ
zTair

zxi
xi�x1

 � q � const. (11)
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Figure 2: Total heat load (a) and cooling flow rate (b) of the DC.
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Figure 1: Physical model of the DC. (a) Air supply mode. (b) Diagram of the physical mode.
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Combined with the governing equations and boundary
conditions in this model, it can be seen that the velocity
vector in the energy equation can be obtained by
solving continuity equation (2) and momentum
equation (3) of a certain position under the initial
conditions. Furthermore, the turbulent heat diffusion
value in the energy equation is obtained by the tur-
bulent stress solved under the specific condition and
the given turbulent Prandtl number, and on this basis,
we can obtain the value of turbulent thermal diffusion
and temperature at a certain point in this system. (is
process is iterated to gradually generate the velocity
field and temperature field of the whole space.
A verification model was established according to the
experiment of Arghode et al. [27], consistent with
experimental conditions in this paper. (e cold aisle
temperature measured by the temperature monitoring
car of racks 2–7 and racks 9–12 was compared with the
simulated results, as shown in Figure 3.
Figure 3 shows experimental and simulated tempera-
ture of the cold aisle. (e error of racks in the middle
position is the minimum, and the mean absolute error
is about 5%. It can be seen that the error is caused by
uncontrollable factors between the assumed condition
and the actual situation. (e reason for the higher
temperature of the lower servers may be that the
temperature measuring car blocks the air flow in the
cold aisle. (e temperature shows mostly good
agreement with the numerical results. It can be con-
sidered that the model is feasible.
In order to evaluate the selected scheme, RHI (Return
Heat Index) and RTI (Return Temperature Index) are
introduced to conduct comprehensive evaluation
[15, 23], where RHI represents the utilization ratio of
the air-cooling capacity of the rack, and RTI evaluates
the air distribution in the DC. Details are shown in
Table 1.
RHI can be used to evaluate the thermal environment
and determine the existence and specific location of
local hot spots, while RTI can be used to objectively
evaluate the airflow distribution of the rack and the
overall DC.

4. Influence of Workload Allocation on
Complexity Thermal Environment

(e influence of workload allocation and distribution of
racks on the heat dissipation of the DC and the influence of
parameters of the DC change on the optimization of heat
dissipation under nonfull workload conditions are studied in
this section.

4.1. Workload Allocation for Servers. According to the
current common mode of busy servers allocation in DCs, 8
classic allocation modes of busy servers were designed and
are shown in Table 2 and Figure 4, named by the workload
allocation of the servers, and Figure 4 shows that there are

significant differences of thermal environment in the DC.
(ere are two reasons for this phenomenon. First of all,
when the cold air flows through the enclosed aisle, there is
different cooling attenuation at different workload allocation
of servers. In addition, under different workload distribution
modes, the reexchanging heat amount of airflow with dif-
ferent cooling attenuation in the hot aisle is also different.
(e cold energy utilization in the centralized distribution
models is significantly lower than that in the decentralized
model. (e hot zone exists in the DC with the centralized
distribution model, as shown in Model 1∼6, the uniformity
of thermal environment of Model 7 and Model 8 is better,
and the temperature difference is about 2°C. (e results
show that whether the thermal environment is good or not
depends on the mixing degree of cold airflow in the open hot
aisle, the better the heat transfer performance, the more
uniform the temperature distribution and the better the
overall heat dissipation. Secondly, because the trend of the
vertically upward air supply in the enclosed aisle is greater
than that of the side direction rack fan, less cold air flows
through the lower part of the rack’s servers than the upper
part. (is conclusion can be confirmed by the temperature
comparison of Model 1, Model 2, and Model 3 in Figure 5,
and heat transfer capacity is weakened successively from
Model 2 and Model 3 to Model 1. In addition, the hot zone
appeared in models where the workload was distributed near
the lower layers, such as Model 1, Model 4, and Model 6.

According to GB50174-2017 of China, the standard
range of safe operation in DCs is 18–28°C. When the busy
ratio of the DC is 0.5, the temperature comparison of the
overall thermal environment in 8 cases is shown in
Figures 5(a)–5(h). (e peak temperatures of Model 1/4/6/7
exceed the upper limit of 28°C; it will inevitably increase the
consumption of refrigerating capacity and electricity cost for
the stable operation. (e peak temperatures of Model 2/3/5/
8 are within the standard range. It indicates that an eco-
nomical operation mode for DCs is to arrange the busy
servers close to the middle and upper layers of the rack in the
process of nonfull load operation. In addition, busy servers
in Model 5, Model 2, and Model 3 are all distributed in the
middle and upper layers, and they are relatively more dis-
persed in Model 5. Comparing the thermal environment of
Model 2/3/5/8, the thermal stratification of Model 5 is more
uniform, and the average temperature of the thermal en-
vironment is the lowest. On the basis of centralized dis-
tribution, proper dispersion is beneficial to improve the
cooling effect, but it is not that the more dispersed the better.
For example, the thermal environment of Model 8 is not as
good as that of Model 5, because the servers’ excessive
dispersion will increase the possibility that the servers are
distributed in the lower rack, and it is not conducive to
cooling.

According to Table 1, RHI and RTI are obtained to
evaluate the local airflow structure comprehensively.
Figure 6(b) shows that RHI is relatively high in the mode
that the busy servers are far away from the lower layers, for
example, in Model 2, 3, and 5. It means that in nonfull load
conditions, the middle and upper layout modes of the busy
servers can effectively reduce the mixing of hot and cold air
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and improve the utilization of cooling capacity. (rough the
relative temperature index RTI, we can find that RTI of
Model 7 is closest to 1, followed by Model 5. However, based
on the abovementioned conclusions, in the three models
with better RHI ofModel 2, 3 and 5, RTI ofModel 5 is closest
to1. (e maximum temperature of Model 5 is about 7°C
lower thanModel 7, that is, Model 5 is the best model for the
comprehensive evaluation of the heat and air distribution.

4.2. Influence of Busy Ratios. Based on the abovementionted
conclusions, Model 2, 3, 5, and 8 are adopted to analyze the
variation regularity of thermal environment performance
indexes RHI and RTI, and the switch strategy on energy
saving will be optimized. When the busy ratios are, re-
spectively, 0.2, 0.35, 0.5, 0.65, and 0.8, the numbers of busy
servers are, respectively, 4, 7, 10, 13, and 16. Figure 7 shows

that RTI increases with the increase of the busy ratio, and the
range gradually increases from about 0.75 to 1.3. (is can be
attributed to that when the busy ratio is small, the subcooled
zones are large, and the loss of bypass cold air occurs. As the
busy ratio increases, the hot zones gradually appear instead
of subcooled zones, the possibility of hot air recirculation is
increased. Secondly, RHI decreases with the increase of the
busy ratio. (is is because the increase of the busy ratio
promotes the possibility of hot air backflow, which leads to
hot air mixing with cold air in the enclosed cold aisle, re-
ducing the cooling efficiency of air supply. It can be seen that
given the ideal cooling amount making the thermal envi-
ronment at the same temperature gradient, RHI and RTI are
closest to the ideal value at the busy ratio of 0.5, and the
cooling efficiency is the highest. When the busy ratio is more
than or equals to 0.5, RTI of Model 5 is closest to ideal value
1, RHI is the largest relative to other models, and the overall
thermal environment is optimal. When the busy ratio is less
than 0.5, Model 2 is the best choice.

5. Transient Analysis of Dynamic
Switch Strategy

(ere are numerous transient scenarios in the actual op-
eration of DCs.(erefore, the dynamic switch of workload is
very important for the stable operation of DCs. In addition
to the influence of the dynamic switch degree of the
workload quantity on the cooling performance of servers,
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Table 1: Description of two thermal evaluation indexes.

(ermal
evaluation index RHI RTI

Expression Q/(Q + δQ) (Tout − Tin/ΔT) × 100%

Evaluation
criterion

RHI∈(0, 1). (e more the RHI approaches 1, the better
the heat transfer, the less the mixing of cold and hot air,

and the higher the utilization rate of air-cooling
capacity is.

(e more the RTI approaches 1, the better the air distribution
is. When RTI >1, there is hot air backflow. While RTI <1, it

indicates cold air bypass.

Table 2: Allocation modes of busy servers.

Workload allocation model Busy servers distribution
Model 1 Concentrate in the lower layers
Model 2 Concentrate in the middle layers
Model 3 Concentrate in the upper layers
Model 4 Central free
Model 5 Upper alternating segment
Model 6 Lower alternating segment
Model 7 Alternating segment
Model 8 Single alternating
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the location change of busy/idle servers will also affect the
transient thermal environment of DCs. In transient mod-
eling analysis, the switch sequence of busy servers in dif-
ferent positions will not only affect the generation location of
time-varying heat but also cause differences in cold and hot
air mixing at the outlet.

Four classical cases were set up with different quantities
of busy servers and different dynamic switch sequences for
numerical simulation to analyze their effects on the thermal
environment of DCs. In Case C0, the total task load is evenly
distributed on each server of the rack. In other three cases,
the standard 42U rack shall be divided equally into the
upper, middle, and lower layers. By adjusting the dynamic
switch sequence of the servers in the upper, middle, and
lower layers, the influence of busy/idle states changing of
servers on the transient thermal environment will be ana-
lyzed. (e busy servers in Case C1 are started in the order of

lower-upper-middle layers as the task load increases, and
each server keeps a state of full load of 200W. Busy servers in
Case C2 are started in the order of middle-upper-lower
layers, and in Case C3 they are started in the order of upper-
middle-lower layers. (e total power is evenly distributed to
each server in proportion, and the transient curve of power
changing with time is shown in Figure 8.(e total power of a
single rack increases from 1.2 kw to 2.6 kw and then to the
full load of 4 kW, there are two instantaneous uprush of the
power at 300 s and 600 s, and the corresponding cooling
capacity is increased from 30% to 65% to 100% of cooling
capacity requiring at full load, and according to the simu-
lation results, the curve of the average temperature at the 9th
rack that exits in column A at the central section of the DC
over time is shown in Figure 9.

From the comparison of the four groups of data, it is
concluded that sudden changes in power cause temperature

(a) (b) (c) (d)

(e) (f ) (g) (h)

Turned on
Turned off

Figure 4: Schematic diagram of the workload allocation scheme. (a) Model 1. (b) Model 2. (c) Model 3. (d) Model 4. (e) Model 5. (f) Model 6.
(g) Model 7. (h) Model 8.
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fluctuations and result in the different transient effects in
four cases. Considering the temperature fluctuation caused
by different transient scenarios, when the load task increases,
Optimal distribution of average temperature and the min-
imum temperature overshoot fluctuation occur in Case C3.
While the worst temperature distribution and the strongest
temperature overshoot occur in Case C2. (e average
temperature of the rack outlet with servers operating at full
load finally remains the same in four cases, but the time for
the average temperature to reach stability is different. (is

indicates that, firstly, the dynamic change of the busy servers’
location will lead to the circulation and mixing of hot and
cold air around the rack outlet, and the cooling performance
of different busy server locations will also be different.
Secondly, as long as the parameters of the final state are
consistent, changing the starting position and sequence of
the servers will affect the time to reach the final stability
without affecting the final thermal environment tempera-
ture. When the servers’ workload increases, Case C3 is
undoubtedly a safe and feasible ideal switch strategy.
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Figure 5: Temperature cloud diagram of different workload allocation at X� 7m. (a) Model 1. (b) Model 2. (c) Model 3. (d) Model 4. (e)
Model 5. (f ) Model 6. (g) Model 7. (h) Model 8.

40

35

30

25

20

Te
m

pe
ra

tu
re

 (°
C)

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

M
od

el
 6

M
od

el
 7

M
od

el
 8

Maximum temperature
Average temperature

(a)

1.10

1.05

1.00

0.95

0.90

0.85

RH
I a

nd
 R

TI

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

M
od

el
 6

M
od

el
 7

M
od

el
 8

RHI
RTI

(b)

Figure 6: Evaluation based on temperature, RHI, and RTI of eight cases. (a) Temperature of thermal environment. (b) RHI and RTI.
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6. Economic Analyses

(e economic benefits of a DC mainly include income and
operating costs. DCs derive their revenues from the services
they provide, and their costs are mainly energy bills. Energy
costs include two parts: energy consumption for servers and
cooling systems. Both of them are relevant to the number of
servers. Meanwhile, the number of servers determines the
request execution status, service quality, and server distri-
bution mode of the DC. (e former indirectly affects the
benefits of the DC, while the latter indirectly affects the heat
distribution and cooling costs.(e relationships between the
economic benefits and the relevant attributes are shown in
Figure 10 including the symbols used in the section. We
model and analyze the economic benefits of the DC with the
following steps: firstly, the server’s number of the DC is
determined; secondly, the energy consumption of servers is
determined, and then the energy consumption of the DC
refrigeration is determined by the methods mentioned in
previous sections; finally, the energy price and benefits of the
DC are modeled on this basis, and the DC economic benefits
are determined.

6.1. Energy Consumption for Busy Servers. Let a DC need n
servers in the scheduling time t, and the time for the servers
to process the request is composed of two parts: average wait
time and average processing time for requests. θ is the
average processing speed for the request (request/sec). c is
the arrival speed of the requests in scheduling time t (re-
quest/sec). p is the full load power of a server (watts). δ is the
average waiting time for requests in t time slot (sec). R0 is the
maximum delay constraint of time of the requests (sec). q is
the quality of service, i.e., the probability of task being
immediately dealt with; the higher the probability, the higher
quality of the service. Under the constraints, the average
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Figure 7: (a) RTI and (b) RHI in the DC with different busy ratios.
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waiting time for request is δ � q/(n · θ − c), and the average
response time for request R is (1/θ) + δ. Requiring R ≤ R0, so
the following inequality is defined:

1
θ

+
q

n · θ − c
≤R0. (12)

(erefore, the constraint on the number of servers in the
DC and the energy consumption under this constraint are as
the follows:

Es(t) � p · n · t, where n≥
q

R0θ − 1
+

c

θ
. (13)

6.2. Energy Consumption for Cooling. Based on the energy
conservation law and the proposed optimization on cooling
efficiency RHI, we study the energy consumption for
cooling. In condition of n busy servers at time slot t, let Ec(t)
be the energy consumption for cooling, and Q(t) be the heat
produced by n servers, then Ec(t)�Q(t) RHI−1, in which RHI
is relevant to the switch strategy. When the number of
running servers in the DC is n, the optimal switch strategy
can be determined according to the heat distribution models
in previous sections. For example, when n is half of the
number of servers in the DC, the overall thermal envi-
ronment of Model 5 in Table 2 is the optimal.

(e mathematical expressions of Q(t) can be defined
using the lumped RC thermal model [28]. In the RC (re-
sistor, capacitor circuit) model, the inside and outside of the
server is considered as a heat transfer system with a certain
temperature difference and thermal resistance. T0 is the
internal temperature of the servers, Tamb is the external
temperature of servers, P is the server power, R is thermal
resistance, and C is the heat capacity of the server. After t
time the server temperature is shown in equation (14), and
Q(t) is shown in equation (15), where the parameters of
equation (15) refer to the parameters in equation (12). (e

refrigeration energy consumption Ec(t) in the DC can be
obtained.

T � RC(t) � PR + Tamb + T0 − PR − Tamb(  · e
−t/RC

,

(14)

Q(t) � cpG T − T0( . (15)

6.3. Energy Price. We utilize two different energy pricing
models for energy deficient situation and energy adequate
situation. Because more and more DCs apply the renewable
energy, Y(t) represents the time-dependent energy price for
grid energy and the grid operator. We consider an expo-
nential model [29] in energy deficient situation and flat-rate
price for energy adequate situation, as shown in the fol-
lowing equation:

Y(t) �
y0e

−ω(t), if t> tω,

y0, otherwise,

⎧⎨

⎩ (16)

where ω(t) is a normalized positive value of time t and tω
represents the time slot when ω(t)� 0, i.e., energy adequate
situation, hence the energy price is constant y0.

6.4. DC Profit. (e DC provides computing services for
multiple users. (ese users share the same infrastructure,
e.g., a user can share a DBMS with another in the context of
databases. In return, each user pays the rent for resources to
the provider according to the “pay as you go” model, i.e., a
user only pays what it consumes [21]. (erefore, the DC’s
profit in time slot t is relevant with w, R0, and q which are
previously explained. Here, we use a logarithmic utility
model, which follows the law of diminishing marginal utility
and is widely used in a previous work [30]. F(t) represents
the time-dependent profit when the DC provides the services

Energy cost
γ(t)

Economic 
benefit

States of requests

Processing speed θ

Arriving speed γ

Awaiting time δ

States of services

Maximum delay R0

Quality of service q

Heat for busy 
servers Q(t)

Energy 
consumption

for cooling Ec(t)
RHI

Energy 
consumption

for servers Es(t)

Data center
profit F(t)States of busy servers

Server power p

Server number n

Server distribution

Figure 10: Relationships of benefits and relevant attributes.
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with given average waiting time w, maximum delay time R0,
and the probability of a request been processed q. F(t) is
calculated as the following equation:

F(t) � ε0 · 1 + k · log
q

R0
  · e

−ReLu w+μ−R0( ), (17)

where ε0 is the pricing constant, k is the adjustment coef-
ficient, ReLu() is the activation function, logq/R0 represents
the contract profit which increases with expected service
quality, and e−ReLu(w+μ− R0) represents the real service quality
which decreases with the response delay.

6.5. Problem Definition. Aforementioned models define the
problem of maximized economic benefits with the con-
straints. In a time slot t, the economic benefits are drawn
from equations (13)–(17) as F(t)−Y(t)[Es(t) +Ec(t)], in
which only n and RHI are variables, and the rest of the
parameters are all constants. Besides, n and RHI are also
relevant. Our heat distribution study ensures an optimal
RHI for an n value. (erefore, we finally formalize the
complex problem of maximizing economic benefit of the DC
to the easily solved problem of the maximum value of a
simple function. For long-term duration, the economic
benefit is the aggregated value of each time slot t. In such
conditions, each time slot in the duration is the schedule
interval.

In conclusion, with the proposed model for the thermal
distribution of a DC and the server distribution which could
determinately change the thermal distribution, we define
quantitative models for economic benefit and the relevant
attributes such as energy consumption of servers and cooling
system, energy price, profit, and service qualities. For
maximizing the economic benefits, we remain the number of
busy servers and thermal evaluation index as the schedulable
attributes.

7. Conclusions

Considering the same air condition, the thermal steady-state
numerical simulation is used to study the switch strategy of
busy servers, and the thermal transient numerical simulation
is used to study the switch strategy under transient changes
in power of DCs. (e conclusions are as follows:

(1) When DC is running stably, there is a thermal
stratification phenomenon in the cooling process.
(e thermal environment performance index is used
for evaluation, and the decentralized distribution of
the servers is conducive to heat dissipation. For the
stable running conditions, when the busy ratio is at
0.5 or above, the upper alternating segment model
has the best heat dissipation performance. For the
lower busy ratio of less than 0.5, the mode that the
servers concentrate in the middle layers is the best
choice. Under the same temperature gradient, the
cooling efficiency is the highest when the busy ratio is
about 0.5.

(2) (e transient temperature characteristic under the
dynamic switch of load condition is studied through

transient numerical simulation, and the effect of
power change and cold quantity change on the
transient characteristics of temperature is analyzed.
(e results show that the mode of servers in racks
starting in the order of upper-middle-lower layer is
an ideal strategy to meet the safety and feasible
operation of DCs with enclosed cold aisles.

(3) (e influence of thermal environment on the eco-
nomic benefits of DC is analyzed. We quantified the
relationships between economic benefits and energy
consumption for busy servers and cooling system,
energy price, and profit of the DC. (ese models
define the problem of maximized economic benefit
with the constraints.
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