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Integrating autoencoder (AE), long short-term memory (LSTM), and convolutional neural network (CNN), we propose an
interpretable deep learning architecture for Granger causality inference, named deep learning-based Granger causality inference
(DLI). Two contributions of the proposed DLI are to reveal the Granger causality between the bitcoin price and S&P index and to
forecast the bitcoin price and S&P index with a higher accuracy. Experimental results demonstrate that there is a bidirectional but
asymmetric Granger causality between the bitcoin price and S&P index. And the DLI performs a superior prediction accuracy by
integrating variables that have causalities with the target variable into the prediction process.

1. Introduction

Time series is a series of observation values of a variable
arranged in a chronological order, which reflects the change
of a phenomenon itself with time if there are no exogenous
variables. Generally speaking, time series analysis focuses
more on predicting the future based on the existing his-
torical data [1–3] than interpreting the causalities whichmay
exist among the variables. Exploring the causalities among
financial time series can be important for portfolio man-
agement [4]. As a decentralized cryptocurrency, bitcoin has
attracted more and more investors and traders owing to
high-investment returns in recent years [5]. From January 1,
2014, to December 31, 2018, bitcoin price jumped from $771
to $3742 (USD), whichmade bitcoin a promising investment
cryptocurrency. Interestingly, Yermack [6] asserted that
bitcoin was not a currency as it performs poorly as a unit of
account and as a store of value. And Corbet et al. [7]
supported the conclusion of Yermack that bitcoin was a
speculative asset rather than a currency. Moreover, Dyhr-
berg [8] proved that bitcoin can serve as a hedge against the
stock market, and it is a helpful tool for both portfolio
diversification and risk management. +erefore, it is of great
importance for investors and traders to forecast the bitcoin
price and investigate the causes of its volatility.

In most circumstances, causality inference among fi-
nancial time series is based on the Granger causality [9]. As a
predictive causality, the Granger causality refers to that a
time series x Granger-causes y if x’s values provide statis-
tically significant information about future values of y, i.e.,
predictions of y based on its prior values, and the prior
values of x are better than predictions of y based only on its
prior values. Some traditional approaches for Granger
causality inference mainly include vector autoregression
(VAR) [10], vector error correctionmodel (VECM) [11], and
their variants [12, 13]. VAR and VECM are valid mostly
when the input is stationary data. However, the results of
some unit root test methods, such as ADF [14], showed that
most economic time series are not stationary, while theymay
be stationary after preprocessing. Hence, traditional Granger
causality inference for nonstationary time series needs to
preprocess the input to reach a stationary sequence, which
may bring pretesting distortions. +e Wald test [15] has
attracted much attention because there is no pretesting
distortion, and it is based on a standard asymptotical dis-
tribution, irrespective of the unit roots and the cointegrating
properties of the data [16]. However, the Wald test method
may be inefficient since it intentionally overfits the VAR.
Moreover, those aforementioned approaches are not good at
capturing the complex representation of the input data.
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Deep learning-based architecture could learn more
abstract representation from the input data without data
stationarity requirement. Chong et al. [17] proposed a deep
learning-based stock market forecasting model to examine
the ability of three unsupervised feature extraction
methods of predicting future market behaviour. Based on a
deep learning model, Chen et al. [18] built a computer-
aided diagnosis and decision-making system for medical
data from MR images. Long et al. [19] proposed a multi-
filter neural network that integrated convolutional and
recurrent neurons for feature extraction on economic time
series samples and price volatility prediction. And the
aforementioned deep learning-based forecasting models
achieved promising forecasting performances. Lahmiri and
Bekiros [20] employed LSTM for cryptocurrency predic-
tion, which proved deep learning was highly efficient in
predicting the inherent chaotic dynamics of crypto-
currency markets. +ose aforementioned deep learning-
based models are prone to perform better than traditional
econometric methods, which suggest the deep learning-
based architecture is more potent in dealing with financial
time series data.

In this paper, we construct a deep learning-based
Granger causality inference architecture, named DLI, which
consists of AE, CNN, and LSTM. +e two contributions of
our work are exploring the Granger causality between the
bitcoin price and S&P index and predicting the bitcoin price
and S&P index with a higher accuracy.

+e remainder of this paper is organized as follows.
Available datasets we employed are presented in Section 2.
+e proposed DLI is depicted in Section 3. Experiments and
results are introduced in Section 4. Our contributions and
future work are summarized in Section 5.

2. Data

We took the bitcoin price1 and S &P index2 as experimental
datasets. Both of them can be downloaded from the Yahoo
website, and their relative prices are in US dollars. Without
loss of generality, we take the daily closing price as the day’s
price. +e descriptive statistics for the bitcoin price and S&P
index covering the period from January 1, 2014, to De-
cember 31, 2018, can be found in Table 1. +e sample of the
bitcoin price and S&P index contains 1,826 and 1,258 data
points, respectively. Since stock markets are usually closed
for holidays or other reasons, we employed AE to remove the
data noise caused by default values.

To obtain a desirable model, we divide the experimental
data into three parts: 70% training dataset, 10% validation
dataset, and 20% test dataset. +e training dataset is to reach
a sound model, the validation dataset is to further determine
the parameters of the whole network, and the test dataset is
to test the generalization ability of the model.

3. Model Development

Autoencoder is a simple but powerful unsupervised deep
learning model. A typical AE consists of three layers: input
layer, hidden layer, and output layer, as shown in Figure 1.

And its output layer is an approximate reconstruction of the
input layer, which can be used for filtering and represen-
tation learning. In the proposed DLI, we adopt AE as a filter
to denoise the origin input, which is helpful for improving
prediction accuracy.

Long short-term memory is a widely used deep
learning model, which focuses on processing sequence
data, such as time series data and speech. It is an extension
of the recurrent neural network by adding the gate
mechanism, which shows a better performance in long-
term prediction. In the proposed DLI, we hope it can
achieve a long-term accurate prediction by introducing the
LSTM model.

Convolutional neural network is also a widely used deep
learning model [21], which focuses on processing time series
data (1D CNN), image (2D CNN), and video or medical
image (3D CNN). CNN includes the convolution layer and
pooling layer, as shown in Figure 1. And it can greatly reduce
the amount of parameters and speed up training by local
receptive fields and shared weights. Moreover, LeCun and
Bengio [22] showed that time series have a strong 1D
structure: variables that are spatially or temporally nearby
are highly correlated, and CNN can effectively extract the
spatial feature of time series. +erefore, CNN is introduced
into the proposed DLI to extract the spatial feature and to
speed up training.

Figure 1 shows the graphic illustration of the DLI which
consists AE, CNN, and LSTM. We assume that both S&P
index (X) and bitcoin price (Y) are time series of length T,
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∈ RT×1. Let xt

be the S&P index at time t and yt be the bitcoin price at time t.
+e DLI consists of three processing stages: denoising,

feature extracting, and forecasting. As described in Section 2,
since stock markets are usually closed for holidays or other
reasons, the S&P index time series has many default values.
+erefore, at the denoising stage, AE is firstly used for data
filtering to remove the noises in the S&P index. At the
feature extracting stage, the denoised S&P index and bitcoin

Table 1: Descriptive statistics for the bitcoin price and S&P index.

Bitcoin price S&P index
Mean 2,588.19 2,255.94
Standard error 83.06 8.81
Median 638.92 2,124.25
Mode 236.15 1,920.03
Standard deviation 3,549.46 312.58
Sample variance 1.26E+ 07 97,706.86
Kurtosis 6.11 2.03
Skewness 1.82 0.57
Range 19,319.3 1,188.86
Minimum 178.1 1,741.89
Maximum 19,497.4 2,930.75
Count 1,826 1,258
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price would be taken as the inputs of CNN and LSTM to
extract deep representations, respectively. At the forecasting
stage, we would obtain the bitcoin price prediction through a
fully connected layer.

+e optimization of the DLI model is to minimize the
reconstruction error of AE and the training error of the
whole model. At the denoising stage, the output of AE is an
approximate copy of the input. +erefore, we have to
minimize the reconstruction error between the input and the
output, which could maintain the economic significance of
the S&P index. +e reconstruction error of AE is defined as
follows:

eAE � min X − g W′ × f(WX + b) + b′( 
����

����
2
, (1)

where f(·) and g(·) are activation functions, W and W′ are
weights, and b and b′ are biases.

It is necessary for obtaining a sound model to minimize
the training error of the whole model.+e objective function
of the whole model can be described as

eDLI � min yt − yt

����
����
2
, (2)

where yt denotes the predicted value.

4. Empirical Results

In this part, we will explore the Granger causality between the
bitcoin price and S&P index. To investigate whether the S&P
index Granger-causes the bitcoin price, we firstly predict the
bitcoin price without considering the S&P index, as shown in
Figure 2. +en, for comparison, we take the S&P index as
auxiliary information to predict the bitcoin price, as shown in
Figure 3. In the same way, to investigate whether the bitcoin
price Granger-causes the S&P index, we firstly predict the
S&P index without considering the bitcoin price, as shown in
Figure 4. +en, for comparison, we take the bitcoin price as
auxiliary information to predict the S&P index, as shown in
Figure 5. In addition, we employ the traditional approach
ARIMA to demonstrate the superiority of the proposed
model. Owing to the continuous value prediction, we employ
the root mean squared errors (RMSEs) as the forecasting
performance indicator. +e smaller the RMSE value, the
better the prediction performance. And the corresponding
prediction RMSEs are shown in Table 2.

From Table 2, we can see that the bitcoin price prediction
RMSE of the DLI decreases by 92.10% and 23.32% compared
with that of the ARIMA and LSTM, respectively. And the
S&P index prediction RMSE of the DLI significantly
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Figure 1: +e architecture of the proposed DLI.
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Figure 2: +e bitcoin price prediction without consideration of the S&P index.
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Figure 3: +e bitcoin price prediction with consideration of the S&P index.
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Figure 4: +e S&P index prediction without consideration of the bitcoin price.
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decreases by 98.06% and 50.96% compared with that of the
ARIMA and LSTM, respectively. +e above results dem-
onstrate that both bitcoin price and S&P index prediction
performances would be enhanced with consideration of the
S&P index and bitcoin price, respectively. And the pre-
diction performance improvement of the S&P index is
more significant than that of the bitcoin price. +erefore,
we can conclude that there is a bidirectional but asym-
metric Granger causality between the bitcoin price and S&P
index.

5. Conclusions

In this paper, we proposed an interpretable deep learning-
based Granger causality inference architecture by integrat-
ing AE, CNN, and LSTM, named DLI. +e proposed DLI, as
a deep learning-based model, one of its advantages com-
pared with traditional econometric models is that it can
process big data efficiently and retain its original economic
significance of variables after data preprocessing.

Our two contributions are exploring the Granger cau-
sality between the bitcoin price and S&P index and pre-
dicting the bitcoin price and S&P index with a higher
accuracy. Our experiments reveal a bidirectional but
asymmetric Granger causality between the bitcoin price and
S&P index. And the DLI performs a superior prediction

accuracy by integrating variables that have causalities with
the target variable into the prediction process.

In future work, the proposed DLI can be extended to
some other economic variables to provide a reasonable
reference for portfolio management, or it can be used for
prediction in other scientific fields. Moreover, the DLI can
also be extended from two variables to multivariables to
determine causalities among the multitime series.
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Figure 5: +e S&P index prediction with consideration of the bitcoin price.

Table 2: RMSEs of the prediction.

Prediction task Whether or not to consider auxiliary information Approaches RMSE

Bitcoin price prediction
Without consideration of the S&P index ARIMA 5,932.96

LSTM 611.47
With consideration of the S&P index DLI 468.87

S&P index prediction
Without consideration of the bitcoin price ARIMA 1,253.26

LSTM 49.63
With consideration of the bitcoin price DLI 24.34

Complexity 5



References

[1] Z. Zhou, T. Ren, H. Xiao, and W. Liu, “Time-consistent in-
vestment and reinsurance strategies for insurers under multi-
period mean-variance formulation with generalized corre-
lated returns,” Journal of Management Science and Engi-
neering, vol. 4, no. 2, pp. 142–157, 2019.

[2] K. Wang, K. Li, L. Zhou et al., “Multiple convolutional neural
networks for multivariate time series prediction,” Neuro-
computing, vol. 360, pp. 107–119, 2019.

[3] A. Yadav, C. K. Jha, and A. Sharan, “Optimizing LSTM for
time series prediction in Indian stock market,” Procedia
Computer Science, vol. 167, pp. 2091–2100, 2020.

[4] M. Brière, K. Oosterlinck, and A. Szafarz, “Virtual currency,
tangible return: portfolio diversification with bitcoin,” Journal
of Asset Management, vol. 16, no. 6, pp. 365–373, 2015.

[5] G.Wang, Y. Tang, C. Xie, and S. Chen, “Is bitcoin a safe haven
or a hedging asset? evidence from China,” Journal of Man-
agement Science and Engineering, vol. 4, no. 3, pp. 173–188,
2019.

[6] D. Yermack, “Chapter 2-is bitcoin a real currency? an eco-
nomic appraisal,” in Handbook of Digital Currency, D. Lee
Kuo Chuen, Ed., pp. 31–43, Academic Press, Cambridge, MA,
USA, 2015.

[7] S. Corbet, B. Lucey, M. Peat, and S. Vigne, “Bitcoin futures-
what use are they?” Economics Letters, vol. 172, pp. 23–27,
2018.

[8] A. H. Dyhrberg, “Hedging capabilities of bitcoin. is it the
virtual gold?” Finance Research Letters, vol. 16, pp. 139–144,
2016.

[9] C. W. J. Granger, “Investigating causal relations by econo-
metric models and cross-spectral methods,” Econometrica
Journal of the Econometric Society, vol. 37, no. 3, pp. 424–438,
1969.

[10] X. Hou, S. Li, W. Li, and Q. Wang, “Bank diversification and
liquidity creation: panel granger-causality evidence from
China,” Economic Modelling, vol. 71, pp. 87–98, 2018.

[11] X. Meng and J. Han, “Roads, economy, population density,
and CO 2: a city-scaled causality analysis,” Resources, Con-
servation and Recycling, vol. 128, pp. 508–515, 2018.

[12] T. Chang, F. Gatwabuyege, R. Gupta, R. Inglesi-Lotz,
N. C. Manjezi, and B. D. Simo-Kengne, “Causal relationship
between nuclear energy consumption and economic growth
in G6 countries: evidence from panel granger causality tests,”
Progress in Nuclear Energy, vol. 77, pp. 187–193, 2014.

[13] Y. Zhao, S. A. Billings, H. Wei, F. He, and P. G. Sarrigiannis,
“A new NARX-based granger linear and nonlinear casual
influence detection method with applications to EEG data,”
Journal of Neuroscience Methods, vol. 212, no. 1, pp. 79–86,
2013.

[14] D. A. Dickey andW. A. Fuller, “Distribution of the estimators
for autoregressive time series with a unit root,” Journal of the
American Statistical Association, vol. 74, no. 366a, pp. 427–
431, 1979.

[15] H. Y. Toda and T. Yamamoto, “Statistical inference in vector
autoregressions with possibly integrated processes,” Journal of
Econometrics, vol. 66, no. 1-2, pp. 225–250, 1995.

[16] R. S. Hacker and A. Hatemi-J, “Tests for causality between
integrated variables using asymptotic and bootstrap distri-
butions: theory and application,” Applied Economics, vol. 38,
no. 13, pp. 1489–1500, 2006.

[17] E. Chong, C. Han, and F. C. Park, “Deep learning networks for
stock market analysis and prediction: methodology, data

representations, and case studies,” Expert Systems with Ap-
plications, vol. 83, pp. 187–205, 2017.

[18] A. Chen, L. Zhu, H. Zang, Z. Ding, and S. Zhan, “Computer-
aided diagnosis and decision-making system for medical data
analysis: a case study on prostate MR images,” Journal of
Management Science and Engineering, vol. 4, no. 4, pp. 266–
278, 2019.

[19] W. Long, Z. Lu, and L. Cui, “Deep learning-based feature
engineering for stock price movement prediction,” Knowl-
edge-Based Systems, vol. 164, pp. 163–173, 2019.

[20] S. Lahmiri and S. Bekiros, “Cryptocurrency forecasting with
deep learning chaotic neural networks,” Chaos, Solitons &
Fractals, vol. 118, pp. 35–40, 2019.

[21] Y. Zheng, X. L. Xu, and L. Y. Qi, “Deep CNN-assisted per-
sonalized recommendation over big data for mobile wireless
networks,” Wireless Communications & Mobile Computing,
vol. 2019, p. 6082047, 2019.

[22] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” 4e Handbook of Brain 4eory and
Neural Networks, vol. 3361, no. 10, 1995.

6 Complexity


