
Research Article
A Multiobjective Particle Swarm Optimization Algorithm
Based on Competition Mechanism and Gaussian Variation

Hongli Yu,1 Yuelin Gao ,2 and Jincheng Wang3

1School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
2Ningxia Province Key Laboratory of Intelligent Information and Data Processing, North Minzu University,
Yinchuan 750021, China
3Department of Basic, Yinchuan University, Yinchuan 750105, China

Correspondence should be addressed to Yuelin Gao; gaoyuelin@263.net

Received 1 August 2020; Revised 10 October 2020; Accepted 27 October 2020; Published 1 December 2020

Academic Editor: Zhile Yang

Copyright © 2020 Hongli Yu et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the shortcomings of particle swarm optimization (PSO) in solving multiobjective optimization problems, an
improved multiobjective particle swarm optimization (IMOPSO) algorithm is proposed. In this study, the competitive strategy
was introduced into the construction process of Pareto external archives to speed up the search process of nondominated
solutions, thereby increasing the speed of the establishment of Pareto external archives. In addition, the descending order of
crowding distance method is used to limit the size of external archives and dynamically adjust particle parameters; in order to
solve the problem of insufficient population diversity in the later stage of algorithm iteration, time-varying Gaussian mutation
strategy is used to mutate the particles in external archives to improve diversity. (e simulation experiment results show that the
improved algorithm has better convergence and stability than the other compared algorithms.

1. Introduction

In many engineering problems, the problems are composed
of multiple goals that influence and conflict with each other.
In solving practical issues, people often encounter multiple
objectives that need to obtain the best optimal solution at the
same time, that is, multiobjective optimization problems.
(e optimization problem has more than one optimization
objective and needs to be processed at the same time, which
becomes a multiobjective optimization problem (MOP).
Usually, the optimal solution of the multiobjective opti-
mization problem obtained after analyzing the objective
function is the Pareto optimal solution set [1]. (erefore, in
solving the multiobjective optimization problem [2], the
following three key elements need to be solved: (1) (e
solution set is as close to the Pareto front as possible. (2)
Keep the good diversity of the population as much as
possible. (3) Make the particles effectively and uniformly
distributed in the solution space. In recent years, in order to
effectively solve MOP, multiobjective optimization

algorithms based on different optimization theories have
been continuously proposed. Deb et al. [3] proposed a
multiobjective evolutionary computing algorithm based on
nondominated sorting, called NSGA-II, and introduced a
new selection operator into the algorithm to reduce the
complexity of the algorithm. Zitzler et al. [4] proposed
SPEA-II using the idea of Pareto domination. Coello et al. [5]
proposed an improved multiobjective particle swarm al-
gorithm that uses the concept of Pareto dominance to de-
termine the flight direction of a particle and it maintains
previously found nondominated vectors in a global repos-
itory that is later used by other particles to guide their own
flight. (is algorithm improves the efficiency of solving
multiobjective problems. Tsai et al. [6] proposed an im-
proved multiobjective particle swarm optimizer with pro-
portional distribution and jump improved operation, named
PDJI-MOPSO, for dealing with multiobjective problems.
PDJI-MOPSO maintains diversity of newly found non-
dominated solutions via proportional distribution and
combines advantages of wide-ranged exploration and

Hindawi
Complexity
Volume 2020, Article ID 5980504, 23 pages
https://doi.org/10.1155/2020/5980504

mailto:gaoyuelin@263.net
https://orcid.org/0000-0003-2021-2097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5980504

extensive exploitations of PSO in the external repository
with the jump improved operation to enhance the solution
searching abilities of particles. Introduction of cluster and
disturbance allows the proposed method to sift through
representative nondominated solutions from the external
repository and prevent solutions from falling into local
optimum. Mnif et al. [7] introduced a new approach called
multiobjective firework algorithm (MFWA). Mellouli et al.
[8], in order to solve the two-dimensional cutting stock
problem, combined genetic algorithm with linear pro-
gramming model to estimate the best Pareto frontier for
these two goals. (e Pareto front provided by this algorithm
is very close to the optimal front. Ali et al. [9] proposed a
modified variant of Differential Evolution (DE) algorithm
for solving multiobjective optimization problems. (e
proposed algorithm, named Multiobjective Differential
Evolution Algorithm (MODEA), utilizes the advantages of
Opposition-Based Learning for generating an initial pop-
ulation of potential candidates and the concept of random
localization in mutation step. Zhou et al. [10] proposed a
generic transformation strategy that can be referred to as the
Mucard strategy, which converts an MSCCOP into a low-
dimensional multiobjective optimization problem (MOP) to
simultaneously obtain all the (near-) optima of the con-
strained optimization problems in a single algorithmic run.
Vargas et al. [11] studied the performance of the combi-
nation of adaptive penalty technology called APM and
GDE3 algorithm. Sun et al. [12] proposed a novel multi-
objective particle swarm optimization algorithm based on
Gaussian mutation and an improved learning strategy. (is
method uses Gaussian mutation strategy to improve the
consistency of external archives and current population. In
order to improve the global optimal solution, different
learning strategies are proposed for nondominant and
dominant solutions. An indicator is proposed tomeasure the
distribution width of nondominated solution sets generated
by various algorithms. Coello et al. [13] proposed that the
external set could be used to retain the nondominated so-
lutions found in the iterative process, which improved the
efficiency of the algorithm. Tsai et al. [6] used the specific
global optimal value to replace the individual optimal value
fully using the guiding role of the global optimal value.
Zhang [14] proposed an improvedMOPSO algorithm with a
mutation operator that can maintain the diversity of optimal
solutions and has good convergence. Zhang [15] proposed a
MOPSO algorithm based on fuzzy dominance, and the
experimental results showed the effectiveness of the pro-
posed algorithm. Tao [16] proposed a multiobjective opti-
mization algorithm combining PSO and difference
algorithms. By generating common new particles and
updating the particle velocity formula, the search efficiency
of the algorithm was effectively improved. Li [17] proposed
an improved MOPSO algorithm that updates the optimal
position of all particles through the Pareto dominance re-
lationship. (e experiment shows that the proposed algo-
rithm can obtain a better noninferior solution. Ni [18]
proposed an adaptive dynamic recombinant PSO algorithm
that adopts a high-level clustering algorithm. (e

experimental results show that this algorithm can improve
the convergence speed and evolutionary ability of the
algorithm.

More and more improved algorithms and strategies are
used to solve various multiobjective optimization problems.
However, few researchers have improved the algorithm from
the perspective of the balance between local search capability
(exploitation) and global search capability (exploration) to
solve multiobjective optimization problems. Related re-
search has pointed out that the effective balance between the
exploration and exploitation of intelligent algorithms will
have a vital impact on the optimization performance of the
algorithm [19]. Different from other study results, in this
study, we proposed a multiobjective particle swarm opti-
mization algorithm based on competition mechanism
strategy and Gaussian mutation to balance the exploration
and exploitation of the algorithm and enable the algorithm
to search the optimal location and converge to the Pareto
front more quickly. Finally, through the simulation test of
the multiobjective test functions and the comparison with
other multiobjective optimization algorithms, the results
show that the algorithm proposed in this paper is superior to
the compared algorithm in terms of convergence and
population distribution.

(e rest of the paper is organized as follows. Section 2
describes the multiobjective optimization problem and the
basic concept. Section 3 presents the PSO algorithm. In
Section 4, an improved multiobjective particle swarm op-
timization algorithm is introduced. In Section 5, the eval-
uation indicators and test functions used are introduced.(e
numerical experiment results and data analysis are described
in Section 6. Finally, conclusions and respects are presented
in Section 7.

2. MultiobjectiveOptimizationProblemandthe
Basic Concept

2.1. Formal Definition of Multiobjective Optimization
Problem. Generally, a multiobjective optimization problem
(MOP) includes a set of objective functions and some
constraints\enleadertwodots. Without loss of generality, an
MOP with m objective functions and n decision variables
can be described as follows [20, 21]:

minf(x) � f1(x), f2(x), . . . , fm(x)(􏼁

s.t.

gi(x)≤ 0, i � 1, 2, . . . , p

hj(x) � 0, j � 1, 2, . . . , q

x ∈ R
n
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where x � (x1, x2, . . . , xn ∈ Rn) are the n-dimensional de-
cision variables. f � (f1, f2, . . . , fm) is the objective
function, which contains one or more objective functions;
and f � (f1, f2, . . . , fm) is the multiobjective function
(m≥ 2); fk(x): Rn⟶ R, (k � 1, 2, . . . , m) is the k − th
objective function; gi: Rn⟶ R, (i � 1, 2, . . . , p) is the i −

th inequality constraint; hj: Rn⟶ R, (j � 1, 2, . . . , q)

represents the j − th equality constraint condition.

2 Complexity

X � x ∈ Rn|gi ≤ 0, i � 1, 2, . . . , p; hj � 0, j � 1, 2, . . . , q􏽮 􏽯

is the feasible domain of decision variables.

2.2. Pareto Optimal Solution Concepts. (e Pareto optimal
solution was discovered by the Italian economist Pareto. It
was originally limited to the field of economics; this rule has
gradually extended to various fields of social life and was
deeply recognized by people as well. (e strict Pareto op-
timal solution can be described by multiobjective mathe-
matical programming. Assuming that there are several
objectives at the same time, these objectives are independent
of each other and cannot be weighed and summed. New
optimization theories are needed to solve such problems.
Generally, if one subobjective is improved, other sub-
objectives will be sacrificed. So, it is impossible to improve all
subobjectives at the same time. Pareto optimal solution is
also called nondominated solution. In a multiobjective
optimization problem, due to factors such as conflict and
incomparability among various subobjectives, a solution is
often the best in one subobjective and may be the worst in
other subobjectives; if there is one solution, improving any
subobjective function will inevitably weaken at least one
other subobjective function, which is called nondominated
solution or Pareto optimal solution. All Pareto optimal
solutions constitute the Pareto optimal solution set, and
these solutions are mapped by the objective function to form
the Pareto optimal front. Pareto proposed the concept of
nondominated set of multiobjective solutions in 1986, which
is defined as follows: assuming any two solutions S1 and S2
for all objectives, if S1 is better than S2, then we say that S1
dominates S2, and if S1 is not dominated by other solutions,
then S1 is called a nondominated solution, also called a
Pareto optimal solution.

2.3. Related Definitions of Multiobjective Optimization
Problem. (e following introduces some basic concepts in
the multiobjective optimization problem [22, 23].

Definition 1. (feasible domain). In the decision space, the
feasible domain is represented by X, and its expression is

X � x ∈ R
n
|gi ≤ 0, i � 1, 2, . . . , p; hj � 0, j � 1, 2, . . . , q􏽮 􏽯.

(2)

Definition 2. (feasible solution). For the point x in the
decision space, if x ∈ X, x is the feasible solution.

Definition 3. (Pareto dominates). For any vector x1, x2, if
and only if

∀i ∈ R
n
, fi x1(􏼁≤fi x2(􏼁,

∧∃j ∈ R
n
, fj x1(􏼁<fj x2(􏼁,

(3)

then x1 dominates x2, so x1≺x2.

Definition 4. (Pareto optimal solution). (e Pareto optimal
solution is also known as the nondominant solution. For a

solution x∗ in the feasible domain, if x∗ is not dominated by
any other solution in the feasible domain, x∗ is called the
Pareto optimal solution, and its definition is as follows:

∃x ∈ X: x≺x∗. (4)

Definition 5. (Pareto optimal solution set, PS). (e set of all
nondominated solutions in the feasible domain is called the
Pareto optimal solution set and can be defined as follows:

PS � x
∗
|∃x ∈ X: x≺x∗􏼈 􏼉. (5)

Definition 6. (Pareto optimal frontier, PF). (e target vector
set corresponding to the Pareto optimal solution set is the
Pareto optimal frontier, also known as the Pareto optimal
front end or Pareto equilibrium surface, which is defined as
follows:

PF � F x
∗

(􏼁 � f1 x
∗

(􏼁, f2 x
∗

(􏼁 ,(. . . , fd x
∗

(􏼁􏼁|x
∗ ∈ PS􏼈 􏼉.

(6)

3. Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is a heuristic swarm
intelligence algorithm that solves optimization problems by
imitating the swarm behavior of birds [24]. (e algorithm
has high stability and good adaptability. It is an intelligent
global optimization algorithm that has attracted the atten-
tion of many scholars in recent years. Each particle in the
PSO algorithm is equivalent to a bird in the population, so
each particle has its own speed and position. (rough self-
learning and social learning, the particles move in the so-
lution space to obtain the global optimum solution. As-
suming that the population size of the particle is N and the
dimension of the space is D, the update formula for the
velocity and position of the particle are as follows:

]t+1
ij � ω]t

ij + c1r
k
1 pbesttij − x

t
i􏼐 􏼑 + c2r

k
2 gbesttj − x

t
i􏼐 􏼑,

x
t+1
ij � x

t
ij +]t+1

ij ,
(7)

where i (i≤N) is the i − th particle, j (j≤D) is the velocity
(position) of the j − th dimension, t is the current iteration
number, velocity and position are limited in a certain range,
ω is the inertia weight, c1 and c2 are two positive constants in
[0, 4] which represent the learning factors, r1 and r2 are two
random numbers in [0, 1], pbestij represents a coordinate
that defines a particle pbesti in the j − th dimension of the
individual best position, and gbestj represents a coordinate
that defines the global best position in the j − th dimension
of the population. ω is determined by the following formula:

ω � ωmax − t∗
ωmax − ωmin(􏼁

Tmax
, (8)

where ωmax,ωmin are the maximum and minimum values of
inertia weight. Generally the value is set as 0.9 and 0.4, t

represents the number of current iterations, and Tmax is the
maximum number of iterations.

Complexity 3

4. An Improved Multiobjective Particle Swarm
Optimization Algorithm

4.1. Competition Mechanism. (e competition mechanism
of this paper can quickly search the disposal solution set and
build the external archives set in the MOPSO algorithm.
First, select a particle x from the population s, and generally
select the first particle in the population.(en, let s � s − x{ }

and compare each particle in the x population on the basis of
the objective function value of Pareto dominance relations.
If x≺y, particle y will be removed from the population s;
otherwise, let x � y. Finally, let n � n∪ x{ } until s � ϕ , at
which time n is the nondominant solution set to be solved.
(is method is also adopted when the nondominant solution
set enters the external archive set. As more and more
particles are removed, the number of times the algorithm
runs is less, which can effectively reduce complexity of the
algorithm and improve search speed of the algorithm. (e
pseudocode of the algorithm is shown in Table 1.

4.2. External Archives Maintenance Strategy. In solving a
MOPSO algorithm, each iteration produces a set of Pareto
solutions. (erefore, external archives are needed to store
the nondominated solutions produced by each iteration, and
the solution set forms the Pareto front [25]. After each it-
eration, the Pareto front is also updated. However, as the
number of iterations increases, the size of external archives
will increase, and the complexity of the algorithm will also
greatly increase. (erefore, it is necessary to limit the size of
external archives to reduce the complexity of the algorithm.
(is paper uses the descending order of crowded distance to
limit the size of the external archives set.

4.3. Selecting pbest and gbest. In a MOPSO algorithm,
selecting the gbest is very important, which directly affects
the convergence speed and capabilities. In IMOPSO, the size
of the particle population is fixed, and the particles will not
be deleted from the population, but the position of the
particles in the population needs to be adjusted to update
pbest and gbest. Inmultiobjective conditions, gbest normally
exists in a group of noninferior solutions and is not a single
gbest position. When gbest and pbest are nondominated,
each particle may have more than one pbest. (erefore, it is
necessary to choose pbest and gbest by the appropriate
method.

4.3.1. Selecting pbest. (e specific process is as follows:
pbestti is used to record the individual position and save the
nondominated solution of the particles in the evolution
process. (e updating formula of pbestti for the t − th
generation particles is as follows:

pbestti

pbestti , if f pbestti􏼐 􏼑≺f x
t
i􏼐 􏼑􏼐 􏼑,

x
t
i , if f pbestti􏼐 􏼑≻f x

t
i􏼐 􏼑􏼐 􏼑,

randselect pbestti , x
t
i􏼐 􏼑, if(otherwise),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where pbestti is the optimal position of the i − th particle in
the previous t generation and xt

i is the position of the i − th
particle in the t − th generation.

4.3.2. Selecting gbest. (e specific process is as follows: In the
selection process of gbest, this paper adopts the Pareto
principle, also known as the asymmetry principle or the 80/
20 law; that is, 80% of the results in practical issues are
produced by 20% of key factors [26].(erefore, in this study,
the global optimal value is randomly selected from the top
20% nondominated solutions of the external archive.

4.4. Parameter Improvement Strategy. Inertia weight ω and
the learning factors c1 and c2 in the PSO algorithm have a
considerable influence on the searching ability of the pop-
ulation in the target region. However, the traditional linear
adjustment strategies for these two types of parameters
cannot effectively reflect the search process of the algorithm.
(erefore, this article adopts a nonlinear dynamic adjust-
ment strategy to more accurately reflect the search process of
the algorithm and to more effectively balance the exploi-
tation and exploration.

4.4.1. Inertia Weight. (e inertia weight ω determines the
influence of the velocity of the previous generation particle
on the current velocity.(e appropriate adjustment rule ofω
can effectively balance the exploitation and exploration of
the algorithm. If ω � 0, the particle speed is determined by
the current position, and the particle has no inheritance to
the speed of the previous generation, so the algorithm is easy
to fall into the local optimum. If ω≠ 0, the larger inertial
weight can strengthen the global search capability, and the
smaller inertial weight can strengthen the local search ca-
pability. In order to effectively balance the exploration and
exploitation and improve the search performance of the
algorithm, this paper adopts a new strategy for adjustment;
the updated formula is as follows:

ω(t) � ωmax ∗
1

1 + t/p1(􏼁
p2

+ ωmin, (10)

where ω(t) changes with the number of iterations. In this
paper, p1 is one-third of the maximum number of iterations.

Table 1: Constructing nondominated set n by competition
mechanism.
Call function: n � find_nondominated_set (s)
(1) n �∅
(2) while (|s| > 1){
(3) x � first (s); //Assign the first particle
(4) //in population s to x
(5) s � s − {x};
(6) for (each y ∈ s) {
(7) if (x dominates y) s � s − {y};
(8) else {x}� {y};
(9) } //end for
(10) n � n+ {x};
(11) }//end while

4 Complexity

p2 is 10. ωmax is 0.5. ωmin is 0.4. t is the number of current
iterations. Figure 1(a) shows the change curve of the new
inertia weight.

4.4.2. Learning Factor. (e learning factor determines the
influence of self-learning ability and social-learning ability
on particle motion during the search process, which reflects
the state of information exchange between particles. In
recent years, many scholars have revised the learning factors.
Some scholars have proposed asynchronous learning factors;
that is, in the initial search phase of the algorithm, the
particles have greater self-learning ability and smaller social-
learning ability; in the later phase of the algorithm search,
the asynchronous learning factors can enhance the ability of
particles to move to the global optimal position and obtain
high-quality particles, which makes the algorithm have a
higher probability of converging to the global optimal so-
lution. For the learning factors, the nonlinear function of the
new inertia weight mentioned above [27] is adopted in this
paper, and its updated formula is as follows:

c1(t) � 1.167 × ω(t)
2

− 0.1167 × ω(t) + 0.66,

c2(t) � 3 − c1(t),
(11)

where, through the above formula, it is known that the
learning factor also adjusts dynamically with the adjustment
of inertia weight. Figure 1(b) shows the change curve of the
learning factor.

4.5. Time-Varying Gaussian Mutation. In solving the
problem of multiobjective optimization, the fast conver-
gence of the PSO may not be advantageous. Instead, it may
make the population prematurely gather around certain
particles or a certain area and lose diversity, which is easy to
make the algorithm show premature phenomena.(erefore,
to enhance the population diversity and avoid the algorithm
falling into local optimum, based on literature [13], this
paper designs a kind of time-varying particle mutation to
produce new solutions through mutation operators to ex-
ternal archives. (e perturbation formula is as follows:

x
t+1
i

x
t
i + rg ∗mutrange, Pm ≥ rand,

x
t
i , Pm < rand,

⎧⎪⎨

⎪⎩

Pm � 1 −
t

tmax
􏼠 􏼡

5/Mr

,

mutrange � (ub(j) − lb(j))∗Pm,

(12)

where Pm is the mutation probability. rg is subject to a
Gaussian distribution with a mean of 0 and a variance of 1.
mutrange represents the scope of action of variation. ub(j)

and lb(j) are the upper bound and lower bound of decision
variables of the j − th dimension, respectively. Mr is the
mutation parameter, and the value in this paper is 0.5.

4.6. <e Specific Steps of the IMOPSO Algorithm

Step 1. Initialize the group’s position and speed. Set the
iteration times, population size, and algorithm parameters.

Step 2. Calculate the fitness value of each particle. Generate
a nondominating solution set according to dominating
relation.

Step 3. Update the external archive set.

Step 4. Arrange each particle of the external archival set in
descending order according to the crowding distance and
determine whether the set size number is exceeded. If it is
exceeded, clear the nondominant solution beyond the size.

Step 5. Update the individual optimal position; if it is the
first generation, directly select the initial position of each
particle as the individual optimal value; otherwise, update
according to the Pareto dominance relationship.

Step 6. Randomly select the global optimal location from the
external archive set ranked in the top 20% nondominant
solution.

Step 7. Update the speed formula. If the particle velocity
]i >]max, then let]i �]max; if the particle velocity]i <]min,
then let]i �]min.

Step 8. Update the position of the next generation of each
particle and carry out time-varying Gaussian variation on
the particles in each external archive according to the
probability P to avoid premature precocity of the algorithm.

Step 9. Determine whether the condition (the maximum
number of iterations) is met, and if so, end the loop.
Otherwise, return to Step 2 to continue the iteration.

5. Algorithm Performance Evaluation Indexes
and Test Functions

5.1. Performance Measurement. (e quality evaluation
mainly focuses on the distance between the solution pro-
duced by the algorithms and the Pareto optimal solution for
MOPs and the extent covered by the solution produced by
the algorithms. In this paper, two performance indicators are
adopted.

5.1.1. Generational Distance. Generational Distance (GD) is
used to evaluate the convergence performance of multi-
objective algorithms. It is used to calculate the average
minimum Euclidean distance from each point in the solu-
tion set n to the reference set n∗. (e calculation formula is
defined as follows [28]:

GD n, n
∗

(􏼁 �

������������������

􏽐y∈nminx∈n∗dis(x, y)
2

􏽱

|n|
, (13)

Complexity 5

where n is the solution set obtained by the algorithm, n∗ is a
set of uniformly distributed reference points sampled from
true Pareto front (PF), and dis(x, y) is the Euclidean dis-
tance between the point y in the solution set n and the point
x in the reference set n∗. (e smaller GD is, the closer the
Pareto optimal solution set obtained by the algorithm is to
the true Pareto front, and the better convergence of the
algorithm is. (e ideal value of GD is 0; that is, the Pareto
optimal solution obtained by the algorithm is on the true
Pareto front.

5.1.2. Spacing. Spacing (SP) is a parameter used to evaluate
the performance of the Pareto optimal solution obtained by
the algorithm. (e mathematical expression is [29, 30]

SP �

����������������

1
|n| − 1

􏽘

|n|

i�1
d − di􏼐 􏼑

2

􏽶
􏽴

, (14)

where n represents the number of nondominated solutions
found; d is the average of all di, and di is calculated as
follows:

di � minj�1,...,|n| 􏽘

k

m�1
fm xi(􏼁 − fm xj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎧⎨

⎩

⎫⎬

⎭, (15)

where k represents the number of objective functions. (e
smaller SP is, the better the distribution of the solution
obtained by the algorithm is. (e ideal value of SP is 0; that
is, the Pareto optimal solution obtained by the algorithm is
evenly distributed in the target space.

5.1.3. Inverted Generational Distance. GD can only evaluate
the convergence of the algorithm. In order to further
evaluate the comprehensive performance of the algorithm,
Inverted Generational Distance (IGD) was proposed. IGD
represents the average value of the Euclidean distance

between each reference point in the reference set n∗ and the
closest solution to n. (e closer the IGD value is to 0, the
better the overall performance of the algorithm is. (e
calculation formula of IGD is as follows:

IGD n, n
∗

(􏼁 �
􏽐x∈n∗miny∈n∗dis(x, y)

2

n
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (16)

where n is the solution set obtained by the algorithm, n∗ is a
set of uniformly distributed reference points sampled from
true PF, and dis(x, y) is the Euclidean distance between the
point x in the reference set n∗ and the point y in the solution
set n.

5.2. Test Functions. To test the performance of the IMOPSO
algorithm, this paper selects the classic multiobjective test
functions for the simulation test [27, 31]. (e test functions
are expressed in Tables 2 and 3.

6. Experimental Analysis and Comparison

(rough experiments, the IMOPSO algorithm in this paper
was compared with the experimental results of the NSGA-II,
SPEA-II, MOPSO, and NSGA-III [32] algorithms. (e
population size was set as 100, the maximum number of
iterations was set as 10,000, and the size of the external
archive was set as 100. (e specific parameters of each al-
gorithm were set as shown in Table 3. Among them, pc is the
crossover probability, pm is the mutation probability, mu is
the mutation rate, sep is the variable step length, ng is the
grid control maximal particle number, cg is the cross
probability, aph is the expansion probability, and t1 and t2
are mutation parameters. (e NSGA-II, SPEA-II and
MOPSO, and NSGA-III and IMOPSO independent algo-
rithms were ran 30 times on each test function. Tables 4–6,
respectively, show the convergence, distribution, and
comprehensive performance of the algorithms. (e test was

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Ch
an

ge
 in

 in
er

tia
 w

ei
gh

t

50 100 150 2000
Iteration

(a)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Ch
an

ge
 in

 le
ar

ni
ng

 fa
ct

or

50 100 150 2000
Iteration

c1
c2

(b)

Figure 1: (e curves of (a) new inertia weight and (b) learning factor.

6 Complexity

Table 2: Test functions: ZDT.

Name Objective functions Dimension Variable bounds

ZDT1

minf1(x) � x1

minf2(x) � g(x)(1 −

���������

(x1/g(x))

􏽱

)

g(x) � 1 + 9􏽘
n

i�2
xi/(n − 1)

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

30 xi ∈ [0, 1]

ZDT2

minf1(x) � x1
minf2(x) � g(x)(1 − (x1/g(x))

2
)

g(x) � 1 + 9􏽘
n

i�2
xi/(n − 1)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

30 xi ∈ [0, 1]

ZDT3
minf1(x) � x1

minf2(x) � g(x)(1 −

�������

x1/g(x)

􏽱

− (x1/g(x))sin(10πx1))g(x) � 1 + 9􏽘

n

i�2
xi/(n − 1)

⎧⎪⎪⎨

⎪⎪⎩
30 xi ∈ [0, 1]

ZDT4

minf1(x) � x1

minf2(x) � g(x) 1 −

�������

x1/g(x)

􏽱

􏼚 􏼛

g(x) � 1 + 10(n − 1) + 􏽘
n

i�2
(x

2
i − 10 cos(10πxi))

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

10 xi ∈ [0, 1] xi ∈ [− 5, 5]

ZDT6

minf1(x) � x1
minf2(x) � g(x) 1 − (x1/g(x))

2
􏽮 􏽯

g(x) � 1 + 10(n − 1) + 􏽘
n

i�2
(x

2
i − 10 cos(10πxi))

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10 x1 ∈ [0, 1]

Table 3: Test functions: DTLZ.

Name Objective functions Dimension Variable bounds

DTLZ1

f1(x) � 0.5(1 + g(xM))􏽙
m− 1
i�1 xi

fm�2;M− 1(x) � 0.5(1 + g(xM))(1 − xM− m+1)􏽙
m− 1
i�1 xi

fM(x) � (1 + g(xM))sin(xiπ/2)

g(x) � (100|xM| + 􏽘
xi∈M

(X − 0.5)
2

− cos(20π(x − 0.5)))

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

30 xi ∈ [0, 1]

DTLZ2

minf1(x) � 0.5(1 + g(xM))􏽙
M− 1
i�1 cos(xiπ/2)

minfm�2;M− 1(x) � 0.5(1 + g(xM))

sin(xM− m+1π/2)􏽙
M− 1
i�1 cos(xiπ/2)

minfM(x) � (1 + g(xM))sinxiπ/2
g(xM) � 􏽘

xi∈M
(xi − 0.5)

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 xi � ∈ [0, 1]

DTLZ3

f1 � 0.5(1 + g(xM)) 􏽙

M

i�1
− 1 cos(fracxi2)

fm�2;M− 1(x) � 0.5(1 + g(xM))sin(πxM− m+1/2)

fM(x) � 100(|xM| + 􏽘
xi∈M

(x − 0.5)
2

− cos(20π(xi − 0.5)))

g(x) � 􏽘
xi∈M

(x − 0.5)
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 xi ∈ [0, 1]

DTLZ4

f1(x) � 0.5(1 + g(xM)) 􏽙
M

i�1
− 1 cos(xiπ/2)

fm�2;M− 1(x) � 0.5(1 + g(xM))

sin(πxM− m+1/2) 􏽙
M

i�1
− 1 cos(πxi/2)

fM(x) � (1 + g(xM))sin(x
a
1π)

g(x) � 􏽘
xi∈M

(X − 0.5)
2
, a � 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 xi ∈ [0, 1]

DTLZ5

f1(x) � 0.5(1 + g(xM)) 􏽙

M

i�1
− 1 cos(π(1 + 2g(xM)x1)/2(2 + (1 + g(xM))))

fm�2;M− 1(x) � 0.5(1 + g(xM))·

sin(πxM− m+1/2) 􏽙
M

i�1
− m cos(π(1 + 2g(xM)x1)/2(2 + (1 + g(xM))))

fM(x) � (1 + g(xM))sin(πxi/2)

g(x) � 􏽘
xi∈M

(x − 0.5)
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 xi ∈ [0, 1]

Complexity 7

completed in MATLAB 2018a with a Windows 10 system,
and the computer was configured with an Intel Core
i7 3.40GHz processor.

(e numerical experiment results are shown in
Tables 4–6, and the optimal results are marked in bold.
Table 4 gives the numerical experiment result of the

Table 3: Continued.

Name Objective functions Dimension Variable bounds

DTLZ6

f1(x) � 0.5(1 + g(xM)) 􏽙

M

i�1
− 1 cos(π(1 + 2g(xM)xi)/2(2 + (1 + g(xM)))),

fm�2;M− 1(x) � 0.5(1 + g(xM))·

sin(πxM− m+1/2) 􏽙

M

i�1
− m cos(π(1 + 2g(xM)xi)/2(2 + (1 + g(xM))))

fM(x) � (1 + g(xM))sin(πxi/2)

g(x) � 􏽘
xi∈M

xi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 xi ∈ [0, 1]

DTLZ7

f1(x) � x1
f2(x) � x2
f3(x) � (1 + g(xk))h(f1, f2, g)

g(xk) � 1 + 9/|xk| 􏽘
xi∈xk

xih(f1, f2, g) � k − 􏽘
k− 1
i�1 ((fi/1 + g)(1 + sin(3πfi)))

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

30 x∈[0, 1]

Table 4: Parameters setting.

Algorithms Parameters
NSGA-II pc � 0.8, pm � 0.3, mu � 0.02, sep � 0.1
SPEA-II pc � 0.5, pm � 0.5, ng � 7, cg � 0.15
MOPSO c1 � c2 � 2, w � 0.5, wp � 0.9, ng � 7 ,aph � 0.1
NSGA-III t1 � 20, t2 � 20, pc � 0.8, mu � 0.3
IMOPSO wmax � 0.5, wmin � 0.4

Table 5: Statistical results of GD obtained by different methods for different test functions.

Test functions GD NSGA-II SPEA-II MOPSO NSGA-III IMOPSO

ZDT1 Average 7.71E − 3 2.09E − 2 1.01E − 2 2.84E − 3 1.08E − 4
Std. dev. 7.28E − 4 2.31E − 2 9.59E − 4 5.95E − 4 1.37E − 5

ZDT2 Average 7.69E − 3 2.32E − 2 2.53E − 2 9.60E − 4 4.15E − 3
Std. dev. 8.98E − 3 1.92E − 3 4.81E − 3 4.83E − 4 6.47E − 3

ZDT3 Average 6.74E − 4 1.15E − 3 1.25E − 1 1.69E − 3 6.91E− 5
Std. dev. 1.59E − 4 5.85E − 4 2.91E − 2 4.51E − 4 3.25E − 5

ZDT4 Average 2.34E − 2 1.22E+ 0 6.41E − 3 6.19E − 3 1.24E − 3
Std. dev. 2.60E − 2 1.78E+ 0 7.63E − 3 1.73E − 3 1.07E − 3

ZDT6 Average 8.69E − 3 5.37E − 3 2.76E − 1 6.53E − 2 2.29E − 3
Std. dev. 3.69E − 3 5.43E − 3 3.43E − 1 3.29E − 2 1.79E − 3

DTLZ1 Average 4.19E − 2 1.94E − 1 7.11E+ 0 4.14E − 2 2.15E− 2
Std. dev. 5.18E − 2 2.78E − 1 1.92E+ 0 3.36E − 2 2.09E − 2

DTLZ2 Average 1.31E − 3 1.47E − 3 8.90E − 3 6.08E − 5 1.68E − 3
Std. dev. 6.54E − 3 2.00E − 4 2.70E − 3 4.65E − 5 3.73E − 4

DTLZ3 Average 1.48E+ 0 1.14E+ 1 2.91E+ 1 2.89E+ 1 1.09E + 0
Std. dev. 3.74E+ 0 8.16E+ 0 1.03E+ 1 5.39E+ 1 3.87E − 1

DTLZ4 Average 1.98E − 3 2.09E − 3 3.96E − 2 5.76E − 4 1.56E − 3
Std. dev. 2.30E − 4 1.36E − 4 2.59E − 2 1.39E − 4 2.13E − 4

DTLZ5 Average 2.70E − 4 3.19E − 4 1.58E − 3 3.25E − 4 1.88E − 4
Std. dev. 7.01E − 5 8.19E − 5 1.06E − 3 8.32E − 5 6.59E − 5

DTLZ6 Average 1.31E − 5 5.94E − 3 7.11E − 2 4.26E − 1 5.19E− 6
Std. dev. 4.53E − 5 9.37E − 2 4.28E − 3 1.72E − 2 2.97E − 7

DTLZ7 Average 7.06E − 3 6.18E − 3 5.97E − 1 6.85E − 3 3.13E− 3
Std. dev. 1.56E − 3 1.60E − 3 4.03E − 1 2.24E − 3 1.06E − 3

8 Complexity

evaluation index GD, which is the convergence performance
of the algorithm; Table 5 gives the numerical experiment
result of the evaluation index SP, which is the algorithm
distribution index; Table 6 gives the numerical experiment
result of the evaluation index IGD, which represents the

algorithm comprehensive performance. It can be seen from
Table 4 that, compared with the other compared algorithms,
in the test functions, ZDT, IMOPSO has obtained the best
results 4 times, and NSGA-III has obtained the best results
once; in the test functions, DTLZ, IMOPSO has obtained the

Table 6: Statistical results of SP obtained by different methods for different test functions.

Test functions SP NSGA-II SPEA-II MOPSO NSGA-III IMOPSO

ZDT1 Average 7.33E − 3 8.97E − 3 1.28E − 2 1.08E − 2 6.47E− 3
Std. dev. 6.77E − 4 1.91E − 3 2.18E − 3 1.65E − 3 6.34E− 4

ZDT2 Average 7.85E − 3 8.99E − 3 7.88E − 3 1.19E − 2 7.79E− 3
Std. dev. 2.34E − 3 4.61E − 3 5.74E − 3 5.76E − 3 1.75E− 3

ZDT3 Average 8.16E − 3 1.05E − 2 1.37E − 2 1.06E − 2 7.101E − 3
Std. dev. 9.32E − 4 2.06E − 3 5.40E − 3 1.46E − 3 9.28E− 4

ZDT4 Average 2.76E − 2 1.36E − 1 3.70E − 2 6.09E − 3 1.81E− 2
Std. dev. 2.79E − 2 3.62E − 1 3.93E − 2 2.83E − 2 5.27E− 2

ZDT6 Average 1.73E − 2 1.61E − 2 8.82E − 2 4.23E − 2 1.19E− 2
Std. dev. 3.55E − 2 3.80E − 2 6.13E − 2 2.08E − 2 4.01E− 3

DTLZ1 Average 5.81E − 2 1.44E+ 0 5.51E+ 0 6.13E − 2 3.93E − 1
Std. dev. 4.41E − 2 3.27E+ 0 1.45E+ 0 3.27E − 2 4.01E − 1

DTLZ2 Average 6.17E − 2 5.20E − 2 6.15E − 2 5.78E − 2 5.95E− 2
Std. dev. 5.23E − 3 5.61E − 3 9.19E − 3 1.79E − 3 4.90E− 3

DTLZ3 Average 7.71E+ 0 2.56E+ 0 6.63E+ 1 1.70E+ 1 1.32E+ 0
Std. dev. 3.18E+ 0 5.06E+ 0 2.89E+ 1 5.32E − 1 2.20E+ 0

DTLZ4 Average 5.44E − 2 4.426E − 2 4.97E − 2 5.17E − 2 6.12E − 2
Std. dev. 1.36E − 2 4.76E − 3 3.12E − 2 2.15E − 2 4.87E − 3

DTLZ5 Average 1.04E − 2 1.32E − 2 1.38E − 2 1.52E − 2 9.79E− 3
Std. dev. 1.18E − 3 2.12E − 3 1.06E − 3 2.91E − 3 8.04E− 4

DTLZ6 Average 1.13E − 2 2.793E − 1 1.38E − 2 2.19E − 2 1.22E − 2
Std. dev. 8.87E − 4 5.09E − 2 1.01E − 1 2.50E − 2 1.25E − 3

DTLZ7 Average 7.03E − 2 4.55E − 2 5.97E − 1 6.48E − 2 3.56E− 2
Std. dev. 6.89E − 3 1.63E − 2 2.65E − 2 8.90E − 3 2.33E− 3

Table 7: Statistical results of IGD obtained by different methods for different test functions.

Test functions IGD NSGA-II SPEA-II MOPSO NSGA-III IMOPSO

ZDT1 Average 1.24E − 2 3.82E − 2 9.60E − 1 2.84E − 2 4.87E− 3
Std. dev. 2.03E − 3 4.08E − 2 2.39E − 1 6.75E − 3 2.15E− 4

ZDT2 Average 2.02E− 2 9.61E − 2 1.87E+ 0 5.26E − 2 4.54E − 2
Std. dev. 1.63E− 2 7.66E − 2 3.85E − 1 3.32E − 2 1.24E − 1

ZDT3 Average 1.10E − 2 3.70E − 2 1.047E+ 0 2.34E − 2 5.46E− 3
Std. dev. 5.72E − 3 2.70E − 2 2.05E − 1 5.57E − 3 2.19E− 4

ZDT4 Average 1.85E − 1 2.21E − 1 1.90E+ 1 6.04E − 1 2.66E+ 0
Std. dev. 1.25E − 1 1.32E − 1 8.20E+ 0 2.33E − 1 2.30E+ 0

ZDT6 Average 6.14E − 2 2.68E − 2 1.30E+ 0 2.82E − 1 4.29E− 3
Std. dev. 2.44E − 2 9.81E − 3 1.91E+ 0 1.20E − 1 1.97E− 4

DTLZ1 Average 2.69E − 1 1.65E+ 0 1.19E+ 1 2.51E − 1 1.58E− 1
Std. dev. 3.14E − 1 1.33E+ 0 4.63E+ 0 2.10E − 1 1.44E− 1

DTLZ2 Average 6.92E − 2 6.72E − 2 5.50E− 2 1.04E − 1 7.2E − 2
Std. dev. 1.76E − 3 3.72E − 3 2.46E− 4 1.02E − 2 7.2068E − 2

DTLZ3 Average 8.33E+ 0 7.76E+ 1 1.76E+ 2.1 1.25E+ 1 7.42E+ 0
Std. dev. 5.65E+ 0 2.80E+ 1 5.11E+ 1 4.41E+ 0 5.20E+ 0

DTLZ4 Average 9.97E − 2 7.14E − 2 3.75E − 1 2.01E − 1 6.55E− 2
Std. dev. 1.20E − 1 1.95E − 3 1.86E − 1 2.27E − 1 1.73E− 3

DTLZ5 Average 5.98E− 3 1.23E − 2 1.31E − 2 1.52E − 2 6.62E − 3
Std. dev. 3.12E− 4 2.24E − 3 4.28E − 3 1.71E − 3 5.53E − 4

DTLZ6 Average 6.39E− 3 1.76E − 2 3.178E+ 0 5.56E − 2 6.87E − 3
Std. dev. 2.32E− 3 2.29E − 2 8.43E − 13 1.33E − 1 7.20E − 4

DTLZ7 Average 2.06E − 1 4.43E+ 0 1.23E − 1 1.22E − 1 9.78E− 2
Std. dev. 2.69E − 1 2.04E − 1 1.21E+ 0 7.83E − 2 1.05E− 2

Complexity 9

best results 5 times and NSGA-III has obtained the best
results 2 times. It can be concluded that the convergence of
IMOPSO is superior to those of the other algorithms used

for comparison, and, at the same time, it can be further
concluded that the learning factor adjustment rules adopted
in this paper have effectively improved the convergence of

f2

ZDT1

10.0 0.4 0.80.2 0.6
f1

0

0.2

0.4

0.6

0.8

1

NSGAII
TRUE PF

(a)

ZDT1

f2

0

0.2

0.4

0.6

0.8

1

0.2 0.80.60.4 10.0
f1

PESAII
TRUE PF

(b)

f2

ZDT1

10.0 0.4 0.80.2 0.6
f1

0

0.5

1

1.5

2

MOPSO
TRUE PF

(c)

ZDT1

0.2 0.80.60.4 10.0
f1

0

0.2

0.4
f2

0.6

0.8

1

IMOPSO
TRUE PF

(d)

f2

ZDT1

0

0.2

0.4

0.6

0.8

1

10.0 0.60.40.2 0.8
f1

NSGAIII
TRUE PF

(e)

Figure 2: ZDT1 test results.

10 Complexity

the IMOPSO. (e numerical experiment results of the al-
gorithms distribution are shown in Table 5. In the test
functions, ZDT, IMOPSO obtained the best results 5 times;

in the test functions, DTLZ, IMPSO obtained the best results
4 times, NSGA-II obtained the best results 2 times, and
SPEA-II obtained the best result once. By analyzing the

ZDT2

0

0.2

0.4

0.6

0.8

1

0.2 0.80.60.4 10.0
f1

f2

NSGAII
NSGAII

(a)

ZDT2

0

0.2

0.4

0.6

0.8

1

f2

0.2 0.80.60.4 10.0
f1

PESAII
TRUE PF

(b)

ZDT2

0.2 0.80.60.4 10.0
f1

f2

0

0.5

1

1.5

2

2.5

MOPSO
TRUE PF

(c)

ZDT2

f2

0.2 0.80.60.4 10.0
f1

0

0.2

0.4

0.6

0.8

1

IMOPSO
TRUE PFz

(d)

ZDT2

f2

0

0.2

0.4

0.6

0.8

1

0.2 0.80.60.4 10.0
f1

NSGAIII
TRUE PF

(e)

Figure 3: ZDT2 test results.

Complexity 11

numerical results in Table 5, it can be seen that the distri-
bution of the algorithm can be effectively improved by
introducing time-varying Gaussian mutation strategy into
IMOPSO. By analyzing Table 6, it can be seen that, in the test

functions, ZDT, IMOPSO has obtained the best results 3
times, and NSGA-II and SPEA-II have obtained the best
results once, respectively; in the test functions, DTLZ,
IMOPSO has obtained the best results 4 times, and NSGA-II

ZDT3

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80
f1

NSGAII
TRUE PF

f2

(a)

ZDT3

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80
f1

PESAII
TRUE PF

f2

(b)

ZDT3

–0.5

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80
f1

MOPSO
TRUE PF

f2

(c)

ZDT3

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80
f1

IMOPSO
TRUE PF

f2

(d)

ZDT3

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.3 0.80.1 0.4 0.5 0.60 0.2 0.7
f1

NSGAIII
TRUE PF

f2

(e)

Figure 4: ZDT3 test results.

12 Complexity

and MOPSO obtained the best results 2 times and once,
respectively, so, on the whole, IMOPSO has better com-
prehensive performance (Table 7).

In order to more intuitively show the characteristics of
each optimization problem in this article and the status of
each algorithm in solving the optimization problems,

ZDT4

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.80.60.4 10
f1

f2

NSGAII
TRUE PF

(a)

ZDT4

0

0.2

0.4

0.6

0.8

1

0.4 0.60.2 0.8 10
f1

f2

PESAII
TRUE PF

(b)

ZDT4

0.2 0.4 0.6 0.8 10
f1

0

0.5

1

1.5

2

2.5

f2

MOPSO
TRUE PF

(c)

ZDT4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 10
f1

f2

IMOPSO
TRUE PF

(d)

ZDT4

0.4 0.60.2 0.8 10
f1

0

0.2

0.4

0.6

0.8

1

1.2

f2

NSGAIII
TRUE PF

(e)

Figure 5: ZDT4 test results.

Complexity 13

Figures 2–13 show the corresponding relationship be-
tween the optimal solutions obtained by each algorithm
and the true PF. In Figures 2–6, we can intuitively draw
the following conclusions: In the test functions, ZDT,

except that the convergence of IMOPSO in ZDT3 is worse
than that of NSGA-III, IMOPSO is better than the other
compared algorithms in terms of convergence and dis-
tribution. In addition, in the test functions, DTLZ, the

ZDT6

0

0.2

0.4

0.6

0.8

1

1.2

0.60.5 0.80.3 0.4 0.90.7 1
f1

NSGAII
TRUE PF

f2

(a)

ZDT6

0

0.2

0.4

0.6

0.8

1

0.80.5 0.6 10.3 0.90.4 0.7
f1

PESAII
TRUE PF

f2

(b)

ZDT6

0

1

2

3

4

5

0.60.5 0.80.3 0.4 0.90.7 1
f1

MOPSO
TRUE PF

f2

(c)

ZDT6

0

0.2

0.4

0.6

0.8

1

0.80.5 0.6 10.3 0.90.4 0.7
f1

IMOPSO
TRUE PF

f2

(d)

ZDT6

0

0.5

1

1.5

0.60.5 0.80.3 0.4 0.90.7 1
f1

NSGAIII
TRUE PF

f2

(e)

Figure 6: ZDT6 test results.

14 Complexity

convergence of IMOPSO in DTLZ2 and DTLZ4 is worse
than that of NSGA-III, but it is better than the other
compared algorithms in other test functions; in terms of
SP, NSGA-II is better than IMOPSO in DTLZ1 and

DTLZ6, and SPEA-II is better than IMOPSO in DTLZ6,
but, in the remaining DTLZ test functions, the perfor-
mance of IMOPSO is better than those of the other
compared algorithms.

0

0.2

0

0.4

0.6

1

0.8

DTLZ1

1

0.5 0.5
1 0

f3

f1 f2

NSGAII
TRUE PF

(a)

0

0.5

0

1

1.5

2

2.5

DTLZ1

1 21.512 0.50

f3

f1
f2

PESAII
PESAII

(b)

0

0.5

0

1

1.5

DTLZ1

50.5 43211 0

f3

f2
f1

MOPSO
TRUE PF

(c)

0
0

0.5

0.5

1

DTLZ1

11
0.5

0

f3

f1
f2

IMOPSO
TRUE PF

(d)

00

0.5

0.5

1

1.5

1 2

DTLZ1

1.5

2

1.5 10.52
0

f3

f2
f1

NSGAIII
TRUE PF

(e)

Figure 7: DTLZ1 test results.

Complexity 15

0

0.2

0 0.2

0.4

DTLZ2

0.6

0.2

0.8

0.4

1

0.4 0.60.6 0.80.8 11

f3

f2 f1
NSGAII
TRUE PF

(a)

0

0.2

0.4

0.6

0.8

1

0.20

DTLZ2

0.40.2 0.4 0.60.6 0.80.8 11

f3

f2
f1

PESAII
TRUE PF

(b)

0
0

0.2
0.4

0.2

0.6

DTLZ2

0.4

0.8

0.5 0.6

1

0.81 1

f3

f2 f1

MOPSO
TRUE PF

(c)

0
0

0.2

0.2

0.4
0.6

DTLZ2

0.40.5

0.8

0.6

1

0.81 1

f3

f2 f1

IMOPSO
TRUE PF

(d)

0
0

0.2

0.2

0.4

DTLZ2

0.6

0.40.5

0.8

0.6

1

0.81 1

f3

f2 f1

NSGAIII
TRUE PF

(e)

Figure 8: DTLZ2 test results.

16 Complexity

0
0.5

1

3

1.5
2

2.5

0

3

DTLZ3

2 11 2
3

f3

f1 f2

NSGAII
TRUE PF

(a)

0

10.2
0.80.4

0.6

0.5

0.6 0.4

DTLZ3

0.8 0.21 0

1

f3

f1 f2

PESAII
TRUE PF

(b)

3
20

DTLZ3

0.5

1

11 1.5

2

2 2.5 0

3

3

f3

f2

f1

MOPSO
TRUE PF

(c)

0

0.2

0.4

0

DTLZ3

0.6

0.8

0.2

1

0.40.5 0.60.811

f3

f2 f1

IMOPSO
TRUE PF

(d)

0
1

4

DTLZ3

2
3

1

4
5

2 23 4 5 0

f3

f1
f2

NSGAIII
TRUE PF

(e)

Figure 9: DTLZ3 test results.

Complexity 17

0
0

0.2

0.2

0.4

DTLZ4

0.6

0.40.5

0.8

0.6

1

0.8
11

f3

f2 f1

NSGAII
DTLZ4

(a)

0.2

DTLZ4

0.4

0.2

0.4

0.2 0.6

0.6

0.8

0.4

1

0.80.6 0.8 11

f3

f2
f1

PESAII
TRUE PF

(b)

0.50
0

DTLZ4

1

0.5

0.5 1

1

1.5 1.5

1.5

f3

f1

f2

MOPSO
TRUE PF

(c)

0
0

0.2

0.2

0.4

DTLZ4

0.6

0.40.5

0.8

0.6

1

0.811

f3

f2 f1

IMOPSO
TRUE PF

(d)

0
0

0.2

0.2

0.4

DTLZ4

0.6

0.40.5

0.8

0.6

1

0.8
1 1

f3

f2 f1

NSGAIII
TRUE PF

(e)

Figure 10: DTLZ4 test results.

18 Complexity

0

0.2

0

0.4

0.6

0.8

DTLZ5

1

0.2 0.60.40.4 0.20.6 0

f3

f1 f2

NSGAII
NSGAII

(a)

0 0.6

0.2

0

DTLZ5

0.4

0.6

0.2 0.4

0.8

1

0.4 0.20.6 0

f3

f1 f2

PESAII
PESAII

(b)

0.60
0

0.2

DTLZ5

0.4

0.40.2

0.6

0.8

0.4 0.2

1

0.6 0

f3

f1
f2

MOPSO
TRUE PF

(c)

0.60

DTLZ5

0.2

0 0.4

0.4

0.2

0.6

0.8

0.20.4

1

0.6 0

f3

f1
f2

IMOPSO
TRUE PF

(d)

0
0

0.2
0.4

0.2

0.6

0.6

0.8

DTLZ5

0.4

1

0.4
0.20.6

0

f3

f1 f2

NSGAIII
TRUE PF

(e)

Figure 11: DTLZ5 test results.

Complexity 19

0.60

DTLZ6

0.2

0.40

0.4

0.6

0.2

0.8

0.2

1

0.4 0.6 0

f3

f2
f1

NSGAII
TRUE PF

(a)

0
0

0.2

0.4

0.6

0.2

DTLZ6

0.6

0.8

1

0.4 0.4
0.20.6 0

f3

f1 f2

PESAII
TRUE PF

(b)

0

0.2

0 0.6

0.4

DTLZ6

0.6

0.2

0.8

0.4

1

0.4 0.20.6 0

f3

f1 f2

MOPSO
TRUE PF

(c)

0
0

0.2

0.4

0.2

0.6

0.8

DTLZ6

0.6

1

0.4 0.4
0.20.6

0

f3

f1 f2

IMOPSO
TRUE PF

(d)

0

0.2

0

0.4

0.6

DTLZ6

0.8

0.60.2

1

0.40.4 0.20.6 0

f3

f1 f2

NSGAIII
DTLZ6

(e)

Figure 12: DTLZ6 test results.

20 Complexity

3
0 0

4

0.2 0.2

5

DTLZ7

0.4 0.4

6

7

0.6 0.6
0.8 0.8

f3

f2 f1

NSGAII
TRUE PF

(a)

3
00

4

0.2 0.2

DTLZ7

5

0.4 0.4

6

0.6 0.60.8 0.8

f3

f2 f1

PESAII
TRUE PF

(b)

00

4

0.2 0.2

6

DTLZ7

0.4 0.4

8

0.6 0.6

10

0.8 0.8

f3

f2 f1

MOPSO
TRUE PF

(c)

3

0 0
0.2 0.2

4

DTLZ7

0.4 0.4

5

0.6 0.6

6

0.8 0.8

f3

f2 f1

IMOPSO
TRUE PF

(d)

3
00

4

0.2 0.2

5

DTLZ7

0.4 0.4

6

0.6 0.6

7

0.8 0.8

f3

f2 f1

NSGAIII
TRUE PF

(e)

Figure 13: DTLZ7 test results.

Complexity 21

7. Conclusions and Prospects

In order to improve MOPSO prone to premature conver-
gence, poor distribution, and so forth, in solving multi-
objective optimization problems, this paper proposes an
improved multiobjective particle swarm optimization
(IMOPSO) algorithm. In this paper, by introducing a
competition mechanism strategy in IMOPSO and dynam-
ically adjusting the inertia weight and learning factor of the
algorithm, the convergence performance of the algorithm is
effectively improved. In addition, in order to solve the
shortcomings of insufficient distribution of the algorithm in
the optimization process, time-varying Gaussian mutation is
cited in the algorithm to increase the diversity of the al-
gorithm and improve its distribution. (rough the analysis
of numerical experiment results, in the experimental results
of the test functions, ZDT, and the test functions, DTLZ, as a
whole, the convergence and distribution of the algorithm are
better than those of the other compared algorithms. Finally,
in the results of the comparison of the comprehensive
performances of the algorithms, the comprehensive per-
formance of the IMOPSO algorithm is also the best among
the compared algorithms.

It should be pointed out that this article only conducts
the numerical experiment analysis of the benchmark
function, and its performance in actual multiobjective op-
timization problems needs further verification and analysis,
such as multiobjective job shop scheduling problems and
redundancy allocation problem with cold-standby strategy.
(is will be our next research works.

Data Availability

At present, these raw data cannot be shared because which
forms part of an ongoing study.

Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

(is research was supported by the National Natural Science
Foundation of China (Grants 11961001 and 61561001), the
Construction Project of First-Class Subjects in Ningxia
Higher Education (NXY LXK2017B09), and the major
proprietary funded project of North Minzu University
(ZDZX201901).

References

[1] L.-C. Chang and F.-J. Chang, “Multi-objective evolutionary
algorithm for operating parallel reservoir system,” Journal of
Hydrology, vol. 377, no. 1-2, pp. 12–20, 2009.

[2] E. Bonabeau, M. Dorigo, and G. (eraulaz, Swarm Intelli-
gence: From Natural to Artificial Systems, Oxford University
Press, Inc., New York, NY, USA, 1999.

[3] K. Deb, S. A. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE

Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[4] E. Zitzler, M. Laumanns, and L. (iele, “SPEA2: improving
the strength pareto evolutionary algorithm for multi-objective
optimization,” in Proceedings of the Evolutionary Methods for
Design, Optimization and Control with Application to In-
dustrial Problems, Berlin, Germany, 2001.

[5] C. A. C. Coello and M. S. Lechuga, “MOPSO: a proposal for
multiple objective particle swarm optimization,” in Pro-
ceedings of the IEEE World Congress on Computational In-
telligence (WCCI), Honolulu, HI, USA, May 2002.

[6] S.-J. Tsai, T.-Y. Sun, C.-C. Liu, S.-T. Hsieh, W.-C. Wu, and
S.-Y. Chiu, “An improved multi-objective particle swarm
optimizer for multi-objective problems,” Expert Systems with
Applications, vol. 37, no. 8, pp. 5872–5886, 2010.

[7] M. G. Mnif and S. Bouamama, “A new multi-objective fire-
work algorithm to solve the multimodal planning network
problem,” International Journal of Applied Metaheur Com-
puting, vol. 11, 2020.

[8] A. Mellouli, R. Mellouli, and F. Masmoudi, “An innovative
genetic algorithm for a multi-objective optimization of two-
dimensional cutting-stock problem,” Applied Artificial In-
telligence, vol. 33, no. 5–8, pp. 531–547, 2019.

[9] M. Ali, P. Siarry, and M. Pant, “An efficient differential
evolution based algorithm for solving multi-objective opti-
mization problems,” European Journal of Operational Re-
search, vol. 217, no. 2, pp. 404–416, 2018.

[10] X. Zhou, H. Wang, W. Peng et al., “Solving multi-scenario
cardinality constrained optimization problems via multi-
objective evolutionary algorithms,” Ence China Information
Ences, vol. 62, no. 9, 2019.

[11] D. E. C. Vargas, A. C. C. Lemonge, H. J. C. Barbosa, and
H. S. Bernardino, “Differential evolution with the adaptive
penalty method for structural multi-objective optimization,”
Optimization and Engineering, vol. 20, no. 1, pp. 65–88, 2019.

[12] Y. Sun and Y. Gao, “A multi-objective particle swarm opti-
mization algorithm based on Gaussian mutation and an
improved learning strategy,” Mathematics, vol. 7, no. 2, 2019.

[13] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling
multiple objectives with particle swarm optimization,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3,
pp. 256–279, 2004.

[14] L. Zhang, “Optimization design and application of improved
multi-objective particle swarm optimization algorithm,”
Journal of Radio Science, vol. 26, no. 4, pp. 789–795, 2011.

[15] E. Zhang, “A class of interval multi-objective particle swarm
optimization algorithm,” Control and Decision-Making,
vol. 29, no. 12, pp. 2171–2176, 2014.

[16] X. Tao, “A multi-objective optimization algorithm for com-
bined particle swarm optimization and differential evolution,”
Computer Simulation, vol. 10, no. 4, pp. 313–316, 2013.

[17] W. Li and X. Zhang, “An improved multi-objective particle
swarm optimization algorithm based on Pareto solution,”
Computer Simulation, vol. 12, no. 5, pp. 96–99, 2010.

[18] H. Ni, “Adaptive dynamic recombinant multi-objective
particle swarm optimization algorithm,” Control and Deci-
sion, vol. 30, no. 8, pp. 1417–1422, 2015.

[19] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and
exploitation in evolutionary algorithms: a survey,” ACM
Computing Surveys, vol. 45, no. 3, p. 35, 2013.

[20] E. Zitzler, K. Deb, and L. (iele, “Comparison of multi-
objective evolutionary algorithms: empirical results,” Evolu-
tionary Computation, vol. 8, no. 2, pp. 173–195, 2000.

22 Complexity

[21] L. Deming, Multi-Objective Intelligent Optimization Algo-
rithm and Its Application, Science Press, Beijing, China, 2009.

[22] V. Kumar and S. Minz, “Multi-objective particle swarm op-
timization: an introduction,” Smart Computing Review, vol. 4,
no. 5, pp. 335–353, 2014.

[23] M. J. Reddy andD. N. Kumar, “Multi-objective particle swarm
optimization for generating optimal trade-offs in reservoir
operation,” in Proceedings of the IEEE World Congress on
Computational Intelligence (WCCI), Vancouver, Canada, June
2007.

[24] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural
Networks, Perth, Australia, November 1995.

[25] Y. Yusoff, M. S. Ngadiman, and A. M. Zain, “Overview of
NSGA-II for optimizing machining process parameters,”
Procedia Engineering, vol. 15, pp. 3978–3983, 2011.

[26] D. . Anna and H. Zidani, “Pareto front characterization for
multiobjective optimal control problems using Hamilton-
Jacobi approach,” SIAM Journal on Control and Optimization,
vol. 57, no. 6, pp. 3884–3910, 2019.

[27] M. Daneshyari and G. G. Yen, “Cultural-based multiobjective
particle swarm optimization,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 2,
p. 553, 2011.

[28] D. A. V. Veldhuizen and G. B. Lamont, Evolutionary Com-
putation and Convergence to a Pareto Front, Stanford Uni-
versity California, Stanford, CA, USA, 1999.

[29] W. Shuai, L. Xiaohui, and H. Xiaomin, “Multi-objective
optimization of reservoir OOD dispatch based on MOPSO
algorithm,” in Proceedings of 8th International Conference on
Natural Computation, Sichuan, China, May 2012.

[30] A. Konak, D. Coit, and E. Smith, “Multi-objective optimi-
zation using genetic algorithms, a tutorial,” Reliability Engi-
neering and System Safety, vol. 91, no. 9, pp. 92–107, 2006.

[31] H. Wang, G. Grary, and X. Zhang, “Multi-objective particle
swarm optimization based on paretoentropy,” Journal of
Software, vol. 25, no. 5, pp. 1025–1050, 2014.

[32] M. W. Mkaouer, M. Kessentini, and A. Shaout, “Many-ob-
jective software remodularization using NSGA-III,” ACM
Transactions on Software Engineering and Methodology,
vol. 24, no. 3, pp. 1–45, 2015.

Complexity 23

