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Depth neural network (DNN) has become a research hotspot in the field of image recognition. Developing a suitable solution to
introduce effective operations and layers into DNNmodel is of great significance to improve the performance of image and video
recognition. To achieve this, through making full use of block information of different sizes and scales in the image, a multiscale
pooling deep convolution neural network model is designed in this paper. No matter how large the feature map is, multiscale
sampling layer will output three fixed-size character matrices. Experimental results demonstrate that this method greatly improves
the performance of the current single training image, which is suitable for solving the image generation, style migration, image
editing, and other issues. It provides an effective solution for further industrial practice in the fields of medical image, remote
sensing, and satellite imaging.

1. Introduction

Edge computing extends computing, network, storage and
other capabilities to the edge side of the network near the
Internet of )ings devices, while the artificial intelligence
technology represented by deep learning enables each edge
computing node to have the ability of computing and de-
cision making, allowing some complex intelligent applica-
tions to be processed at the local edge, meeting the needs of
agile connection, real-time data optimization business, ap-
plication intelligence, security, and privacy protection. In-
telligent edge computing collects data and analyses
computing by means of the edge device of the Internet of
)ings so as to realize the flow of intelligence between the
cloud and the edge. Now that new demands on artificial
intelligence algorithms, terminals, and chips have to be met,
it appeals more and more artificial intelligence (AI) enter-
prises [1–3]. However, most current edge devices today
cannot support deep learning applications in a low-latency,
low-power, high-precision manner due to resource con-
straints; for example, deep learning model inference requires
a large amount of computational resources.

Deep neural networks, like many other machine learning
models, can be divided into two stages of training and
reasoning. )e training phase learns the parameters in the
model according to data (for the neural network, it is mainly
the weight in the network). )e inference phase enters the
new data into the model and calculates the results. Over-
parameterization refers to the training phase. )e network
needs a large number of parameters to capture the small
information in the data. And once the training has reached
the reasoning stage, it does not need so many parameters.
Based on this assumption, themodel can be simplified before
deployment. However, deep neural network model that
exists in the process of removing specific fuzzy kernel and
noise usually needs to set up different training models
according to different noise levels, which does not only lack
flexibility, but also cannot cope with more general image
recognition tasks.)erefore, how to use DNNmodel flexibly
in image recognition task has more important research value
[4].

Although the purpose of neural network is to solve the
general machine learning problem, domain knowledge also
plays an important role in the design of depth model.
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Among the applications related to image and video, the most
successful one is the deep convolution network, whose
design is only used in the special structure of image. Two of
the most important operations, convolution and pooling,
come from domain knowledge related to images. How to
introduce new effective operation and layer in the depth
model through the knowledge of research field is of great
significance to improve the performance of image and video
recognition. For example, the pool layer brings about local
translation invariance, and the deformation pool layer
proposed in [5–7] can better describe the geometric de-
formation of various parts of the object. At present, it can be
further extended to achieve scale invariance, rotation in-
variance, and robustness to occlusion.

In this paper, we put forward Multiscale Pooling Deep
Convolution Neural Networks model that aims to train a set of
fast and effective schemes. Rather than learning MAP infer-
ence-guided discriminative models, we instead adopt plain
DNN to learn the denoisers, taking advantage of recent
progress in DNN as well as the merit of GPU computation.
Meanwhile providing good performance for image recogni-
tion, the learned set ofmultiscale pooling is plugged in amodel-
based optimization method to tackle various problems.

)e contribution of this work is summarized as follows:

(i) We trained a set of fast and effectiveMultiscale Pooling
Deep Convolution Neural Networks (MSDNN)
model. Using the core idea of pyramid method for
reference, the powerful multiscale expression ability is
applied to the deep level of network

(ii) Extensive experiments on classical feature extraction
problems, including superresolution and deblurring,
have demonstrated great improvement in the per-
formance of the current single training image and
can be applied to image generation, style migration,
image editing, and other issues.

2. Related Work

2.1. Feature Learning. )e biggest difference between tra-
ditional pattern recognition method and deep learning lies
in its characteristics; the feature is automatically learned
from big data, rather than using manual design. Good
features can improve the performance of pattern recognition
system [8–10]. In the past few decades, in various appli-
cations of pattern recognition, the characteristics of manual
design have been in domination level. Manual design mainly
depends on the prior knowledge of designers, so it is difficult
to take advantages of the advantages of big data. Due to the
dependence on manual parameter adjustment, the number
of parameters allowed in the design of the feature is very
limited. Deep learning can automatically learn representa-
tions of features from big data and can contain thousands of
parameters [11–16]. It takes five to ten years to design ef-
fective features by hand, and deep learning can quickly learn
new and effective feature representations from training data
for new applications.

A pattern recognition system includes two parts: feature
and classifier. In traditional methods, the optimization of

features and classifiers is separated. Under the framework of
neural network, feature representation and classifier are
jointly optimized, which can give full play to the perfor-
mance of joint cooperation [17–21].

In 2012, Hinton participated in the ImageNet compe-
tition and adopted the convolution network model, which
contains 60 million parameters learned from millions of
samples [22]. )e feature representation learned from
ImageNet has very strong generalization ability and can be
successfully applied to other datasets and tasks, such as
object detection, tracking, and inspection. Another famous
competition in the field of computer vision is PSACAL
VOC. However, its training set is small and is not suitable for
training deep learning models. Some scholars use the feature
representation learned from ImageNet for physical exami-
nation on PSACAL VOC; the detection rate increased by
20% [23].

Since feature learning is so important, what are good
features? In an image, various complex factors are often
combined in a nonlinear way. For example, the face image
contains a variety of information such as identity, posture,
age, expression, light, and so on. )e key to deep learning is
to successfully separate these factors through multilevel
nonlinear mapping; for example, in the last hidden layer of
the depth model, different neurons represent different
factors. If you take this hidden layer as a feature repre-
sentation, face recognition, pose estimation, expression
recognition, and age estimation will become very simple,
because the various factors become a single linear rela-
tionship, no longer interfere with each other.

2.2. ImageNet Image Classification. )e most important
development of deep learning in object recognition is image
classification task in ImageNet ILSVRC 3 challenge. )e
lowest error rate of traditional computer vision method in
this test set is 26.172%. In 2012, Hinton’s team used con-
volutional networks to reduce the error rate to 15.315%.)is
network structure is called AlexNet [24]. Compared with the
traditional convolution network, it has three differences.
First of all, AlexNet adopts dropout training strategy. During
the training process, some neurons in the input layer and the
middle layer are randomly set to zero. )is simulates the
situation that noise interferes with input data so that some
neurons fail to detect some visual patterns. Dropout makes
the training process converge more slowly, but the resulting
network model is more robust. Secondly, AlexNet uses the
rectifier linear element as the nonlinear excitation function.
)is not only greatly reduces the computational complexity,
but alsomakes the output of neurons sparse andmore robust
to various interferences. )irdly, AlexNet generates more
training samples and reduces overfitting by mapping the
image of training samples and adding random translation
disturbance.

In the ImageNet ILSVRC 2013 competition, the top 20
groups use deep learning techniques. )e winner is Rob
Fergus’s research group of New York University. )e depth
model adopted is convolutional network, and the network
structure has been further optimized. )e error rate is
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11.197%. Its model is called clarifai [25]. In the ILSVRC 2014
competition, the winner GoogLeNet [25] reduced the error
rate to 6.656%.)e outstanding feature of GoogLeNet is that
it greatly increases the depth of convolution network, which
is more than 20 layers, which was unimaginable before. )e
deep network structure makes the backpropagation of
prediction error difficult, because the prediction error is
transmitted from the top layer to the bottom layer, and the
error transmitted to the bottom layer is very small, so it is
difficult to drive the updating of the bottom-layer param-
eters. GoogLeNet’s strategy is to add the monitoring signal
directly to multiple middle layers, which means that the
feature representation of middle layer and bottom layer
should also be able to accurately classify the training data. In
the last competition of ILSVRC 2017, the “DPN dual-
channel network + basic aggregation” deep learning model
proposed by 360 Artificial Intelligence Research Institute
and the National University of Singapore (NUS) team
achieved the lowest positioning error rate of 0.062263 and
0.061941, respectively, setting a world record. Among them,
the DPN-92 costs about 15% fewer parameters than
ResNeXt-101, while the DPN-98 costs about 26% fewer
parameters than ResNeXt-101. In addition, the DPN-92
consumes about 19% less FLOPs than ResNeXt-101, and the
DPN-98 consumes about 25% less FLOPs than ResNeXt-
101. How to train the deep network model effectively is still
an important research topic in the future.

2.3. Face Recognition. Another important breakthrough of
deep learning in object recognition is face recognition. )e
biggest challenge of face recognition is how to distinguish
the intraclass changes caused by light, posture, expression,
and other factors from the interclass changes caused by
different identities. )e distribution of these two kinds of
changes is nonlinear and extremely complex, which cannot
be effectively distinguished by the traditional linear model.
)e purpose of deep learning is to get new feature repre-
sentation through multilayer nonlinear transformation.
)ese new features need to remove as many intraclass
changes as possible, while retaining interclass changes.

Face recognition includes two tasks: face confirmation
and face recognition. Face confirmation is to judge whether
two face photos belong to the same person, which is a binary
classification problem. )e accuracy of random guessing is
50%. Face recognition is to divide a face image into one of N
categories, which are defined by the identity of the face. )is
is a multiclassification problem, which is more challenging.
)e difficulty increases with the number of categories. )e
accuracy of random guess is 1/n. Both tasks can learn the
facial expressions through deep models.

Using convolution network to learn face features, lit-
erature [26–28] used face recognition task as a supervisory
signal; the recognition rate is 92.52% on LFW. Although this
result is lower than the follow-up deep learning method, it
also exceeds most of the nondeep learning algorithms.
Because face recognition has two classified problems, the
efficiency of using it to learn face features is relatively low,
and it is easy to have fitting on the training set. Face

recognition is a more challenging multiclassification prob-
lem, which is not easy to be fitted, and it is more suitable to
learn face features through depth model [29–31]. On the
other hand, in face recognition, each pair of training samples
is manually labelled into one of two categories, which
contains less information. In face recognition, each training
sample is labelled as one of N classes, which has a large
amount of information.

Some people think that the success of deep learning is
due to the use of complex modules with a large number of
parameters [32]. In fact, it is far from so simple to fit the
dataset. For example, the success of DeepID2+ lies in its
many important and interesting characteristic [33]: its top
neurons respond moderately sparsely; it has strong selec-
tivity to face identity and various face attributes and strong
robustness to local occlusion. In previous studies, in order to
get these attributes, we often need to add various display
constraints to the model. DeepID2+ has these attributes
automatically through large-scale learning, and the theo-
retical analysis behind it is worth further study in the future.

2.4. Deep Learning for Video Analysis. )e application of
deep learning in video classification is still in its infancy;
there is still a lot of work to be done in the future. )e depth
model that can be learned from ImageNet can be used to
describe the static image features of video. )e difficulty is
how to describe the dynamic features. In the past, the de-
scription of dynamic features in visual research methods
often depends on optical flow estimation, key point tracking,
and dynamic texture. How to embody this information in
depth model is a difficulty. )e most direct way is to treat
video as a three-dimensional image and apply convolution
network directly [34–36]; three-dimensional filters are
learned at each level. But this idea obviously does not take
into account the differences of time and space dimensions.
Another simple but more effective way is to calculate the
spatial field distribution of optical flow field or other dy-
namic characteristics by preprocessing, as an input channel
of convolution network [37–39]. )ere are also research
works using deep autoencoder to extract dynamic texture in
a nonlinear way [38]. In the latest research work [40], long
short-term memory (LSTM) has been widely concerned,
which can capture long-term dependence and complex
dynamic modelling in video.

In 2018, Ulyanov et al. proposed a depth image prior
(Deep Image Prior (DIP)) model [1], which considers that
the neural network structure is a priori that does not require
learning and pretraining to a large number of datasets; only
learning network superparameters adaptively can realize
image conversion and it is verified in the tasks of denoising,
superresolution, and filling. After dip was proposed, it was
successively used in image decomposition-related tasks [41]
and blind deconvolution [42]. Double-Dip [43] is an un-
supervised layer decomposition of a single image based on a
coupled dip network, which is used for image segmentation
(foreground layer and background layer), image defogging,
watermarking, and other issues. Ren et al. [42] proposed a
blind deconvolution framework based on depth
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prior—SelfDeblur, using dip and full convolution network,
respectively, and fuzzy kernel.

Compared with the image processing, the sound signal
processing is another direction of successful application in
deep learning, especially speech recognition, which many
large companies are going for. Unlike images, sound signals
are one-dimensional sequence data, and although they can
be converted to two-dimensional spectrum by frequency
domain conversion algorithms such as FFT, their two di-
mensions also have specific meanings (vertical axis repre-
sents frequency; horizontal axis represents timeframe) and
cannot be processed directly in the form of an image, re-
quiring a specific processing method in a specific area. Deep
neural network has the ability to extract features automat-
ically, which can jointly optimize the separation of feature
representation and classification model, especially after
2016. Deep learning has made great progress in the field of
speech recognition; for example, RNN, CRN, and other
structures have made a breakthrough in speech recognition
performance [44–46]. With the research developing and the
hardware updating, some end-to-end models have achieved
the performance in the state of the art, for example, as the
previously mentioned, it is sequence-to-sequence model
(CTC). As speech recognition performance continues to
improve, industry has produced many applications, such as
virtual assistants: Google Home, Amazon Alexa, and
Microsoft Cortana.

Although deep learning has achieved great success in
practice, moreover, the characteristics (such as sparsity,
selectivity, and robustness to occlusion [29]) of the depth
model obtained by big data training are striking, but the
theoretical analysis behind it still needs to be completed.

3. Method

In the field of target detection, the manual extraction of
characteristics has been replaced by the conventional
multiple layer NN, which has saved a great deal of costs of
background research. But as the number of network layers
increases, the corresponding training methods become
lacking. Moreover, the conventional NNs are sensitive to the
translation and scale change of the target, which leads to the
relatively low detection rate of the target. At present, CNN
can realize the simulation of the large-scale neural network
by the following three techniques: local receptive field,
weight sharing, and pooled sampling. )erefore, we put
forward a Multiscale Pooling Deep Convolution Neural
Networks method, to overcome the restriction during the
image detection that the input image must be of a fixed size.

3.1. 0e Basic Structure of Convolutional Neural Network.
A multilayer NN has too many parameters and is difficult to
train. To overcome this limitation, the CNN emerges, which
is based on ANN and includes convolution and sampling
operations. )e characteristics extracted by CNN are spatial
invariant to certain degree, which makes CNNmore suitable
for the target detection of an image. Although there are
many kinds of CNN, the basic structure is largely the same

(Figure 1): the input layer I, the convolution layer C, the
sampling layer S, the output layer O, and sometimes the full-
connection layer F.

)e main purpose of convolution layer is to realize local
feature perception through convolution operation and then
realize the same kind of feature extraction through weight
sharing and realize different types of feature extraction by
using different convolution kernels. )ey should be referred
to as follows:

X
l
j � f 􏽘

i∈Mj

X
l−1
i ∗K

l
i,j + b

l
j

⎛⎜⎝ ⎞⎟⎠, (1)

where Xl
j represents the convolutional output of the jth

characteristic map of the lth layer; f( ) represents the acti-
vation function; l represents the number of the layer, K is the
kernel; Mi represents one choice of the input characteristic
map; and b is an offset.

)e sampling layer is an important layer of convolution
neural network, which performs convolution to get the
average or maximum value of the local space of the feature
map. )ey should be referred to as follows:

X
l
j � f βl

jdown X
l−1
j􏼐 􏼑 + b

l
j􏼐 􏼑, (2)

where down(·) is a sampling function obtaining the average
or maximum of a rectangle area.

)e full-connection layer is the penultimate layer of
convolution neural network, which means that the input
feature map and the output feature map adopt the full-
connection method. Its function is to reduce the dimension
effectively and to facilitate the classification processing of the
output layer. )ey should be referred to as follows:

X
l
j � f 􏽘

Nin

i�1
ai,j X

l−1
j ∗K

l
i􏼐 􏼑 + b

l
j

⎛⎝ ⎞⎠, (3)

where the constraint 􏽐iαij � 1 and 0≤ αij ≤ 1 must be
satisfied.

)e constraint to the variable aij can be strengthened by
turning the variable aij into an unconstrained Softmax
function of the implicit weight cij, )ey should be referred to
as follows:

aij �
exp cij􏼐 􏼑

􏽐Kexp cij􏼐 􏼑
. (4)

For a given j, every group of weight values cij is inde-
pendent of those in the other groups. We therefore can omit
the subscript j, for the sake of convenience. In other words,
one needs only to consider updating a map, because the
updating of the other maps is the same process. )e only
difference is the index j of the map. )e details of the re-
gression process about Softmax are not explained here. It
should be noted that the input to the FCL needs to have a
fixed dimensionality for an easier training of the BP algo-
rithm, which necessitates the consistency between the size of
the input image and the size of the training network. )is
requirement represents one shortcoming of the network
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structure. )erefore, to solve the problem that the size of the
input image must be fixed, the multiscale sampling method
is to be used.

3.2. 0e Multiscale Sampling

3.2.1. Shortcomings of the Conventional CNN. )e con-
ventional CNN has a fixed window size of the input image,
which restricts the size of the input image and length-to-
width ratio. When the input image is of arbitrary size, one
often has to first fix the image to a size suitable for the
training network by clipping the image or deformation along
the horizontal and vertical directions. )is manual aligning
method cannot preserve the size and length-to-width ratio of
the original image and cannot guarantee that the clipped
image subblocks encompass the whole image, which leads to
the loss of some important information and geometrical
distortion due to rotation and stretching of the image. When
the image size changes to a large extent, the whole network
has to be trained again to adapt to the new image, even if the
network was trained by images of a given input size. Oth-
erwise the accuracy would reduce of detecting the whole
image or the subblocks of the other arbitrary sizes. )e fixed
input dimensionality greatly restricts the development of
CNN in multiscale image detection.

)e convolutional and sampling layers extract image
characteristics by using sliding windows. )e FCL, as the
hidden intermediate between the sampling and output
layers, plays a pivotal role in the whole network structure. In
fact, the convolutional layer can generate characteristic maps
of different sizes and ratios without inputting images of fixed
size. On the contrary, according to the definition of CNN,
the input to FCL needs to be images of fixed size. )e reason
is that only the FCL has a fixed input dimensionality, which
further fixes the dimensionality of the parameters used in the
training and thus allows for the use of the BP algorithm for
the training.

To solve the problem, one can use multiscale sampling to
integrate the deep characteristics generated by the previous
convolutional–sampling layers to a characteristic expression
of fixed length and then send it to the FCL. In this way, one
needs not to clip images of different sizes and length-to-
width ratio before sending them to the network. At the
previous layer of the FCL, namely, the last sampling layer,
the multiscale sampling is used to fix the images’ sizes so that
they can be input to the FCL. Figure 2 shows how the CNN
structure is changed by introducing the MSL.

Now, one can see that the MSL integrates the image
characteristics between the convolutional–pooled layers and

the FCL.)e integration at deep layers is reasonable because
it conforms well with bionic topology: human learning starts
from the overall classification but not from the postclipping
parts; thus to detect a target, the brain needs not to first
process the target and adapt to the fixed size. Some authors
proposed the solution of inputting images of different sizes
to CNN, but used images of different sizes for both training
and testing. )ey found no significant improvement of the
detection rate. For MSDNN, the training and testing are
performed on the same network.

)e idea of multiscale sampling was primarily inspired
by the method of pyramid, which preserves the spatial in-
formation of the local parts during the integration. )e
pioneers applied the pyramid method to all the levels of
CNN and extracted multiscale image characteristics by
sliding windows. )ese image characteristics were then used
to train or test the networks of the respective sizes. )is
actually enriched the scale of the input image and extended
the training set, but the training became more difficult with
more network parameters that can easily lead to the over-
fitting problem.)eMSL design makes it unnecessary to use
different networks to train and test images of different size.
)eMSL does not simply use the pyramid method to extract
the image’s multiscale characteristics, but applies the core
idea of the pyramid method, namely, multiscale expression,
to the deep layers of the network. )ese enable not only the

(a) (b) (c) (d) (e) (f) 

Figure 1: )e basic structure of CNN. (a) Input layer I. (b) Layer C1. (c) Layer S1. (d) Layer C2. (e) Layer S2. (f ) Output.

The convolutional sampling layers

The multiscale sampling layer

The fully connected layer

Start

Input the image

The output layer

End

Figure 2: )e MSDNN structure.
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training of NN with images of different sizes, which enriches
the characteristic expressions, but also the output of char-
acteristic vectors of the fixed size.

3.2.2. Methods of Multiscale Sampling. Multiscale expres-
sion is applied to the deep layers of NN. We propose to
replace the normal sampling with the multiscale sampling
at the final sampling layer, where “multiscale” lies in the
use of multiple sampling sizes and strides. Figure 3 shows
no matter how large the previous characteristic map, the
MSL outputs three characteristic matrices with sizes 1 ×m,
4 ×m, and 9 ×m, where m is the number of the previous
convolutional layer’s characteristic maps. )e three
characteristic matrices are concatenated in the column-
major order to form a column vector with fixed dimen-
sionality 14 ×m × 1. )e column vector is the input to the
FCL.

)e sizes of these sampling windows are matched
with those of the input images. )at is, the sampling size
and sampling stride change as the size of the input
changes. In this way, the number of sampling windows,
namely, the size of the output characteristic column
vector, becomes fixed, no matter how large the input
image is. )is makes it easy to send the vector to FCL. For
example, if the size of the input characteristic map is r × s
and we use the maximum sampling method with three
sampling sizes and strides, then the computation for-
mulas are as follows:

size � r × s, ⌈(r/2) ×(s/2)⌉, ⌈(r/3) ×(s/3)⌉, (5)

stride � r × s, ⌈(r/2) ×(s/2)⌉, ⌈(r/3) ×(s/3)⌉,

y
1
j � max xi( 􏼁, i ∈ Rr×s, j ∈ R1×1,

y
2
j � max xi( 􏼁, i ∈ R[(r/2)×(s/2)], j ∈ R2×2,

(6)

y
3
j � max xi( 􏼁, i ∈ R[(r/3)×(s/3)], j ∈ R3×3, (7)

where y1
j ,y

2
j , and y3

j represent the output of every charac-
teristic map after the multiscale maximum sampling. )ese
operations finally obtain three output characteristic matrices
with fixed sizes:1× 1×m, 2× 2×m, and 3× 3×m,which can
be converted into characteristic matrices 1×m, 4×m, and
9×m by unfolding in the column-major order. Finally, these
characteristic matrices are concatenated in sequence, be-
coming a characteristic column vector of a fixed size
14×m× 1. Take two different size input images as an ex-
ample (Figure 4). )e sizes of the characteristic maps are
16×16 and 13× 9, respectively. )e target is a 3× 3 output
matrix. In Figure 4(a), the sampling size is 6× 6 and sam-
pling stride is 5× 5. By (3) and (4), one obtains themaximum
value of the 6× 6 area and uses it as the output, which finally
obtains a 3× 3 output characteristic matrix. In Figure 4(b),
the sampling size is 5× 3 and sampling stride is 4× 3. By (3)
and (4), one obtains the maximum value of the 5× 3 area and
uses it as the output, which finally obtains a 3× 3 output
characteristic matrix.

3.2.3. 0e Fully Connected Layer with Multilayer Charac-
teristic Expression. )e FCL, as the hidden intermediate be-
tween the sampling and output layers, plays a pivotal role in the
whole network structure. Here the neurons of the FCL si-
multaneously, indirectly, and fully connect to the characteristic
maps next to the convolutional layers so that the FCL can
receive multiscale and multilevel feature representation input.

3.3. 0e Topological Structure of the Overall Network.
Figure 5 shows the topological structure of the MSDNN put
forward in this paper. Due to the page limit, taking a 64× 64
input image as an example, we briefly introduce the main
parameters and implementation methods of every network
layer.

)e input layer: the preprocessed grayscale image Xin.
)e convolutional layer Cl：the layer consists of 20

different characteristic maps XC1
j . Every characteristic map

is convoluted with twenty 5× 5 convolution kernels, re-
spectively. )e result is offset by bC1

j and then used as the
independent variable of the activation function ReLU to
obtain the characteristic map XC1

j . )ey should be referred
to as follows:

X
C1
j � ReLU Xin ⊗K

C1
ij + b

C1
j􏼐 􏼑

� max 0, Xin ⊗K
C1
ij + b

C1
j􏼐 􏼑, i � 1, j � 1, 2, . . . , 20,

(8)

Unlimited image size

The convolutional layer

Multiscale sampling

The characteristic column vector of fixed size

The fully connected layer

Figure 3: Illustration of the multiscale sampling.
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where ⊗ represents the convolution operation with stride 1;
the activation function is defined to be ReLU(x) �

max(0, x); and the size of the obtained XC
j is 60× 60.

)e sampling layer S1：perform statistical computation
on the results obtained by the convolutional later C1, by
using the maximum value sampling. After the sampling, the
horizontal and vertical spatial resolutions become half of the
original resolutions. )e size is 30× 30.

)e convolutional layer C2：by convoluting with con-
volutional kernels of size 3× 3, the 20 characteristic maps
XS1

j are extended to 40 characteristic mapXC2
j of size 28× 28:

X
C2
j � max 0, 􏽘 X

S1
i ⊗K

C2
ij + b

C2
j􏼐 􏼑, i � 1, 2, . . . , 20, j � 1, 2, . . . , 40.

(9)

)e sampling layer S2：perform the maximum value
sampling with a sampling size 2 and without overlapping of
the sampling area. After the sampling, the horizontal and
vertical spatial resolutions become half of the original res-
olutions. )e size is 14×14.

)e convolutional layer C3：by convoluting with
convolutional kernels of size 3 × 3, the 40 characteristic
maps XS2

j are extended to 60 characteristic map XC3
j of size

12×12:

X
C3
j � max 0, 􏽘 X

S2
i ⊗K

C3
ij + b

C3
j􏼐 􏼑, i � 1, 2, . . . , 40, j � 1, 2, . . . , 60.

(10)

)e sampling layer S3：perform the maximum value
sampling with a sampling size 2 and without overlapping of
the sampling area. After the sampling, the horizontal and
vertical spatial resolutions become half of the original res-
olutions. )e size is 6× 6.

)e convolutional layer C4：by convoluting with con-
volutional kernels of size 3× 3, the 60 characteristic maps
XS3

j are extended to 80 characteristic map XC4
j of size 4× 4:

X
C4
j � max 0, 􏽘 X

S3
i ⊗K

C4
ij + b

C4
j􏼐 􏼑, i � 1, 2, . . . , 60, j � 1, 2, . . . , 80.

(11)

)e multiscale sampling layer MS4：perform the
maximum value sampling with three different scales on the
80 characteristic maps XC4

j . )e three sampling sizes and
strides are as follows:

size � 4 × 4, 2 × 2, 2 × 2,

stride � 4 × 4, 2 × 2, 1 × 1.
(12)

)is obtains three output characteristic matrices of the
fixed sizes 1× 1× 80, 2× 2× 80, and 3× 3× 80. By extending
the matrices in the column-major order, one obtains
characteristic column vectors of sizes 1× 80, 4× 80, and
9× 80. Finally, the vectors are concatenated in sequence to
form a characteristic column vector xMP4 with a fixed size
14× 80�1120×1. For the input images of the other sizes, the
sampling size and stride change adaptively, but the di-
mensionality of the final characteristic column vector does
not change.

)e multiscale sampling layer MS3：perform the
maximum value sampling with three different scales on the
60 characteristic mapXC3

j . A characteristic column vector
xMS3 with a fixed size 14× 60� 840×1 is formed. )e three
sampling sizes and strides are as follows:

size � 12 × 12, 6 × 6, 4 × 4,

stride � 12 × 12, 6 × 6, 4 × 4.
(13)

)e multiscale sampling layer MS2：
perform the maximum value sampling with three dif-

ferent scales on the 40 characteristic maps XC2
j . A charac-

teristic column vector xMS2 with a fixed size 14× 40� 560×1
is formed.)e three sampling sizes and strides are as follows:

size � 28 × 28, 14 × 14, 10 × 10,

stride � 28 × 28, 14 × 14, 9 × 9.
(14)

)e fully connected layer FC5 : the output expression
column vector xFC5, with the size 400×1, is obtained in the
FCL from the three characteristic column vector obtained at
the respective MSLs:

(a) (b)

Figure 4: Multiscale sampling with variable sampling size and stride. (a) 16×16 multiscale sampling. (b) 13× 9 multiscale sampling.
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X
FC5

� max 0, W2 · x
MS2

+ W3 · x
MS3

+ W4 · x
MS4

+ b
FC5

􏼐 􏼑,

(15)

where W2, W3, and W4 are the respective weight matrices
that connect the three column vectors to the FCL; bFC5 is the
offset matrix used in the FCL.

)e output layer：a labor vector youtputis obtained from the
output expression column vector xFC5 obtained in FC5.

3.4. Methods of Training and Learning. Before the training
and testing, one should first build structures according to the
degree of difficulty of the detection, the actual conditions of

C2: f.map
28 ∗ 28

S2: f.map
14 ∗ 14

Multiscale sampling

Multiscale sampling

C3: f.map
12 ∗ 12

C1: f.map
60 ∗ 60

S1: f.map
30 ∗ 30

C4: f.map
4 ∗ 4

Output

Subsampling
3 ∗ 3

Convolution
2 ∗ 2

Subsampling
3 ∗ 3

Convolution
5 ∗ 5

Input
64 ∗ 64

Figure 5: )e MSDNN topology graph.
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the database, etc. In general, the larger the database and the
more complex the classification are, the deeper the structure
required. One then needs to do some preprocession on the
database so that the training would be smoother. For small
databases, one can expand the data capacity to reduce
overfitting.)e number of training samples can be increased
by operations such as translation and random clipping.

Here the method of capacity expansion is used. )e
dataset is from the Internet, containing 1980 single hu-
man face images of different sizes, skin colors, directions,
and positions. )e same person may have different ex-
pressions; some are shielded; some with mustache; some
with glasses, etc. To improve robustness of the network
and increase multiplicity of the samples, we perform
some transformation to a part of images in the initial
human face image sample set, such as horizontal flipping,
±20° displacement along the horizontal and vertical di-
rections, ±20° rotation, and the reduction of contrast. Of
course, one can combine different transformations and
then clip the corresponding image subblocks. In this way,
tens of sample images can be obtained from a single
image. A part of the human face image samples is il-
lustrated in Figure 6.

)e non–face image dataset can be a set of non–face
images. In fact, any randomly clipped image can be used as a
non–face sample. But it is impossible to train a network that
can recognize all kinds of non–face samples. One can use the
iterative bootstrapping program to collect non–face images
and use methods including the iterative retraining system to
update the training set.

)e methods for training MSDNNs can be divided into
the forward propagation stage and the backward propaga-
tion stage. )ey are not introduced here because they are
similar to the BP algorithm of the conventional NN.

4. Experiments

4.1. Validity Analysis of the Multiscale Sampling. )e inno-
vation point of this paper is multiscale sampling, which
improves the structure of the conventional CNN for the
detection of human face. In the following, we perform ex-
periments to compare their performance. To accelerate the
speed of training and testing, we use the popular Caffe deep
learning framework to realize GPU computation. )e ad-
vantage of Caffe is that programming is not needed. Once
the network structure is designed, Caffe can automatically
help the user to train the NN. However, currently, there are
no frameworks that accept input images of variable sizes.
)erefore, the experiments focus on training the NN with
input images of three fixed sizes.

To verify effectiveness of multiscale sampling, we use a
single-layer cascade network structure and connect it to the
final multiscale layer MS4 (Figure 5). Two conditions are
analyzed in the following.

4.1.1. 0e Training of MSDNN with a Single Input Size.
Take a 64× 64 input image as example. )e three structures
are as follows:

(1) Without multiscale sampling, i.e., the ordinary CNN
structure

(2) One sampling size (1× 80 characteristic matrix)
(3) Two sampling sizes (4× 80, 9× 80 characteristic

matrices)

According to the final testing results obtained by av-
eraging 100 times of experiments (Table 1), MSDNN has a
higher detection rate than the ordinary CNN. As far as the
number of characteristics is concerned, the dimensionalities
of the ordinary CNN and the MSDNN are 1280 and 1120,
respectively, which demonstrates that the improvement of
the detection rate by MSDNN does not require the increase
of the dimensionality. It is the change of the spatial de-
ployment that brings about the improvement of target
detection.

4.1.2. 0e Training of MSDNN with Multiple Input Sizes.
Because the Caffe framework can only accept input of fixed
size during one period of training, the trained network is
applied to process images of arbitrary sizes in the testing
stage. Taking into account the quality of the human face
images in the library and the quality of hardware, we train
the network with three input image sizes 64× 64, 80× 80,
and 100×100. )e images only differ in the resolution,
sampling size, and sampling stride, but the other properties
(the content, layout, and output characteristic column
vector) are the same. In this way, one can first randomly
choose any one of the three network sizes (64× 64) to

Figure 6: A part of face images.

Table 1: Temperature and wildlife count in the three areas covered
by the study.

Methods Detection rates (%)
)e ordinary CNN 97.7
One sampling size 95.4
Two sampling sizes 97.5
)ree sampling sizes 98.3
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complete one training period, at the end of which all the
parameters are saved. )en, one switches to the other two
network sizes to continue the training, until the termination
condition is satisfied.

In the experiments, the detection rate of the multiscale
sampling training with multiple input sizes is higher than
that with a single input size. )is is because the network is
trained by the characteristics of images of different sizes and
is thus more suitable for the real detection. )e final de-
tection rates of the networks trained by one, two, and three
input sizes are 98.25%, 98.46%, and 98.59%, respectively.

4.2. Comparative Experiments. )e experiments follow the
scheme of first performing segmentation of skin color from
the background color in the YCbCr space to remove the wide
background area so that the computation speed can be
improved and then using MSDNN classifier to screen the

extracted skin-color area in order to determine whether or
not a human face exists in the image, and if yes, labelling the
human face.

We used MATLAB 2014 as the platform to validate the
detection algorithm. )e data were from two kinds of
sources. )e first kind of data was from Internet download
or life photos, including human faces of different illumi-
nation, different complex background, and different sizes.
)e other data were some human face images from the CMU
database. We performed the detection and analyzed the
results both qualitatively and quantitatively.

We performed the simulations by using MATLAB 2014
installed in an ordinary PC with Intel Core i5 CPU,
3.20GHZ, 8G RAM. Figure 7 is an image of multiple front-
view human faces obtained from the Internet. )e human
faces are different in the size and direction. Figures 8 and 9
present the result of skin-color segmentation by the
Gaussian mixture model. )erefore, it was necessary to

Figure 7: )e original image.

Figure 8: )e binary image after skin-color segmentation.

Figure 9: )e binary image after morphological operation.
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locate human faces by using MSDNN. )e characteristic
matrices after the three scales sampling were: 1× 80, 4× 80,
and 9× 80. )e concatenated characteristic column vector,
which was sent to the FCL, was 1120×1. )e results are
presented in Figure 10.

To test the validity of the new method in detecting
human face images with certain degree of rotation and with
different resolutions, we performed human face detection on
the segmented original image and the segmented fussy
fixated image, respectively, by the conventional CNN and
MSDNN methods. We used two sampling scales and

obtained 1× 80 and 4× 80 characteristic matrices. )e cir-
cled areas are the detected human faces (Figures 11 and 12).

From Figures 11 and 12, one sees that the conventional
CNN can only detect two human faces, while the MSDNN
can detect three faces: not only the two front-view faces, but
also the accurate positioning of the side-view face. Even if
the image is fuzzy and of low resolution, the MSDNN
method can still locate the human face. )ese results further
demonstrate the correctness of the methods put forward in
this paper and that multiscale information plays an im-
portant role in image detection.

Figure 10: )e detection results.

(a) (b)

Figure 11: Detection on the original image by the CNN andMSDNNmethods. (a) Results by the CNNmethod. (b) Results by the MSDNN
method.

(a) (b)

Figure 12: Detection on the blurred image by the CNN andMSDNNmethods. (a) Results by the CNNmethod. (b) Results by the MSDNN
method.

Complexity 11



To demonstrate the merits of the new method, we
compared the new method with the conventional CNN,
PCA, and ANN methods by performing experiments on
eight face images (50 human face windows) taken from the
CMU database. )e detection rate and time by these
methods are presented in Table 2.

From Table 2, one sees that the detection rate of the new
method was higher than that of the CNN, PCA, and ANN
methods. Moreover, the computation time was relatively
smaller (hardware configuration：Intel Core i5-6500 CPU,
3.20GHz × 4, 16G RAM, with GUP acceleration).)erefore,
the performance of the new method is better than the
previous methods.

5. Conclusions

In this paper, a set of fast and effective MSDNN image rec-
ognition methods is to be designed and trained. In particular,
instead of establishing amultiscale sampling layer to replace the
ordinary sampling layer in the network structure, the network
structure is improved, and the generalization ability of sample
collection is improved to a certain extent. In the future, the
depth model is not a black box; it is closely related to the
traditional computer vision system, the various layers of neural
network through joint learning, and overall optimization, so
that the performance has been greatly improved. Applications
related to image recognition are also driving the rapid de-
velopment of deep learning in all aspects of network structure,
layer design, and training methods. It can be expected that, in
the next few years, deep learning will enter a period of rapid
development in theory, algorithms, and applications.
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