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In this paper, an adaptive fault tolerant control strategy is proposed to deal with the three pitch actuator faults in the large-
scale wind turbines. Firstly, a simultaneous state and fault estimation was performed through a suitable LMI (linear matrix
inequality) based optimal strategy. Hereafter, the new control law is designed using the previously estimated fault in-
formation. -e actuator efficiency estimator uses as design parameters, respectively, the performance index c against
the wind and the learning rate Ξ. of the fault estimation algorithm. -e study shows that the choice of the previous two
parameters impacts the response time of the fault estimation and the correlation of the tracking error with the wind. -e aim
is to choose a small fault estimation response time while keeping a weak correlation between the tracking error and the wind
turbulence noise. Finally, a tuning strategy is elaborated to choose the suitable c and Ξ to match the
reconfiguration objective.

1. Introduction

-e increasing energy demand leads to the production of
large wind turbines. -us, more and more vibrational
behaviors could be expected in the different degrees of
freedom (DOFs). Figures 1 and 2 show the most important
DOF. -e excitation of the DOFs leads to increase in loads
and forces on the structure. -e aim is to reduce the loads
in order to protect the structure against fatigue and
damage.

-e wind turbine operates in two different regions, low
and high winds. In the first region, so called partial load
region, the aim is to maximize the extracted power [1, 2].
-is was achieved by controlling the generator torque to
maintain an optimum ratio between the tip speed of the
blades and the operating wind speed [3]. In the second
region, so called full load region, the wind turbine was
controlled to reduce loads and keep the power at its rated
value. Practically, the constant power was maintained
through a fixed speed and a fixed generator torque. -is has

been obtained by pitching the blades from or toward wind to
adjust the speed of the rotor, while applying a constant
generator torque [4]. For example, the authors in [5] pro-
posed an anticipative control scheme of a wind turbine
working in the maximum power region. -e idea is to use
the wind speed as a generator of the set point of the MPP
(maximal power point) control.

1.1. ,e Pitch Actuator Control of Wind Turbines in the Full
Load Region. In the full load region, the high turbulence
occurs and produces big deflection movements on the
blades. -e pitch actuators were used to attenuate the loads
in the full load region [6–8].

Many papers have studied the loads exerted by the wind
on the different parts of the wind turbine structure. In [9],
the authors discussed and identified which wind turbine
components can benefit from advanced control algorithms
and also presented results from a preliminary loads case
analysis using a baseline controller.
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From the discussed papers above, it can be noticed that
the wind turbines in the megawatt size are expensive, and
hence their reliability is expected to be high to generate as
much energy as possible. -is type of wind turbines is ex-
pected to have reduced downtimes while keeping energy
production. Usually, the turbines are turned off even during
simple faults to wait for service.

1.2. Fault Detection and Tolerant Control in Wind Turbines.
-e statistics in [10] show that gearbox faults are the most
critical ones in wind turbines, essentially due to its relatively
high stopping time and severity on the whole structure.
Another type of wind turbine faults is of electrical root. For
example, the wind turbine can face short circuit faults in the
wires or inverter over voltage faults. It can also experience
hard over fault in the generator or some sensor faults like
drift or bias.

-e last reason creates the need to introduce fault
detection, isolation, and accommodation systems within
the existing classical control systems in order to reduce stop
time even with limited energy production [11]. Early de-
tection has been the spot of the control industry studies
especially using residual generation and fault analysis. -e
paper [12] presents an overview of the fault diagnosis

method categories, with an application to the wind turbine
pitch fault control. For more details, see also [13, 14].

-e model-based methods are one of the most suitable
methods for the study of the fault tolerant control of the
wind turbines. In fact, the availability of the large-scale wind
turbine model is no longer a problem especially with the
existence of highly trusted wind environment software and
emulators such as FAST (Fatigue, Aerodynamics, Structures,
and Turbulence).

In this paper, the FASTcode is used to test the proposed
strategy. FAST is an aeroelastic simulator capable of pre-
dicting the fatigue loads of two- and three-bladed flexible
with 24 degrees of freedom [15, 16]. -e code uses a modal
approach in combination with Kane dynamics to develop
the equations of motion. FAST helps considerably re-
searchers and engineers in testing wind load reduction al-
gorithms [17]. -is software provides a linearized model
parameter about a chosen operating point with more than 40
measures of outputs (rotor speed, generator speed, and
tower and blade displacement).

-e pitch servomotor is the most critical actuator in the
wind turbine [18, 19]. As discussed earlier, it is used to
regulate the power and to attenuate the vibrations in the high
wind region. If this actuator loses its efficiency, it will no
longer provide the sufficient control efforts to attenuate the
vibrations and regulate the power. Based on the last reason, a
new control law is to be constructed to deal with the fault.
-e new control efforts could be produced by online tuning
of the controller parameters or by changing the baseline
control law using an estimation of the fault [20–22].

In the wind turbines’ control field, in the pitch actuator
fault, the authors inreference [23] proposed a fault tolerant
control strategy to deal with the drop of the hydraulic liquid
in the servo pitches of the rotor. In the same field, another
type of fault is the imbalance in the rotor due to icing or
destruction of one or more blades. -is fault not only re-
duces the aerodynamic efficiency of the turbine and its
power output but can also lead to large increases of loads on
the drivetrain, blades, and tower. For this, the authors in [24]
used the FAST software to model aerodynamic imbalance in
a sample 5MWoffshore wind turbine. It has been concluded
that the combination of blade and nacelle measurements,
obtained from instrumentation already placed on the
structure, can be formulated into an algorithm used to detect
and locate the imbalance (see also [25]).

Another essential component is the anemometer. -e
anemometers are used in the feedforward control of the
wind turbines. In [26], the authors proposed a new method
to estimate the wind speed that could be substituted for
anemometers in control loops. Moreover, the authors in [27]
proposed a robust observer to generate residuals for the fault
turbine moment sensors which provides a measurement of
the loads applied on the structure. In [28], the authors have
proposed a method to estimate the gearbox efficiency in the
wind turbines. -e idea is to detect the drop in the efficiency
and generate a suitable residual to indicate the fault oc-
currence (see also [29, 30]).

Given the very disturbed wind nature, several optimi-
zation methods could be used to minimize the effect of the

Nacelle tilt motion

Blade pitch motion
(rotor horizontal)

Figure 1: Blade pitch degree of freedom.
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Figure 2: Blade flap and tower fore-aft degrees of freedom.
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disturbance on the outputs. In [31], a multiagent optimal
method based on reinforcement learning was proposed to
control a grid connected energy system.

-e fault isolation and tolerant control applied to the
wind turbines has been illustrated in many papers. For
example, in [32, 33], a codesign of the observers and decision
mechanisms for satisfying certain trade-off between different
isolation performance indices has been established. -e
performance indices were the false isolation rates, the iso-
lation times, and the minimum size of the isolable faults. -e
considered fault was additive on the pitch actuator. -e
paper [34] used jump observers to detect and isolate the
faults. -e false alarm rate is upper bounded by means of
Markov’s inequality. -e trade-offs between the minimum
detectable faults, the false alarm rate, and the response time
to faults of the fault diagnoser have been explored. In the
previous cited works, the assumption of slow dynamics
faults was considered which limits the usage of the strategies
to slow faults dynamics.

In this paper, the following contributions have been
developed:

(i) An integrator-based simultaneous states and fault
estimator algorithm is designed.

(ii) -e stability and the robustness of the algorithm is
proven for the partial fault of the pitch actuators
using Lyapunov theory.

(iii) A fault tolerant control including a baseline mul-
tiobjective state feedback regulator is designed. -e
performance of the method depends on two pa-
rameters to be tuned, c and Ξ.

(iv) To ensure a best performance of the proposed
control solution, two mappings are proposed to
tune the design parameters c and Ξ.

(v) -e evaluation of the proposed control strategy is
performed on the 1.5MW wind turbine benchmark
model.

-is paper is organized as follows. In Section 2, the wind
turbine model used in the benchmark is presented. In
Section 3, the wind turbine fault and state estimation is
performed and the nominal multiobjective regulator is
designed. -e wind turbine adaptive fault tolerant control in
the faulty production is studied and the tuning strategy is
proposed in Section 4. Some concluding remarks are pre-
sented in Section 5.

2. The Wind Turbine Model

-e wind turbine model used for the control contains seven
wind turbine states as follows:

(i) -e rotor speed
(ii) -e blade i flap wise deflection
(iii) -e blade i flap wise deflection velocity

where i� 1, 2, 3.
-e state space model of the rotor about the operating

point is given by

δ _x � Aδx + Bδu + Ddω

δy � Cδx
􏼨 􏼩. (1)

-e operator δ means a variation about the operating
point. A is the dynamics matrix, B is the input matrix, Dd is
the disturbance matrix, and C is the measured output
matrix. -e numerical values of the matrices A, B, C, and Dd

are given in the Appendix.
-e state vector and the pitch actions are, respectively,

represented by the vectors δx and δu:

δx � δΩr δx def1 δ _x def1 δx def2 δ _x def2 δx def3 δ _x def3􏼂 􏼃
T
,

δu � δβ1 δβ2 δβ3􏼂 􏼃
T
,

(2)

where δx def i and δ _x def i _x def i are, respectively, the blade
deflection and deflection velocity associated to the ith blade.
δy represents the measured rotor speed and deflection ve-
locity. -e vector ω is the wind disturbance on the con-
sidered states and is given by

ω � V(t) − V0, (3)

where V(t) is the instantaneous wind speed and V0 is the
operating wind speed which is equal to 18m/s in the high
wind region. -e vector is the rotor speed about the op-
erating point and is given by

δΩr � Ωr(t) − Ωr0, (4)

where Ωr(t) is the measured rotor speed and the operating
rotor speed is Ωr0 � 40 rpm. -e input pitches about op-
erating point are equal to δβ1 � δβ2 � δβ3 � β(t) − β0. β(t)

is the measured pitch angle and the operating pitch angle is
β0 � 9°.

-e numerical values of variables in the international
system of measurement units are given.

It is assumed that the measured outputs are the rotor
speed and the blade flap deflection velocities of the three
blades. In actual application like wind turbine blade analysis,
the deflection velocities could be obtained using the de-
rivative of the deflection displacement measure. -is in-
formation could be directly obtained using a MEMS
gyroscope sensor as in [35], or estimated using ultra-
wideband signals as proposed in [36].

-e considered turbine is a Wind PACT 1.5MW large
scale. More details about the parameters of this wind turbine
could be found in [37, 38]. -e turbine parameters summary
is given in Table 1.

3. Wind Turbine Control Strategy in the
Nominal Production

-e nominal controller is designed for two objectives. On
the one hand, the rotor speed should be regulated despite the
wind changes. On the other hand, the blade’s deflections
should be attenuated to prevent the structure from being
damaged. -e control scheme is summarized in Figure 3.
-e blades’ deflection velocity and the rotor speed are both
measured and fed to the robust state observer. Finally, the
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state feedback controller uses the estimated states to generate
the necessary pitch angle variations responsible for regu-
lating rotor speed and attenuating blade deflections. -e
adjective nominal means the baseline or the fault free sit-
uation.-e system is linearized about the nominal operating
point, and then the nominal controller is derived based on
the pole placement method to achieve the nominal pro-
duction. -e opposite to nominal is faulty, which means the
situation in which the fault occurs.

3.1. ,e Global Wind Turbine State Space Model. -e global
state space representation in the equation (5) takes into
account the pitch actuator faults. -e actuator effectiveness
fault is modeled as a multiplication of the input matrix B by
an unknown fault matrix F, and the faulty system is then
given by

_x(t) � Ax(t) + BF(t)u(t) + D1ω(t),

y(t) � Cx(t) + D2ω(t),
􏼨 (5)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the input
vector; y(t) ∈ Rpis the measured output with p≥m; and C
and B have full rank (rank(C)� p and rank(B)�m).
F(t) ∈ Rm×m, and F(t) � diag(f1(t), f2(t), . . . , fm(t)) is
the vector of faults on the actuators.

3.2. ,e Observer and the Baseline Controller Design. -e
three-blade flap deflection amplitude reduction and the
rotor speed regulation are performed through a pole
placement state feedback [39] as in equation (6). In fact, the
nominal control law in equation (6) is based on the fault free

(nominal) situation, in which the fault matrix F(t) equals the
identity matrix which is constant.

u � Δβi c � K􏽢x. (6)

-e variable 􏽢x in equation (6) is the state vector to
estimate. -e gains of controller K are design parameters to
achieve themultiobjective wind turbine control.-e variable
􏽢x should be estimated robustly in the next paragraph.

In Figure 3, Tg0 is the generator torque input at the
operating point and is kept constant in the region of high
winds, β0 is the pitch angle input at the operating point,
Δβi c is the pitch angle input variations from the operating
point (i� 1, 2, 3), K is the control gain, Δ _xdef i are the
deflection velocity variations from the operating point (i� 1,
2, 3), ΔΩr is the rotor speed variations from the operating
point, Δβi is the measured pitch angles and are input to the
state observer, and F(t) is the fault matrix.

3.2.1. ,e Robust State Observer. -e structure of the state
observer is given by system (7) and illustrated by Figure 4:

_􏽢x(t) � A􏽢x(t) + BF(t)u(t) − L(C􏽢x(t) − y(t)), (7)

where y(t) corresponds to the vector containing the mea-
sured deflection velocities Δ _x def i and rotor speed ΔΩr. -e
vector u(t) corresponds to the measured three blade pitch
angles. F(t) is the matrix of the faults. 􏽢x(t) is the output of
the observer.

􏽢x(t) ∈ Rn are the observer states, 􏽢y(t) ∈ Rn are the
observed outputs, 􏽢F(t) ∈ Rm×m is the estimate of F(t), and
L(t) ∈ Rn×p is the estimator gain to be designed.

3.2.2. ,e Fault Matrix Estimator. -e fault matrix F(t) has
to be estimated. -is estimate is 􏽢F(t) ∈ Rm×m and has the
following diagonal form: 􏽢F(t) � diag(􏽢f1,

􏽢f2,
􏽢f3), where 􏽢fi

is the estimation of the pitch fault on the actuator of index i.
-e following integrator-based algorithm is proposed:

_􏽢fi � − ξiriey(t)ui(t), (8)

where i� 1, 2, 3; Ξ � diag(ξ1, ξ2, . . . , ξm); Ξ ∈ Rm×m is called
the learning rate; and ri ∈ R1×p. -e parameter p is the
number of measurements. ui(t) is the control input in the
direction to the pitch actuator number i.

-e adaptability of the estimation consists in the
update of the fault estimate dynamics with time by acting
on the learning rate Ξ or the matrix R � r1 r2 r3􏼂 􏼃

T. -e
matrix R is an additional degree of freedom that can be
used to refine the approximation BTP � RC in equation
(15) in Section 3.2.3. An application of this matrix could
be to refine equation (15) only in the direction of a selected
measurement from matrix C for a fixed η. For example, to
refine equation (15) in the direction of the blade deflec-
tions, R could be chosen equal to
0
0
0

− 470.4158
0.001
0

0
− 470.4158

0

0
0

− 470.4158

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ and the resulting

product RC will then be equal to

Table 1: Wind turbine parameters.

Characteristics Value
Rated power (MW) 1.5
Mb: Blade mass (kg) 4,230
Db: Blade stiffness (N·m/rad) 20760
Total rotor mass (kg) 32,016
J r: rotor inertia (kg·m2) 2.9624∗106
Jg: generator inertia (kg·m2) 53.036∗Ng2
N g: gearbox ratio 87.965
R: rotor radius (m) 35

Observer

+
−

equation (6)
equation (7)

∆x_defi
.

K
∆Ωr

∆βi ∆βi,c

β0

Tg0

x

F(t)

Figure 3: -e wind turbine control objective scheme.
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0
0
0

0
0
0

− 470.4158
0
0

0
0
0

0
− 470.4158

0

0
0
0

0
0

− 470.4158

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. In the

resulting matrix RC, the second row vector became null.
Indeed, this row represents the contribution of the rotor
speed in the product matrix RC. -e remaining vector
rows 3, 5, and 6 represent the blade deflection velocities
contribution in the product matrix RC. Another alter-
native could be to compute an initial guess of R using
YALMIP and refine it according to the need. In the
present paper, R was extracted using YALMIP.

-e learning rate Ξ is selected and handled by the user to
ensure the fault estimation performance requirements. It
allows to achieve a compromise between a quick fault ac-
commodation and the disturbance amplification. Indeed, for
high values of Ξ, high frequency information, namely,
disturbances, is integrated in the learning process and vice
versa. -e variable ey(t) is the output tracking error and is
equal to the difference 􏽢y(t) − y(t).

3.2.3. Stability and Robustness of the Observer. Consider the
states tracking error ex(t) � 􏽢x(t) − x(t), the output tracking
error ey(t) � 􏽢y(t) − y(t), and the fault tracking error
ef(t) � 􏽢F(t) − F(t).

-e states’ tracking error dynamics are given by the state
space representation in the following equation:

_ex(t) � (A − LC)ex(t) + Bef(t)u(t) + LD2 − D1( 􏼁ω(t),

ey(t) � Cex(t) − D2ω(t).

⎧⎨

⎩

(9)

-e first objective is to have ex(t)⟶ 0 and ef(t)⟶ 0
when t⟶ +∞. -e tracking errors’ convergence and
stability could be ensured using the Lyapunov function
Ve(t):

Ve(t) � e
T
x(t)Pex(t) + tr e

T
f(t)Ξ− 1

ef(t)􏼐 􏼑. (10)

-e condition of validity of Ve(t) is that Ξ is chosen
invertible.

P is a symmetric positive definite matrix. -e idea of the
Lyapunov function choice is as the learning rate increases,
the quadratic fault tracking error ef(t) decreases and the
fault estimate tends to the actual fault. Finally, as the P

matrix decreases, the quadratic state tracking error ey(t)

decreases and tends to the null vector.
-e second objective is to minimize the effect of the wind

turbulence on the output tracking error ey(t), using a
performance index c> 0 as

ey(t)2

�����

�����≤ c ω(t)2
����

����. (11)

-e minimization of the wind turbulence ω(t) effect on
the output error could be performed using the following
objective function:

J � 􏽚
∞

tf

1
c

e
T
y(t)ey(t) − cω(t)

Tω(t)􏽨 􏽩dt. (12)

-e considered fault is time invariant. -is means that
_F(t) � 0 and then _ef(t) � _􏽢F(t). -e derivative of Ve(t) with
respect to time is given by

_Ve(t) � e
T
x(t) P(A − LC) +(A − LC)

T
P􏼐 􏼑ex(t)

+ 2e
T
x(t)PBef(t)u(t) + 2e

T
x(t)P LD2 − D1( 􏼁ω(t)

+ 2tr ef(t)Ξ− 1 _􏽢F(t)􏼒 􏼓.

(13)

Writing equation (8) as a matrix form gives the following:

Ξ− 1 _􏽢F � Rey(t)u
T
(t) � RCex(t)u

T
(t). (14)

To eliminate the term containing both eT
x(t) and u(t),

equation (15) could be adopted. Indeed, by adopting (15) the
second and fourth term in the development of the derivative
of the Lyapunov cancel each other.

B
T
P � RC. (15)

In order to solve the condition (15), its LMI version is
used as in the following lemma.

Lemma 1 (see [40]). ,e condition BTP � RC has an LMI
equivalent writing:

minimize η subject to
ηIr BTP − RC

∗ ηIn

⎡⎣ ⎤⎦ > 0, (16)

where η is a dimensionless constant used to approximate
BTP � RC as an LMI. ,e smaller η is, the accurate BTP �

RC is in LMI writing.

In the sequel, the symbol ‘∗’ means the transposition of
the term in the same diagonal as “∗.” For example, in
equation (16), “∗” is the transposition of the term BTP − RC.

-e derivative of the Lyapunov function becomes

_Ve(t) � e
T
x(t) P(A − LC) +(A − LC)

T
P􏼐 􏼑ex(t)

+ 2e
T
x P LD2 − D1( 􏼁ω(t).

(17)

By replacing the Lyapunov function derivatives in the cost
function expression, the following inequality is obtained:

A

C

BF

L
+

u(t)

+
–

+

– ∫x̇x̇
y

xy

Figure 4: -e state observer structure.
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J≤ 􏽚
∞

tf

1
c

e
T
y(t)ey(t) − cω(t)

Tω(t)dt + _Ve(t)

� 􏽚
∞

tf

1
c

e
T
y(t)ey(t) − cω(t)

Tω(t)􏽨 􏽩dt + e
T
x(t) P(A − LC)(

+(A − LC)
T
P􏼑ex(t) + 2e

T
x P LD2 − D1( 􏼁ω(t).

(18)

-ere is no direct action of the wind on the outputs; then,
D2 � 0. -e objective function inequality:

J≤
1
c

e
T
y(t)ey(t) − cωT

(t)ω(t)dt − 2e
T
x(t)PD1ω(t)

+ e
T
x(t) P(A − LC) +(A − LC)

T
P􏼐 􏼑ex(t)

� 􏽚
∞

tf

ζ(t)
TΥζ(t)dt,

(19)

where

ζ(t) �
ex(t)

ω(t)

⎡⎢⎣ ⎤⎥⎦,

Υ �

P(A − LC) +(A − LC)TP +
1
c

C
T
C − PD1

∗ − cId

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(20)

Finally, to ensure the stability of the states’ tracking error
dynamics and the minimization of the wind turbulence on
the output tracking error, the following inequality should
hold:

Υ< 0. (21)

Using the Schur complement, the same previous in-
equality becomes

PA + ATP − YC − CTYT − PD1 CT

∗ − cId 0

∗ ∗ − cIp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (22)

where Y � PL, and then the error dynamic (9) satisfies the
H∞ performance.

Remark 1. -e adaptive algorithm (8) is proposed with the
assumption that the input vector ui(t) satisfies the persistent
excitation condition, which means that there exist positive
scalars μ1, μ2, and t0 such that for all t, the following in-
equality holds:

μ1 ≤ 􏽚
t+t0

t
ui(s)ui(s)ds≤ μ2. (23)

-e poles of the designed observer could be placed
through the linear matrix inequality in the following lemma.

Lemma 2 (see [41]). ,e eigenvalues of closed loop observed
system dynamic matrix (A − LC) ∈ Rn×nA ∈ Rn×n belong to

the circular region D(α, τ)with center α + j0 and radius τ if
and only if there exists a symmetric positive definite matrix
P ∈ Rn×nP ∈ Rn×n such that the following condition holds:

− P P A − LC − αIn( 􏼁

∗ − τ2P
􏼢 􏼣< 0. (24)

-e final integrated problem to be solved for the sym-
metric positive definite matrix P is as the following lemma.

Lemma 3. Assume D2 is null matrix and let a prescribed
H∞ performance level c be given. If there exists a symmetric
positive definite matrix P ∈ Rn×n and matrices Y ∈ Rn×p and
R ∈ Rm×p such that the following condition holds:

PA + ATP − YC − CTYT − PD1 CT

∗ − cId 0

∗ ∗ − cIp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

− P P A − LC − αIn( 􏼁

∗ − τ2P
􏼢 􏼣< 0,

minimize η subject to
ηIr BTP − RC

∗ ηIn

⎡⎣ ⎤⎦> 0 ,

(25)

where Y � PL, then the error dynamic (9) satisfies the H∞
performance and the poles of the robust state observer are
within the region D(α, τ).

3.2.4. ,e State Observer and Fault Simulation Results.
-e natural frequency of the blade is fn � (1/2π)��������

(Db/Mb)
􏽰

� 1.511Hz. Mb is the blade mass and Db is the
stiffness of the blade. It gives a natural pulsation of
ωn � 9.49 rad/s. All the frequencies above the natural fre-
quency should be filtered by the observer. However, the
observer should amplify the gain corresponding to ωn for the
estimation of the blades’ deflections. -e Bode diagrams of
the designed observer in the system (7) are illustrated in
Figures 5(a) and 5(b).-e considered channel links the pitch
actuator’s input (u1(t) � Δβ1 in Figure 4) with the blade
deflection observed state (y3(t) � Δxdef 1 in Figure 4).

Figures 5(a) and 5(b) illustrate the designed observer
Bode diagram function of the performance level c corre-
sponding to the system in equation (7). -e Bode diagrams
are divided into two main regions. -e first region is about
the natural pulsation of the blades ωn � 9.49 rad/s. In this
region, the magnitude presents maximal values, which
means that the blades’ deflections are perfectly observed.-e
second region is where the pulsations are less than the
natural pulsation of the blades. As c becomes smaller (closer
to values near 0), the gain of the observer is reduced and the
low frequencies of the wind speed are not amplified. -e
advantage is to prevent penetrating the amplified low fre-
quencies contained in the rotor speed to the fault estimation
algorithm through the residual ey(t). -e effect of the
amplified low frequencies is reducing the convergence speed
of the estimation algorithm in equation (8). As a conclusion,
the convergence speed of the fault estimation could be tuned
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by the performance index c in addition to the tuning by the
learning rate Ξ as illustrated in Figure 6(a), where the
learning rate is fixed at 0.1 and c takes the values 3, 1, and 0.3.

Figures 7 and 8 illustrate the tracking errors in the faulty
and the fault tolerant case for the rotor speed and the blade 1
deflection velocity as samples. -e observation quality is
defined by the states’ tracking error. It could be noticed that
a sufficient level of observation is achieved for c � 0.3 and
ξi � 0.1 (i� 1, 2, 3).

For the rotor speed, in the fault tolerant case, the tracking
error has a mean value of − 3.96 × 10− 4 rad/s and a standard
deviation of 6.841 × 10− 4 rad/s. For the faulty case, the mean
value increases to − 0.002 rad/s with a standard deviation of
9.8893 × 10− 4 rad/s. For the blade deflection velocity, in the
fault tolerant case, the tracking error has a mean of
− 0.058m/s and a standard deviation of 0.4973m/s. For the
faulty case, the mean value increases to − 0.0823m/s and a
standard deviation of 0.6595m/s.

Figure 5(c) illustrates the result of pole placement of the
state observer.-e chosen region is of center 20 and radius 20.

-e resulting closed loop eigenvalues are − 33.4089;( − 24.

7069 ± 8.6379i; − 26.6204 ± 18.7259i;− 26.6204 ± 18.7259i)T.
In Figure 6(a), the effectiveness of actuator number 1

means 1 − f1. f1 represents the decrease in the output of the
actuator.

In Figures 7 and 8, the notations ey1 correspond to the
rotor speed component and ey2 corresponds to the blade
deflection velocity component in the tracking error vector ey.

Figures 6(a) and 8 correspond to the first faulty scenario
of Section 4 and Figure 7 corresponds to the third faulty
scenario.

Figure 6(b) illustrates the fault estimation of the blade 1
actuator for several values of learning rate ξ1. As the learning
rate increases, the estimate of the fault converges rapidly to
the actual fault (magenta).

Remark: -ere is a coupling effect between the fault
estimation and the state observer due to the fault tolerant
control (FTC) correction. Such an effect can be neglected as
long as the state observer is slower than the fault estimation.
-is can be achieved by choosing properly the learning rate.
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3.2.5. Fault Scenario with Dynamics Faster than the System
Dynamics. In this section, a sinusoidal loss of efficiency is
considered with frequency higher than 1.5Hz of blades.
Figures 6(c) and 6(d) show the result of fault estimation in
that case. In the proposed strategy, by only tuning the learning

rate to suitable higher values, the faults with dynamics faster
than the system dynamics could be reconfigured without need
to redesign the fault estimate algorithm as recommended in
[33]. -e amplitude of the fault is 0.1 and the frequency is
12 rad/s higher than 9.49 rad/s of the blades.
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Figure 6: (a) Estimation of the pitch 1 actuator effectiveness for different performance levels. (b) Estimation of the pitch 1 actuator
effectiveness for different learning rates. (c) Fault estimate with dynamics faster than system dynamics. (d) Zoom on fault estimate with
dynamics faster than system dynamics.
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In Figure 7, the most important issue is the change of the
mean rotor speed error. -is information is the only one
needed by the algorithm about the fault on the rotor speed.
In Figure 8, the change is obvious on the amplitude of the
blades at the natural frequency 1.5Hz. -is last information
could be easily deduced by computing the value 1/period.
Indeed, in Figure 8, the period of the signals is equal to
0.66 seconds giving the blades a natural frequency of 1.5Hz.

In the faulty case, this increase in the mean and the standard
deviation of the tracking error is integrated by the algorithm
in equation (8) to deduce the fault amplitude.

3.2.6. ,e Baseline Controller Design. Initially, the eigen-
values of the dynamics matrix A of the system are equal to
the vector λ0 as follows:

λ0 � − 0.1043 − 5.2649 ± 8.1929i − 5.1247 ± 7.9957i − 5.2649 ± 8.1929i􏼂 􏼃
T
. (26)

-e eigenvalue − 0.1043 corresponds to the rotor
speed dynamic. -e last three eigenvalues represent the
three blades’ dynamics. -ese eigenvalues are double
conjugates because the blades represent an oscillatory
system. -e objective of the control is to reduce the
oscillations of the blades by choosing new eigenvalues
bigger in absolute value than the initial eigenvalues and
with negative real parts to ensure stability of the closed
loop. -e design control parameter K is computed so that
the closed loop eigenvalues λ(A+BK) match the desired
eigenvalues λd:

λd � λ(A+BK). (27)

In the present paper, the desired eigenvalues of the
nominal closed loop are

λd � − 0.2 − 24.7 − 24.7 − 26 − 26 − 27.3 − 27.3􏼂 􏼃
T
.

(28)

-e design steps of the nominal control are as follows:

(i) -e controllability matrix of the pair (A, B) is of full
rank 7. So, the system is controllable.

(ii) -e control gain is defined as K �

K11 . . . K17
K21 . . . K27
K31 . . . K37

⎛⎜⎝ ⎞⎟⎠.

-e gain K is then substituted in the desired char-
acteristic polynomial equation:

det sIn − A − BK( 􏼁 � 􏽙
7

j�1
s − λd,j􏼐 􏼑, (29)

where In is the identity matrix and s is the Laplace operator.
-e integer n is the number of states; it is equal to 7 in this
paper. λd,j is the jth element of the desired closed loop ei-
genvalue vector λd.

(i) Equation (29) is solved by equating the identical
powers on both sides. -is allows extracting the value
of the control matrix K.

Finally, the obtained control gain K is applied to the
system according to the scheme of Figure 3. -e results of
the regulation are depicted in Figures 9–12. Figures 9 and

10 illustrate that the speed regulation objective is achieved.
In fact, as the rotor speed increases (decreases), the blade
pitch angle increases (decreases) in order to prevent wind
from driving the wind turbine (in order to provide more
wind to drive the wind turbine). -e expected achieved
performance is of 90% of attenuation. In the open loop, a
difference from the operating point of 10 rpm at the instant
150 s is denoted. After applying the control strategy, the
difference becomes 1 rpm, which corresponds to 90% of
attenuation.

Figures 11 and 12 show that when the deflection in-
creases (the red signal), the pitch action (green) increases to
attenuate the deflection as presented in the same figure
(blue signal). It can be concluded that the blade pitch action
is composed of two signals: a low frequency control action
responsible for rotor speed regulation and a high frequency
control action responsible for mitigating the blade
deflections.

Figures 9–12 correspond to the nominal case (healthy
case). In this case, no fault is occurring.

4. Wind Turbine Optimal Adaptive Fault
Tolerant Control in the Faulty Operation

-e considered fault is the loss of efficiency in the three pitch
actuators. -e scenario created in the FAST software is a
drop of 55% in the effectiveness of the pitch actuator 1 at the
instant 90 s, 40% in the effectiveness of the pitch actuator 2 at
the instant 150 s, and 60% in the effectiveness of the pitch
actuator 3 at the instant 200 s.

4.1. ,e Fault Mechanism. -e considered pitch actuator is
hydraulic based. In Figure 13(a), the prefix p denotes the
piston side, the prefix r denotes the rod side, and the prefix v

denotes the proportional valve side. Ap and Ar correspond,
respectively, to the surfaces of the piston side and the rod
side. -e pump pumps oil from the accumulator with a
pressure ps which passes across the proportional valve with a
mass flow Qv. Finally, the air arrives to the piston side with
the pressure pp and thrusts the rod linked to the blades. -e
trust force is Fcyl and is given by

Complexity 9



Fcyl � ppAp − prAr − Ffric, (30)

where Ffric is the friction force of the piston on the cylinder and
is linearly dependent to the displacement velocity of the piston.

For the same rod pressure pr and friction Ffric, the
considered pitch loss of efficiency fault occurs when the
pressure pp drops due to the ageing of the pump station.-is
ageing appears for example because of excessive Joule effect
(heat) losses in the wirings of the pump motor. Under these

conditions, the thrust force Fcyl of the rod on the blade is no
longer sufficient to actuate the blade. -e thrust force Fcyl is
represented by the action matrix B in equation (5). -e fault
is modeled as a loss of efficiency percentage (equal or less
than 100%)multiplied by the actionmatrix B. As a result, the
pitch efforts are no longer sufficient for damping the os-
cillations of the blades. -e aim of the algorithm in equation
(8) is to track that multiplicative percentage with a sufficient
precision and response time.

After that, equation (31) comes to amplify the supplied
power (control) to the pump to compensate the lost energy
due to Joule effect. -e amplification is performed mathe-
matically by dividing the old control signal by the estimated
faulty efficiency.

4.2. ,e Fault Tolerant Controller. -e fault tolerant control
signal is obtained by dividing the initial baseline control
signal by the estimated fault:

uf(t) � 􏽢F(t)
− 1

u(t). (31)

To avoid the division by zero in the case of zero effi-
ciency, 􏽢F(t) should be replaced by a small number (for
example, 10− 4). -e scheme of the global fault tolerant
control is given by Figure 13(b).
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Before being fed to the pitch actuator, the effectiveness is
estimated by the adaptive algorithm.-en, the control signal
is divided by the estimated efficiency to compensate the drop
in the actual efficiency of the pitch actuator.

Remark:-e different LMIs of the algorithm are resolved
through the YALMIP tool [42].
Δβi is the pitch angle input variations from the operating

point for the ith actuator (i� 1, 2, 3), Δ _x def i are the de-
flection velocity variations from the operating point for the
ith blade, and ΔΩr is the rotor speed variations from the
operating point.
Δβi F is the faulty pitch angle input variations from the

operating point for each actuator, 􏽢fi is the estimated

efficiency for the ith actuator, and 􏽢x is the estimated state
variations of the wind turbine from the operating point.

4.3. ,e ,ree Pitch Actuators Loss of Effectiveness Faulty
Scenario. Let us consider the blade without loss of gener-
ality. Figure 14 illustrates the blade 1 deflection.

In the faulty situation, the deflections increase from 1.5
meters to 4 meters because the pitch actuator could not
answer completely to the corrective action of the baseline
regulator against the wind. According to [43], the maximal
allowable industrial deflection for the considered wind
turbine is of 3m. In the faulty case, this limit is exceeded
which increases the risk of damage of the blade.

140 141 142 143 144 145 146 147 148 149 150

1

1.2

1.4

1.6

1.8

2

2.2

Bl
ad

e d
efl

ec
tio

n 
(m

et
er

s)
Bl

ad
e p

itc
h 

ac
tio

n 
(d

eg
)

140 141 142 143 144 145 146 147 148 149 150
7.5

8

8.5

9

9.5

10

10.5

Time (s)

With control
Without control

Figure 12: Blade 1 deflection (meters) and blade 1 pitch action.

Accumulator

Proportional
valve

Blade

Pump
station

Cylinder

M

xcyl
Fcyl

pp, Vp

pt

ps

Qv

Qs
Qacc

pr, VrQp

Qr

u

(a)

Observer

+

+

equation (6)

equation (7)

Division

Efficiency
Estimator

+−
equation (30)

equation (8)

∆x·_defi

∆Ωr

∆βi

∆βic

∆βi,F

β0 Tg0

y y

K

err

fi

∆βi_c/fi

(b)

Figure 13: (a) -e pitch actuator model. (b) -e wind turbine control objective scheme.

Complexity 11



After applying the fault tolerant control strategy, the
blade deflections are perfectly reconfigured.

Let F(s) be the effect of the pitch angle i on the blade i
deflection. -e effect of the strategy on the blades deflections
is interpreted as an additional zero at the origin in the transfer
functionF(s). In Figure 15, it can be noticed that when s tends
to zero, sF(s) tends to zero.-e reconfiguration time for each
fault estimation of index i is dictated by the product ξi × ri.

-e rapidity of the algorithm depends on the learning
rate Ξ and the matrix R. As studied earlier in the paper, in
addition to the learning rate Ξ, even the performance level c

could influence the response time of the fault estimation
through the low frequencies of the wind. In fact, for a given
c, a matrix P depending on c could be found through the
LMI in equation (22). -en, by using the LMI in equation
(15), the matrix R is obtained and used to compute the
estimation 􏽢F(t) using equation (8). As a conclusion, the
parameter c influences the response time of the algorithm
through the matrix R.

-ederivative form of the block betweenΔβi c andF(s) in
Figure 15 has a risk of turbulence amplification. For this reason,
a study to choose the learning rate Ξ and the performance level
c function of the correlation between the tracking error ey 2(t)

(blade 1 deflection velocity as an example) and the wind
turbulence is proposed in the next section.

4.4. ,e Choice of c and Γ Based on the Correlation with
Turbulence and the Estimation Response Time Criteria. In
this section, empirical boundaries are proposed for choosing
the performance level c and the learning rate Ξ based on two
criteria. Namely, the correlation between the wind speed ω
and the residual ey is considered. -is variable is crucial to
investigate because it could be amplified if decided to use the
performance level c to tune the estimation response time.
-e second criterion is the rapidity of convergence which is
important to ensure because only short times of convergence
are recommended for a fast recovery of the fault.

4.4.1. ,e Correlation between the Wind Turbulence and the
Residual ey. -e expression of the correlation of the two
signals is given by

Corr �
E ey × ω􏽨 􏽩 − E ey􏽨 􏽩E[ω]

SDey
× SDω

, (32)

where E[x] denotes the expectation of the signal x and SDx

denotes the standard deviation of the signal x. -e correlation
Corr belongs to the interval [− 1, 1]. It obeys to the weak and
strong correlation. If the coefficient Corr ∈ − 0.5 0􏼂 􏼃∪
0 0.5􏼂 􏼃, it is called a weak correlation. If the coefficient

Corr ∈ − 1 − 0.5􏼂 􏼃∪ 0.5 1􏼂 􏼃, it is called a strong correlation.

4.4.2. ,e Estimation Response Time of the Algorithm.
-e response time of the fault estimation algorithm in
equation (8) for each actuator of index i is given by

υi � ξi × ri. (33)

Many simulations have beenmade on the FASTsoftware in
order to derive empirical data on υ and Corr helping to choose
the appropriate values of the two parameters c and Ξ. -en, an
interpolation between data points has been performed to define
mappings linking the tracking error and the wind disturbance.

Figures 16 and 17 show the evolution of the correlation
and fault estimation response time with the performance
level and the learning rate for the considered wind turbine in
Table 1. From Figure 18, one can conclude that for c less than
1, this parameter influences the correlation more than the
response time of the algorithm. However, when c exceeds
2.5, the correlation becomes more influenced also by Ξ as c

increases. For c less than 2.25, the response time of the
algorithm is influenced by both Ξ and c. But, as c increases,
only Ξ influences the response time of the algorithm. In
order to guarantee a fast reconfiguration of the system
performance, one should choose a small response time of the
algorithm by choosing a suitable pair (c, Ξ). However, one
should guaranty that neither the resulting performance level
nor the learning rate amplifies the correlation between the
tracking error ey and the wind turbulence ω.

For the last reason, the two parameters should obey to
the following empirical law. For example, if c is in [0.9, 1.4]
interval, Ξ should not be in [2.21, 9.84] (zone 1 in Figure 18)
to avoid high correlation, and with the same idea, if c is
chosen in [1.4, 2.02], Ξ should not be in the interval [8.317,
9.84] (zone 2 in Figure 18).

An example of a choice of the pair (c, Ξ) leading to a fast
and less correlated response time is indicated in Figure 19 by
(c, Ξ) � (2.25, 1.25).

4.4.3. Discussion with respect to Some Existing Methods.
-e proposed strategy is not complicated and uses an in-
tegral structure with one Lyapunov function to prove sta-
bility and convergence of both state estimation error and
fault estimation error. -e proposed approach uses a re-
duced number of measurements. Indeed, only the rotor
speed and the individual blades’ deflection velocity are
needed. -is reduces the information needs with respect to
other techniques such as the one in [44] (requiring also the
generator speed measurement). It does not either require the
information about the presumed fault size as in [45].

-e residual-based techniques in [45–47] deal only with
fault detection tasks. Contrariwise, the proposed approach
deals with both fault estimation and fault isolation suitable
for active fault tolerant control strategies. Indeed, the in-
dividual deflection velocity measurement of each blade al-
lows a natural isolation of the fault blade without the need of
additional isolation methods. -is method avoids the in-
trinsic delays of online least-squares methods, which could
have a negative impact on the fault estimation response time.

-e proposed strategy is equipped with a tuning method
to avoid amplification of wind turbulence in the direction of
the high learning rates.-is issue is not sufficiently discussed
in other works related to wind turbines.

Contrariwise to other strategies, the proposed method
could deal with faults having dynamics faster than the
system dynamics only by tuning the learning rate suitably.
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4.4.4. Comparison of the Proposed Strategy with the Virtual
Actuator with State Residual Integrator. A new scenario of
pitch fault on blade 1 is considered for the comparison
between the proposed strategy and a virtual actuator-based
strategy (details of this method are not the objective of the
paper, [48]). In this section, the considered fault happend at
the instant 15 seconds. -is fault represents pitch actuator
loss of efficiency of 55%.

Figure 20 illustrates the structure of the strategy used for
comparison. -e principle of this strategy is to use a model
reference and to compute the difference between the esti-
mated faulty states and the model reference states. -is
difference is integrated and used as new control law.
Equation (8) was used to derive the faulty matrix Bf. -e
difference with respect to the proposed strategy is in the
integration of the state residual xΔ instead of the division in
equation (30) and the use of reference model.

Figure 21 illustrates a comparison between the proposed
strategy and the virtual actuator with integrating the state
residual in terms of blade fault reconfiguration. In some
regions where the wind speedmakes high amplitudes of high
frequencies, which means the effort needed for integration is
higher, the performance of the virtual actuator becomes
poor in the interval [16 s; 26 s]. -is could be explained by
the existence of two integrators, the first presented in
equation (8) used to estimate the fault needed by Bf and the
second to integrate the state residual. In conclusion, the
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Figure 19:-e effectiveness estimation algorithm response time vs.
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virtual actuator with integration of state residual is not al-
ways suitable for integrator-based fault estimators.

4.4.5. Digital Implementation of the Strategy. -e equations
to be implemented are the baseline control law in equation
(6), the observer in equation (7), and the fault estimation in
equation (8). In order to digitalize the continuous equations,
the first-order approximation in equation (34) is used. If _z is
the derivative, it could be approximated by

_z(t) �
z(t + T) − z(t)

T
, (34)

where T is the sampling step. Hence, the strategy could be
digitalized for each iteration of index k as follows.

-e digitalized baseline controller (from equation (6)) is
given by

uk � K􏽢xk. (35)

-e digitalized robust observer (from equation (7)) is
given by

xk+1 � Ad􏽢xk + BdFkuk + Ld 􏽢yk − yk( 􏼁, (36)

whereAd,Bd, andLd are, respectively, the statematrix, the input
matrix, and the observermatrix.-e expressions of the previous
matrix are given by Ad � In + TA; Bd � TB; and Ld � TL.

-e digitalized fault estimation (equation (8)) for each
actuator of index i is given by

fk+1,i � fk,i + Tξk,irk,iey,k,iuk,i. (37)

5. Conclusion

In this paper, the partial failure of pitch actuators in wind
turbine was considered. -e LMI-based fault tolerant

control was applied to the considered fault. -e method
presents the advantages that it estimates at the same time the
states and the fault. -e method convergence is proved
through Lyapunov theory. Two key design parameters were
identified in the integrated design, namely, the performance
level and the learning rate. It has been shown that the
performance level c of the observer and the learning rate Ξ
impact indirectly the loads on the turbine. -e parameters
have an effect on the availability time of the fault estimation.
In some zones of the pair (c, Ξ), it has been found that as the
learning rate increases, the fault becomes quickly available
and the fault tolerant strategy accommodates rapidly the
prefault load reduction. In other zones, the robustness c

enhances the loads reduction. Moreover, the performance
level c provides another degree of freedom to the adaptive
algorithm in addition to the learning rate Ξ. An empirical
design method was proposed to impose both a given cor-
relation of the measuring error to the wind turbulence and a
given response time of the effectiveness estimation algorithm.
-e proposed method helps choosing the desired short
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Figure 20: -e simplified virtual actuator strategy with state residual xΔ integration.
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response time of the effectiveness estimation algorithm with
sufficiently good correlation level to the wind turbulence.

Appendix

A �

0.0328 0.1046 0.0087 0.1046 0.0087 0.1046 0.0087
0 0 1 0 0 0 0

− 41.4716 − 91.8644 − 10.3888 − 1.6712 − 0.1391 − 1.6712 − 0.1391
0 0 0 0 1 0 0

− 41.4712 − 1.6712 − 0.1391 − 91.8644 − 10.3888 − 1.6712 − 0.1391
0 0 0 0 0 0 1

− 41.4721 − 1.6712 − 0.1391 − 1.6712 − 0.1391 − 91.8644 − 10.3888

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0.0015 0.0015 0.0015
0 0 0

− 2.0553 − 0.0234 − 0.0234
0 0 0

− 0.0234 − 2.0553 − 0.0234
0 0 0

− 0.0234 − 0.0234 − 2.0553

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

C �

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Dd �

0.0317 0.0317 0.0317
0 0 0

1.5187 − 0.5062 − 0.5062
0 0 0

− 0.5062 1.5187 − 0.5062
0 0 0

− 0.5062 − 0.5062 1.5187

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; c � 0.3; η � 1,

Ξ �

0.01
0
0

0
0.01
0

0
0

0.01

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

P �

0.0514
− 0.0001

0
− 0.0001

0
− 0.0001

0

− 0.0001
1.4086

0
0.1383

0
− 0.1618

0

0
0
0
0
0
0
0

− 0.0001
0.1383
0

1.2979
0

0.0837
0

0
0
0
0
0
0
0

− 0.0001
− 0.1618

0
0.0837

0
0.5037

0

0
0
0
0
0
0
0
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L �

34.3109
0.0021

− 429.7260
0.0012

− 429.7430
0.0050

− 429.7193

0.0237
1

19.0461
0

− 0.4400
0

− 0.4399

0.0237
0

− 0.4400
0.9999
19.0465

0
− 0.4400

0.0237
0

− 0.4399
0

− 0.4400
0.9999
19.0463

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R �

0.2114
0.1633
0.2212

− 157.5057
0.1955
0.1951

0.1955
− 157.5057
0.1954

0.1951
0.1953

− 157.5067

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

K � 103
− 2.1347
− 0.0108
0.0077

4.3367
0.0142
0.0283

0.2346
0.0009
0.0014

− 2.3593
2.1925

− 2.1936

− 0.1786
0.1172

− 0.1173

− 2.5160
− 2.2166
2.2145

− 0.1820
− 0.1185
0.1184

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(A.1)
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