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Most multiobjective particle swarm optimizers (MOPSOs) often face the challenges of keeping diversity and achieving con-
vergence on tackling many-objective optimization problems (MaOPs), as they usually use the nondominated sorting method or
decomposition-based method to select the local or best particles, which is not so effective in high-dimensional objective space. To
better solveMaOPs, this paper presents a novel angular-guided particle swarm optimizer (called AGPSO). A novel velocity update
strategy is designed in AGPSO, which aims to enhance the search intensity around the particles selected based on their angular
distances. Using an external archive, the local best particles are selected from the surrounding particles with the best convergence,
while the global best particles are chosen from the top 20% particles with the better convergence among the entire particle swarm.
Moreover, an angular-guided archive update strategy is proposed in AGPSO, which maintains a consistent population with
balanceable convergence and diversity. To evaluate the performance of AGPSO, the WFG and MaF test suites with 5 to 10
objectives are adopted.*e experimental results indicate that AGPSO shows the superior performance over four currentMOPSOs
(SMPSO, dMOPSO, NMPSO, and MaPSO) and four competitive evolutionary algorithms (VaEA, θ-DEA, MOEA\D-DD, and
SPEA2-SDE), when solving most of the test problems used.

1. Introduction

Many real-world applications often face the problems of
optimizing m (often conflicting) objectives [1]. *is kind of
engineering problem is called multiobjective optimization
problems (MOPs), when m is 2 or 3, or called many-ob-
jective optimization problem (MaOPs), when m> 3. A
generalized MOP or MaOP can be modeled as follows:

minimize F(x) � f1(x), f2(x), . . . , fm(x)( 􏼁,

subject to x ∈ Ω,
(1)

where x � (x1, x2, . . . , xD) is a decision vector in the D-
dimensional search space Ω and F(x) defines m objective
functions. Assuming that two solutions x and y(x≠y)

locate in the search space Ω, if fi(x)≤fi(y), for
∀i ∈ 1, 2, . . . , m{ }, x is said to dominate y. *en, if no so-
lution can dominate x, it is called nondominated solution.

For MOPs or MaOPs, the aim is to search a set of non-
dominated solutions called Pareto-optimal set (PS), with its
mapping in the objective space called Pareto-optimal Front
(PF).

During the past two decades, a number of nature-in-
spired computational methodologies have been proposed
to solve various kinds of MOPs and MaOPs, such as
multiobjective evolutionary algorithms (MOEAs) [2, 3],
multiobjective particle swarm optimizers (MOPSOs) [4–6],
and multiobjective ant colony optimizers [7]. Especially,
MOPSOs become one of the most outstanding population-
based approaches due to the easy implementation and
strong search ability [8], which can be also applied to other
kinds of optimization problems, such as multimodal op-
timization problems [9] and standard image segmentation
[10], as well as some real-world engineering problems
[11, 12].
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Currently, MOPSOs have been validated to be very ef-
fective and efficient when solving MOPs, which can search a
set of approximate solutions with balanceable diversity and
convergence to cover the entire PFs. Based on the selection
of local or global best particles, which can effectively guide
the flight of particles in the search space, most of MOPSOs
can be classified into three main categories.*e first category
embeds the Pareto-based sorting approach [2] into MOPSO
(called Pareto-based MOPSOs), such as OMOPSO [13],
SMPSO [14], CMPSO [15], AMOPSO [5], and AGMOPSO
[16]. *e second category decomposes MOPs into a set of
scalar subproblems and optimizes all the subproblems si-
multaneously using a collaborative search process (called
decomposition-based MOPSOs), including dMOPSO [17],
D2MOPSO [18], and MMOPSO [19]. *e third category
employs the performance indicators (e.g., HV [20] and R2
[21]) to guide the search process in MOPSOs (called indi-
cator-based MOPSOs), such as IBPSO-LS [22], S-MOPSO
[23], NMPSO [24], R2HMOPSO [25], and R2-MOPSO [26].

Although the above MOPSOs are effective for tackling
MOPs with the objective number m≤ 3, their performance
will significantly deteriorate for solving MaOPs with m> 3,
mainly due to the several challenges brought by “the curse of
dimensionality” in MaOPs [27, 28]. Generally, there are
three main challenges for MOPSOs to deal with MaOPs.

*e first challenge is to provide the sufficient selection
pressure to approach the true PFs of MaOPs, i.e., the
challenges in maintaining convergence. With the increase of
objectives in MaOPs, it becomes very difficult for MOPSOs
to pay the same attention to optimize all the objectives,
which may lead to an imbalanced evolution such that so-
lutions are very good at solving some objectives but perform
poorly on the others [29]. Moreover, most solutions of
MaOPs are often nondominated with each other at each
generation.*erefore, MOPSOs based on Pareto dominance
may lose the selection pressure on addressing MaOPs and
show a poor convergence performance [24].

*e second challenge is to search a set of solutions that
are evenly distributed along the whole PF, i.e., the challenges
in diversity maintenance. Since the objective space is en-
larged rapidly with the increase of dimensionality inMaOPs,
this requires a large number of solutions to approximate the
whole PF. Some well-known diversity maintenance methods
may not work well onMaOPs, e.g., the crowding distance [2]
may prefer some dominated resistant solutions [30], the
decomposition approaches require a larger set of well-dis-
tributed weight vectors [3], and the performance indicators
require an extremely high computational cost [31]. *us,
diversity maintenance in MOPSOs becomes less effective
with the increase of objectives in MaOPs [32].

*e third challenge is to propose the effective velocity
update strategies for MOPSOs to guide the particle search in
the high-dimensional space [33]. *ere are a number of
research studies to present the improved velocity update
strategies for MOPs [34]. For example, in SMPSO [14], the
velocity of the particles is constrained in order to avoid the
cases in which the velocity becomes too high. In AgMOPSO
[35], a novel archive-guided velocity update method is used
to select the global best and personal best particles from the

external archive, which is more effective to guide the swarm. In
MaOPSO/2s-pccs [36], a leader group is selected from the
nondominated solutions with the better diversity in the external
archive according to the parallel cell coordinates, which are
selected as the global best solutions to balance the exploitation
and exploration of a population. In NMPSO [24], another
search direction from the personal best particle pointing to the
global best one is provided to make more disturbances in
velocity update. However, the abovementioned velocity update
strategies are not so effective for MaOPs. With the enlargement
of the objective space, it is more difficult to select the suitable
personal or global best particles for velocity update.

To overcome the abovementioned challenges, this paper
proposes a novel angular-guided MOPSO (called AGPSO).
A novel angular-based archive update strategy is designed in
AGPSO to well balance convergence and diversity in the
external archive. Moreover, a density-based velocity update
strategy is proposed to effectively guide the PSO-based
search. When compared to the existing MOPSOs and some
competitive MOEAs for MaOPs, the experimental results on
the WFG and MaF test suites with 5 to 10 objectives have
shown the superiority of AGPSO on most cases.

To summarize, the main contributions of this paper are
clarified as follows.

(1) An angular-guided archive update strategy is pro-
posed in this paper. As the local-best and global-best
particles are both selected from the external archive,
the elitist solutions with balanceable convergence and
diversity should be preserved to effectively guide the
search direction to approximate the true PF. In this
strategy,N evenly distributed particles (N is the swarm
size) are firstly selected by the angular distances to
maintain the diversity in different search directions,
which helps to alleviate the second challenge above
(diversity maintenance). After that, the rest particles
are respectively associated to the closest particle based
on the angular distance, which will form N groups
with similar particles. At last, the particle with the best
convergence in each particle group is saved in the
external archive, trying to alleviate the first challenge
above (keeping convergence).

(2) A density-based velocity update strategy is designed
in this paper, which can search high-quality particles
with fast convergence and good distribution and
helps to alleviate the third challenge above in
MOPSOs. *e local best and global best particles are
selected according to the densities of the particles, for
guiding the PSO-based search. *e sparse particles
will be guided by the local best particles to encourage
exploitation in the local region as the surrounding
particles are very few, while the crowded particles are
disturbed by the global best particles to put more
attentions on convergence. By this way, the proposed
velocity update strategy is more suitable for solving
MaOPs as experimentally validated in Section 4.5.

*e rest of this paper is organized as follows. Section 2
introduces the background of the particle swarmoptimizer
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and some current MOPSOs and MOEAs for MaOPs. *e
details of AGPSO are given in Section 3. To validate the
performance of AGPSO, some experimental studies are
provided in Section 4. At last, our conclusions and future
work are given in Section 5.

2. Background

2.1. Particle SwarmOptimizer. Particle swarm optimizer is a
simple yet efficient swarm intelligent algorithm, which is
inspired by the social behaviors of the individuals in flocks of
birds and schools of fish, as proposed by Kennedy and
Eberhart [6] in 1995. Generally, a particle swarm S is sto-
chastically initialized to have N particles according to the
corresponding search range of the problem (N is the swarm
size). Each particle xi ∈ S is a candidate solution to the
problem, characterized with the velocity vi(t) and the po-
sition xi(t) at tth iteration.

Moreover, each particle xi will record the historical
position-information in S, i.e., the personal best position for
xi (pbesti) and the global best position for xi (gbesti), which
are used to guide the particle fly to the next position
xi(t + 1). *en, the velocity and location of each particle are
iteratively updated as follows:

vi(t + 1) � wvi(t) + c1r1 pbesti − xi(t)( 􏼁

+ c2r2 gbesti − xi(t)( 􏼁,
(2)

xi(t + 1) � xi(t) + vi(t + 1), (3)

where w is an inertia weight to follow the previous velocity
and r1 and r2 are two random numbers uniformly generated
in [0, 1], while c1 and c2 are the two learning weight factors
from the personal and global best particles [14].

2.2. Some Current MOPSOs and MOEAs for MaOPs.
Recently, a number of nature-inspired optimization algo-
rithms have been proposed for solving MaOPs, such as
MOEAs andMOPSOs. Especially, a number ofMOEAs have
been proposed, which can be classified into three main
kinds, such as Pareto-based MOEAs, indicator-based
MOEAs, and decomposition-based MOEAs. A lot of ap-
proaches have been proposed to enhance their performance
for solving MaOPs. For example, Pareto dominance relation
was modified to enhance the convergence pressure for
Pareto-based MOEAs, such as ε − dominance [30, 37]
θ − dominace, a strengthened dominance relation [38], and
a special dominance relation [39]. New association mech-
anisms for solutions and weight vectors were designed for
decomposition-based MOEAs, such as the use of reference
vectors in NSGA-II [40], a dynamical decomposition in
DDEA [41], and a self-organizing map-based weight vector
design inMOEA/D-SOM [42]. A lot of effective and efficient
performance indicators were presented for indicator-based
MOEAs, such as a unary diversity indicator based on ref-
erence vectors [43], an efficient indicator as a combination of
sum of objectives and shift-based density estimation called
ISDE+ [44], and an enhanced inverted generational distance
(IGD) indicator [45].

In contrast to the abovementioned MOEAs, there are
only a few of MOPSOs presented to solve MaOPs. *e
reasonmay refer to the three challenges faced byMOPSOs as
introduced in Section 1. *e main difference between
MOPSOs andMOEAs is their evolutionary search, e.g., most
MOEAs adopt differential evolution or simulated binary
crossover, while most MOPSOs use the fly of particles to run
the search. *e environmental selection in external archive
of MOPSOs and MOEAs are actually similar. As inspired by
the environmental selection in some MOEAs, MOPSOs can
be easily extended to solve MaOPs. Recently, some com-
petitive MOPSOs have been proposed to better solve
MaOPs. For example, in pccsAMOPSO [5], a parallel cell
coordinate system was employed to update the external
archive for maintaining the diversity, which was used to
select the global best and personal best particles. In its
improved version MaOPSO/2s-pccs [36], the two-stage
strategy was further presented to emphasize convergence
and diversity, respectively, by using a single-objective op-
timizer and a many-objective optimizer. In NMPSO [24], a
balanceable fitness estimation method was proposed by
summarizing different weights of convergence and diversity
factors, which aims to offer sufficient selection pressure in
the search process. However, this method is very sensitive to
the used parameters and requires a high-computational cost.
In CPSO [29], a coevolutionary PSO with bottleneck ob-
jective learning strategy was designed for solving MaOPs.
Multiple swarms coevolved in a distributed fashion to
maintain diversity for approximating the entire PFs, while a
novel bottleneck objective learning strategy was used to
accelerate convergence for all objectives. In MaPSO [46], a
novel MOPSO based on the acute angle was proposed, in
which the leader of particles was selected from its historical
particles by using the scalar projections and each particle
owned K historical particle information (K was set to 3 in its
experiments). Moreover, the environmental selection in
MaPSO was run based on the acute angle of each pair of
particles. Although these MOPSOs are effective for solving
MaOPs, there are still some improvements for the design of
MOPSOs. *us, this paper proposes a novel angular-guided
MOPSO with an angular-based archive update strategy and
a density-based velocity update strategy to alleviate the three
abovementioned challenges in Section 1.

3. The Proposed AGPSO Algorithm

In this section, the details of the proposed algorithm are
provided. At first, two main strategies used in AGPSO, i.e.,
a density-based velocity update strategy and an angular-
guided archive update strategy, are, respectively, intro-
duced. *e density-based velocity update strategy will
consider the density around each particle, which is used to
determine whether the local best particle or the global best
particle is used to guide the swarm search. In this strategy,
the local best particle is selected based on the local angular
information, aiming to encourage exploitation in the local
region around the current particle, while the global best
particle is selected by the convergence performance,
which is used to perform exploration in the whole search
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space. In order to provide the elite particles for leading the
PSO-based search, the angular-guided archive update
strategy is designed to provide an angular search direction
for each particle, which is more effective for solving
MaOPs. At last, the complete framework of AGPSO is also
shown in order to clarify its implementation as well as
other components.

3.1.ADensity-BasedVelocityUpdate Strategy. As introduced
in Section 2.1, the original velocity update strategy includes
two best positional information of a particle, i.e., the per-
sonal-best (pbest) and global-best (gbest) particles, as defined
in equation (1), which are used to guide the swarm search.
*eoretically, the quality of generated particles is dependent
on the guiding information from pbest and gbest in velocity
update. However, the traditional velocity update strategy will
face the great challenges in tackling MaOPs, as the selection
of effective personal-best and global-best particles is difficult.
Moreover, two velocity components used in equation (2)
may lead to too much disturbance for the swarm search, as
most of the particles are usually sparse in the high objective
space. *us, the quality of particles generated by the tra-
ditional velocity formula may not be promising, as the large
disturbance in velocity update will lower the search intensity
in the local region around the current particle. Some ex-
periments have been given in Section 4.5 to study the ef-
fectiveness of different velocity update strategies. In this
paper, a density-based velocity update strategy is proposed
in equation (4), which can better control the search intensity
in the local region of particles:

vi(t + 1) �
wvi(t) + c1r1 lbesti − xi(t)( 􏼁, Dx ≥medSDE,

wvi(t) + c2r2 gbesti − xi(t)( 􏼁, Dx <medSDE,
􏼨

(4)

where t is the iteration number; vi(t) and vi(t + 1) are the tth
and the (t+ 1)th iteration velocity of particle xi, respectively;
w is the inertial weight; c1 and c2 are two learning factors;r1
and r2 are two uniformly distributed random numbers in [0,
1]; lbesti and gbesti are the positional information of the
local-best and global-best particles for xi, i � (1, 2, . . . , N),
respectively; Dx is the shift-based density estimation (SDE)
of particle x as defined in [47]; and medSDE is the median
value of all Dx in the swarm. By this way, the sparse particles
with Dx ≥medSDE will be guided by the local best particles to
encourage exploitation in the local region as their sur-
rounding particles are very few, while the crowded particles
with Dx <medSDE are disturbed by the global best particles
to put more attentions on convergence. Please note that
lbesti and gbesti of xi(t) are selected from the external archive
A as introduced below.

To the selection of gbesti of particle xi, the selection of
gbest focuses on the particles with better convergence in this
archive. Meanwhile, we also need to ensure a certain per-
turbation; thus, we randomly choose from the top 20% of the
convergence performance. *e gbesti of particle xi is ran-
domly selected from the top 20% particles in the external
archive with the better convergence performance values. For

each particle x, we calculate its convergence performance
values using the following formulation:

Con(x) � 􏽘
m

k�1
fk
′(x) , (5)

where m is the number of objectives and fk
′(x) returns the

kth normalized objective vector of x, which is obtained by
the normalization procedure as follows:

fk
′ (x) �

fk(x) − z∗k

znadir
k − z∗k

, (6)

where z∗k and znadir
k are the kth objective value of the ideal

and nadir points, respectively, k � 1, 2, . . . , m.
To the selection of lbesti, the current particle xi in the

particle swarm (i= 1, . . ., N, where N is the number of
particles size) will be firstly associated to the closest particle
y in the external archive (A), by comparing the angular-
distance of xi to each particle in the extra archive (A). And
use y particle to find the lbesti in A. Here, the angular-
distance [41] between the particle x to another particle y,
termed AD(x, y), is computed by

AD(x, y) � ‖λ(x) − λ(y)‖2, (7)

where λ(x) is defined as follows:

λ(x) �
1

􏽐
m
k�1fj
′(x)

F′(x), (8)

where F′(x) � (f1′(x), f2′(x), . . . , fm
′(x))T and f′(x) is

calculated by equation (6).
*en, lbesti is selected from the Tangular-distance-based

closest neighbors of y with the best convergence value by
equation (5). Specially, each particle of A owns their T
nearest neighbors, which are found by calculating the an-
gular distance of each particle to the other particles of A
using equation (7). *e neighborhood information of xi in A
is obtained in B(i), where B(i) � i1, i2, . . . , iT􏼈 􏼉 and
(xi1

, xi2
, . . . , xiT

) are T closest angular-distance-based solu-
tions to xi by equation (7).

*en, for each particle in S, lbesti and gbesti are obtained
to update the velocity by equation (4) and position by
equation (3), respectively. After that, the object values of the
particle are evaluated. To further clarify the selection of local
best and global best particles and the density-based velocity
update, the related pseudocode is given in Algorithm 1.

3.2. An Angular-Guided Archive Update Strategy. After
performing the abovementioned density-based velocity
update for the swarm search, each particle flies to the new
position to produce the new particle swarm S. In order to get
a population consisting of a fixed number of elitist solutions,
which can maintain an excellent balance between conver-
gence and distribution in the external archive, an appro-
priate selection strategy is required to update A. In this
paper, we propose an angular-guided archive update
strategy, following the principle of distributivity first and
convergence second, and the pseudocode of updating the
external archive is given in Algorithm 2.
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In Algorithm 2, the input is S and A; N is the size of both
S and A. First, S and A are combined into a union set U and
set A � Θ in line 1. *en, all the particles in U is normalized
by equation (6) in line 2. After that, in lines 3–6, a set of
particles are found to represent the distribution of all par-
ticles. To do this, each time, the current particle pair (xh, xu)

with minimum angular-distance of U is found in line 4,
which is computed as

xh, xu( 􏼁 � argmin xh,xu( ) AD xh, xu( 􏼁
􏼌􏼌􏼌􏼌xh, xu ∈ U􏽮 􏽯, (9)

where the A D(x, y) is computed as equation (7). *en, one
particle x∗ in (xh, xu)with theminimum angular-distance to
U is found and added to A and deleted from U in lines 5-6.
Here, the angular-distance of (xh, xu) to U, termed as
AD(x, U), is computed as

AD(x, U) � minisize AD(x, y)|y ∈ U,􏼈

y ∉ xh, xu( 􏼁, x ∈ xh, xu( 􏼁􏼉,
(10)

where the AD(x, y) is computed as equation (7), N subsets
S1,S2, . . . , SN are obtained in line 8–11, where particle xi inU
is saved into Si, i � 1, 2, . . . , N. In lines 12–15, each particle x

in A is associated with the minimum angular-distance to the
particle xt in theU, and then this particle x ofA is added into
the subset St, t � 1, 2, . . . , N in line 14. *en, set A � ∅ in
line 16. Finally, in each subset Si, i � 1, 2, . . . , N, a particle
with the best convergence performance computed by
equation (5) is added into A, in lines 17–20. *e A is
returned in line 21 as the final result.

In order to facilitate the understanding of the process of
this angular-guided strategy, a simple example is illustrated
in Figure 1. *e U includes ten individuals x1, x2, . . . , x10
and their mapping solutions, which map individuals to the
hyperplane f1′ + f2′ � 1 (calculating angular-distance) in
the normalized biobjective space, as shown in Figure 1(a).
First, five particles (half the population size), i.e.,
x1, x4, x7, x9, x10 that represent the distribution of all ten
particles are kept in U, as shown in Figure 1(b). *en, the
remaining particles, i.e., x2, x3, x5, x6, x8, are preserved in A
as in Figure 1(c). Second, each particle in Figure 1(c) is

associated with a minimum angular-distance particle in
Figure 1(b). After that, five subsets S1, S2, . . . S5 are ob-
tained, where S1 preserves x1 and its associated particles in
A, i.e., x2. Similarly, S2 preserves x3 and x4; S3 preserves x5,
x6, and x7; S4 preserves x8 and x9; S5 preserves x10, as
shown in Figure 1(d). Finally, in each subset, only the
particle with the best convergence is selected, as in
Figure 1(e).

3.3. 8e Complete Algorithm of AGPSO. *e above sections
have introduced the main components of AGPSO, which
include the velocity update strategy and archive update
operator. In addition, the evolutionary search is also pro-
posed on the external archive. In order to describe the
remaining operator and to facilitate the implementation of
AGPSO, the pseudocode of its complete algorithm is pro-
vided in Algorithm 3. *e initialization procedure is first
activated in lines 1–6 of Algorithm 3. For each particle in S,
its positional information is randomly generated and its
velocity is set to 0 in line 3. After that the objectives of each
particle are evaluated in line 4. *e external archive A is
updated with Algorithm 2 in line 7 and sorted in the as-
cending order by calculating the convergence fitness of each
particle using equation (5) in line 8. After that the iteration
counter t is increased by one. *en, AGPSO steps into the
main loop, which contains the particle search and the
evolutionary search, until the maximum number of itera-
tions is reached.

In the main loop, the SDE distance of each particle in S is
calculated, and these particles are sorted by the SDE distance
to get median SDE distance of particles in S, which is called
medSDE as in lines 11-12. *en, the PSO-based search is
performed in line 13 with density-based velocity update of
Algorithm 1. After that the angular-guided archive update
strategy of Algorithm 2 is executed in line 14, with the inputs
S, A, andN (the sizes of S and A are bothN).*en, in line 15,
the evolutionary strategy is applied on A to optimize the
swarm leaders, providing another search strategy to coop-
erate with the PSO-based search.

(1) sort the extra archive A in ascending order based on convergence value as in equation (5)
(2) for each solution xi ∈ A, i � (1, 2, . . . , N)

(3) identify its T neighborhood index as B(i)
(4) end for
(5) for each particle xi ∈ S, i � (1, 2, . . . , N)

(6) associate xi to the angular-guided closest particle y ∈ A with index j in A
(7) get the T nearest neighbors in A of y by the neighborhood index B(j)
(8) sort the T neighbors of y in an ascending order based on convergence value by equation (5)
(9) select the first angle-distance-based neighboring particle of y as lbesti
(10) select randomly from the top 20% particles in A as gbesti
(11) update the velocity vi of xi by equation (4)
(12) update the position xi by equation (3)
(13) evaluate the objective values for xi
(14) end for
(15) return S

ALGORITHM 1: Density-based velocity update (S, A, medSDE).
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Finally, the objectives of solutions, which are newly
generated by the evolutionary strategy, are evaluated in line
16. Also, the angular-guided archive update strategy of

Algorithm 2 is carried out again in line 17, and the A is
sorted in the ascending order again in line 18 for selecting
the global-best (gbest) particles. *e iteration counter t is

x1
x2
x3

x4
x5
x6 x7

x8

x9
x10

x2
x3

x5
x6

x8

x1
x2
x3

x4
x5
x6 x7

x8

x9
x10

x1

x4

x6

x9
x10

: Obtained solutions
: Mapping solutions

(a)

(b)

(c)

(d) (e)

x1

x4

x7
x9

x10

Figure 1: An example to illustrate the process of the proposed angular-guided archive update strategy.

(1) combine S and A into a union set U and set A � ∅
(2) normalize all particles in U by equation (6)
(3) for i� 1 to N
(4) find the particle pair (xh, xu) in U with the minimum angular-distance for all particle pairs in U
(5) find x∗ in (xh, xu) such that x∗ has the smaller angular-distance to U by equation (9)
(6) add x∗ to A, then deleted x∗ from U
(7) end for
(8) for each particle xi ∈ U

(9) initialize an empty subset Si
(10) add the particle xi into Si
(11) end for
(12) for each particle xi ∈ A

(13) associate xi to the particle xt in U that has the smallest angular-distance to xi
(14) add xi into St
(15) end for
(16) set A � ∅
(17) for i� 1 to N
(18) find the particle x∗ of Si that has the best convergence performance computed by equation (5)
(19) add x∗ into A
(20) end for
(21) return A

ALGORITHM 2: Angular-guided archive update (S, A, N).
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increased by 2 in line 19 because one PSO-based search and
one evolutionary strategy are carried out in each particle and
in each of the main loop. *e abovementioned operation is
repeated until the maximum of iterations (tmax) is achieved.
At last, the final particles in A are saved as the final ap-
proximation of PF.

4. The Experimental Studies

4.1. Related Experimental Information

4.1.1. Involved MOEAs. Four competitive MOEAs are used
to evaluate the performance of our proposed AGPSO. *ey
are briefly introduced as follows.

(1) VaEA [48]: this algorithm uses the maximum-vec-
tor-angle-first principle in the environmental se-
lection to guarantee the wideness and uniformity of
the solution set.

(2) θ − DEA [30]: this algorithm uses a new dominance
relation to enhance the convergence in the high
dimension optimization.

(3) MOEA/DD [49]: this algorithm proposes to exploit
the merits of both dominance-based and decom-
position-based approaches, which balances the
convergence and the diversity for the population.

(4) SPEA2+ SDE [47]: this algorithm develops a general
modification of density estimation in order to make
Pareto-based algorithms suitable for many-objective
optimization.

Four competitive MOPSOs are also used to validate the
performance of our proposed AGPSO. *ey are also briefly
introduced as follows:

(1) NMPSO [24]: this algorithm uses a balanceable fit-
ness estimation to offer sufficient selection pressure
in the search process, which considers both of the
convergence and diversity with weight vectors.

(2) MaPSO [46]: this algorithm uses an angle-based
MOPSO called MaPSO. MaPSO chooses the leader
positional information of particles from its historical
particles by using scalar projections to guide
particles.

(3) dMOPSO [17]: this algorithm integrates the de-
composition method to translate an MOP into a set
of single-objective optimization problems, which
solves them simultaneously using a collaborative
search process by applying PSO directly.

(4) SMPSO [14]: this algorithm proposes a strategy to
limit the velocity of the particles.

4.1.2. Benchmark Problems. In our experiments, sixteen
various unconstrained MOPs are considered here to assess
the performance of the proposed AGPSO algorithm. *eir
features are briefly introduced below.

In this study, the WFG [50] and MaF [31] test problems
were used, including WFG1-WFG9 and MaF1-MaF7. For
each problem, the number of objectives was varied from 5 to
10, i.e., m ∈ 5, 8, 10{ }. For MaF1-MaF7, the number of de-
cision variables was set as n � m + k − 1, where n and m are,
respectively, the number of decision variables and the
number of objectives. As suggested in [31], the values of k
were set to 10. Regarding WFG1-WFG9, the decision var-
iables are composed by k position-related parameters and l
distance-related parameters. As recommended in [51], k is
set to 2×(m-l) and l is set to 20.

(1) Let t� 0, A � ∅, initial particles S � x1, x2, . . . , xN􏼈 􏼉, and T be the value of the neighborhood size
(2) for i� 1 to N
(3) randomly initialize position xi and set vi � 0 for xi

(4) evaluate the objective values of xi

(5) end for
(6) randomly initialize A with N new particles
(7) A�Angular-guided Archive update (S, A, N)
(8) sort A in ascending order based on equation (5)
(9) t� t + 1
(10) while t< tmax
(11) calculate the SDE of each particle in S
(12) sort particles in S to get the medSDE
(13) Snew �Density-based Velocity Update (S, A, medSDE)
(14) A�Angular-guided Archive update (Snew, A, N)
(15) apply evolutionary search strategy on A to get a new swarm Snew

(16) evaluate the objectives of the new particles in Snew

(17) A�Angular-guided Archive update (Snew, A, N)
(18) sort A in ascending order based on equation (5)
(19) t� t + 2
(20) end while
(21) output A

ALGORITHM 3: *e complete algorithm of AGPSO.
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4.1.3. Performance Metrics. *e goals of MaOPs include the
minimization of the distance of the solutions to the true PF
(i.e., convergence) and the maximization of the uniform and
spread distribution of solutions over the true PF (i.e.,
diversity).

Hypervolume (HV) [20] metric calculates the objective
space between the prespecified reference point
zr � (zr

1, . . . , zr
m)T which is dominated by all points on the

true points and the solution set S we obtain. *e calculation
of HV metric is given as follows:

HV(S) � Vol ∪
x∈S

f1(x), z
r
1􏼂 􏼃 × · · · fm(x), z

r
m􏼂 􏼃􏼒 􏼓, (11)

where Vol(·) denotes the Lebesgue measure. When calcu-
lating the HV value, the points are firstly normalized as
suggested in [51] by the vector 1.1 × (fmax

1 (x),

fmax
2 (x), . . . , fmax

m (x)) with fmax
k (k � 1, 2, . . . , m) being the

maximum value of kth objective in true PF. *ose that
cannot dominate the reference point will be discarded (i.e.,
solutions that cannot dominate the reference point are not
included to compute HV). For each objective, an integer
larger than the worst value of the corresponding objective in
the true PF is adopted as the reference point. After the
normalization operation, the referent point is set to
(1.0, 1.0, . . . , 1.0). A larger value of HV indicates a better
approximation of the true PF.

4.2. General Experimental Parameter Settings. In this paper,
four PSO algorithms (dMOPSO [17], SMPSO [14], NMPSO
[24], and MaPSO [46]), and four competitive MOEAs
(VaEA, θ − DEA,MOEA/DD, and SPEA2+ SDE), were used
for performance comparison.

Because the weight vectors are implied to dMOPSO and
MOEA/DD, the population sizes of these two algorithms
are set the same as the number of weight vectors. *e
number of weight vectors is set to 210, 240, and 275,
following [51], for the test problem with 5, 8, and 10 ob-
jectives. In order to ensure fairness, the other algorithms
adopt the population/swarm size the same as to the number
of weight vectors.

To allow a fair comparison, the related parameters of all
the compared algorithms were set as suggested in their
references, as summarized in Table 1. pc and pm are the
crossover probability and mutation probability; ηc and ηm

are, respectively, the distribution indexes of SBX and
polynomial-based mutation. For these PSO-based algo-
rithms mentioned above (SMPSO, dMOPSO, NMPSO,
AGPSO), the control parameters c1, c2, c3 are sampled in
[1.5, 2.5], and the inertia weight w is a random number of
[0.1, 0.5]. In MaPSO, K is the size of historical maintained by
each particle, which is set to 3; the another algorithmic
parameters are θmax � 0.5, w � 0.1, andC � 2.0. In MOEA/
DD, T is the neighborhood size; δ is the probability to select
parent solutions from T neighborhoods; and nr is the
maximum number of parent solutions that are replaced by
each child solution. Regarding VaEA, σ is a condition for
determining whether the solution is searching for a similar
direction, which is set to π/2(N + 1).

All the algorithms were run 30 times independently on
each test problem. *e mean HV values and the standard
deviations (included in bracket after the mean HV results) in
30 runs were collected for comparison. All the algorithms
were terminated when a predefined maximum number of
generations (tmax) was reached. In this paper, tmax is set to
600, 700, and 1000 for 5-, 8-, and 10-objective problems,
respectively. For each algorithm, the maximum function
evaluations (MFE) can be easily determined by
MFE � N∗ tmax, where N is the population size. To obtain a
statistically sound conclusion, Wilcoxon rank sum test was
run with a significance level (0.05 is set in this paper),
showing the statistically significant differences on the results
of AGPSO and other competitors. In the following exper-
imental results, the symbols “+,” “−,” and “∼” indicate that
the results of other competitors are significantly better than,
worse than, and similar to the ones of AGPSO using this
statistical test, respectively.

All these nine algorithms were implemented by JAVA
codes and run on a personal computer with Intel (R) Core
(TM) i7- 6700 CPU, 3.40GHz (processor), and 20GB (RAM).

4.3. Comparison with State-of-the-Art Algorithms. In this
section, AGPSO is compared to four PSO algorithms
(dMOPSO, SMPSO, NMPSO, and MaPSO) and four
competitive MOEAs (VaEA, θ − DEA, MOEA/DD, and
SPEA2+ SDE) onWFG1-WFG9 andMaF1-MaF7 problems.
In the following tables, the symbols “+,” “−,” and “∼” in-
dicate that the results of other competitors are significantly
better than, worse than, and similar to the ones of AGPSO
using statistical test, respectively. *e best mean result for
each problem is highlighted in boldface.

4.3.1. Comparison Results with Four Current MOPSOs

(1) Comparison Results on WFG1-WFG9. Table 2 shows the
HV performance comparisons of four PSOs on WFG1-
WFG9, which clearly demonstrate that AGPSO provides
promising performance in solving WFG problems with
these PSOs, as it is best on 21 out of 27 cases on the ex-
perimental data. In contrast, NMPSO, MaPSO, dMOPSO,
and SMPSO are best on 6, 1, 0, and 0 cases for HV metric,
respectively. *ese data are summarized in the second last
row of Table 2.*e last row of Table 2 are the comparisons of
AGPSO with each PSO onWFG, where the mean of “−/∼/+”
is the number of test problem in which the corresponding

Table 1: General experimental parameter settings.

Algorithm Parameter Settings
SMPSO w ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5], pm � 1/n, ηm � 20
dMOPSO w ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5]

NMPSO w ∈ [0.1, 0.5], c1, c2, c3 ∈ [1.5, 2.5], pm � 1/n, ηm � 20
MaPSO K � 3, θmax � 0.5, C � 2.0, w � 0.1
VaEA pc � 1.0, pm � 1/n, ηm � 20, σ � π/2(N + 1)

θ − DEA pc � 1.0, pm � 1/n, ηm � 20, ηc � 30
MOEA/DD pc � 1.0, pm � 1/n, ηm � 20, ηc � 30, T � 20, δ � 0.9
SPEA2 + SDE pc � 1.0, pm � 1/n, ηm � 20, ηc � 30
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algorithm performs worse than, similarly than, better than
the AGPSO.

It is found that the AGPSO shows absolute advantage
from the comparisons with NMPSO, MaPSO, dMOPSO,
and SMPSO on the five test problems: WFG1 with a convex
and mixed PF; WFG3 with a linear and degenerate PF;
WFG4-WFG6 with concave PF. Regarding WFG2, which
has a disconnected and mixed PF, AGPSO shows a better
performance than the other PSOs except MaPSO. AGPSO is
the best on WFG2 with 5 and 8 objectives, while the MaPSO
is best onWFG2 with 10 objectives. ForWFG7 with concave
PF, nonseparability of position, and distance parameters,
AGPSO is worse than NMPSO with 5 objectives, but better
with 8 and 10 objectives. Regarding WFG8, where distance
related parameters are dependent on position related pa-
rameters, AGPSO performs worse with 5 and 10 objectives
and similar with 8 objectives. For WFG9 with a multimodal
and deceptive PF, AGPSO only performs the best with 10
objectives and worse with 5 and 8 objectives.

As observed from the one-to-one comparisons in the last
row of Table 2, SMPSO and dMOPSO perform poorly in
solving WFG problems; AGPSO showed the superior per-
formance over the traditional PSOs on WFG problems.

From the results, AGPSO is better than NMPSO andMaPSO
in 19 and 25 out of 27 cases, respectively. Conversely, it was
worse than NMPSO and MaPSO in 6 and 1 out of 27
comparisons, respectively. *erefore, it is reasonable to
conclude that AGPSO showed a superior performance over
NMPSO and MaPSO in most problems of WFG1-WFG9.

(2) Comparison Results on MaF1-MaF7. Table 3provides the
mean HV comparison results of AGPSO with four PSO al-
gorithms (NMPSO, MaPSO, dMOPSO, and SMPSO) on
MaF1-MaF7 with 5, 8, and 10 objectives. As observed from the
second last row in Table 3, there are 12 best results in 21 test
problems obtained by AGPSO, while NMPSO performs best in
7 cases, MaPSO and SMPSO perform best only in 1 case, re-
spectively, and dMOPSO is not best on any MaF test problem.

MaF1 is modified inverted DTLZ1 [52], which leads to
the shape of reference points not able to fit to the PF shape of
MAF1. *e performance of reference point-based PSO
(dMOPSO) is worse than PSO algorithms that do not use
reference points (AGPSO, NMPSO, and MaPSO), while the
AGPSO performs best on tackling the MaF1 test problem.
MaF2 is obtained from DTLZ2 to increase the difficulty of
convergence, which requires that all objectives are optimized

Table 2: Comparison of results of AGPSO and four current MOPSOs on WFG1-WFG9 using HV.

Problem Obj AGPSO NMPSO MaPSO dMOPSO SMPSO

WFG1
5 7.87e− 01(4.27e− 02) 5.97e− 01(2.89e− 02)− 3.34e− 01(2.58e− 02)− 2.98e− 01(3.44e− 03)− 3.00e− 01(1.01e− 03)−

8 8.75e− 01(3.77e− 02) 7.00e− 01(1.38e− 01)− 2.74e− 01(2.45e− 02)− 2.35e− 01(6.26e− 03)− 2.50e− 01(1.54e− 03)−

10 9.45e− 01(3.19e− 03) 8.07e− 01(1.58e− 01)− 2.53e− 01(1.98e− 02)− 2.13e− 01(9.18e− 03)− 2.30e− 01(1.29e− 03)−

WFG2
5 9.76e− 01(5.76e− 03) 9.69e− 01(5.44e− 03)− 9.70e− 01(4.70e− 03)− 8.94e− 01(1.28e− 02)− 8.85e− 01(1.31e− 02)−

8 9.82e− 01(4.12e− 03) 9.83e− 01(3.56e− 03)+ 9.84e− 01(2.86e− 03)+ 8.92e− 01(1.48e− 02)− 8.48e− 01(2.52e− 02)−

10 9.93e− 01(1.99e− 03) 9.91e− 01(4.85e− 03)∼ 9.90e− 01(1.48e− 03)− 9.00e− 01(1.76e− 02)− 8.54e− 01(2.55e− 02)−

WFG3
5 6.59e− 01(5.16e− 03) 6.13e− 01(1.94e− 02)− 6.12e− 01(1.64e− 02)− 5.89e− 01(1.05e− 02)− 5.75e− 01(7.32e− 03)−

8 6.78e− 01(6.20e− 03) 5.77e− 01(1.52e− 02)− 5.96e− 01(1.88e− 02)− 4.94e− 01(4.58e− 02)− 5.84e− 01(1.51e− 02)−

10 6.91e− 01(7.88e− 03) 5.83e− 01(2.73e− 02)− 5.97e− 01(2.58e− 02)− 3.56e− 01(9.58e− 02)− 5.92e− 01(1.52e− 02)−

vWFG4

5 7.74e− 01(5.34e− 03) 7.64e− 01(6.09e− 03)− 7.22e− 01(2.96e− 02)− 6.51e− 01(1.08e− 02)− 5.09e− 01(1.73e− 02)−

8 9.00e− 01(8.05e− 03) 8.62e− 01(1.21e− 02)− 7.98e− 01(1.76e− 02)− 3.88e− 01(7.86e− 02)− 5.26e− 01(2.13e− 02)−

10 9.37e− 01
(6.64e− 03) 8.82e− 01(8.54e− 03)− 8.27e− 01(1.32e− 02)− 3.15e− 01(1.34e− 01)− 5.52e− 01(2.19e− 02)−

WFG5

5 7.41e− 01
(6.12e− 03) 7.35e− 01(3.73e− 03)− 6.63e− 01(1.18e− 02)− 5.85e− 01(1.53e− 02)− 4.30e− 01(1.18e− 02)−

8 8.61e− 01
(4.35e− 03) 8.32e− 01(6.58e− 03)− 6.91e− 01(1.12e− 02)− 1.81e− 01(8.43e− 02)− 4.52e− 01(1.08e− 02)−

10 8.88e− 01(8.29e− 03) 8.65e− 01(7.92e− 03)− 6.99e− 01(1.76e− 02)− 2.43e− 02(1.54e− 02)− 4.65e− 01(1.24e− 02)−

WFG6
5 7.50e− 01(8.96e− 03) 7.24e− 01(3.96e− 03)− 7.09e− 01(4.50e− 03)− 6.74e− 01(7.93e− 03)− 5.43e− 01(1.66e− 02)−

8 8.72e− 01(1.26e− 02) 8.08e− 01(5.70e− 03)− 8.03e− 01(2.66e− 03)− 4.89e− 01(4.87e− 02)− 6.49e− 01(8.38e− 03)−

10 9.09e− 01(1.36e− 02) 8.34e− 01(2.03e− 03)− 8.32e− 01(1.80e− 03)− 4.66e− 01(2.96e− 02)− 7.03e− 01(1.37e− 02)−

WFG7
5 7.90e− 01(2.12e− 03) 7.96e− 01(2.98e− 03)+ 7.89e− 01(4.61e− 03)∼ 5.39e− 01(2.72e− 02)− 4.44e− 01(2.06e− 02)−

8 9.20e− 01(3.39e− 03) 9.04e− 01(3.71e− 03)− 8.73e− 01(1.40e− 02)− 2.25e− 01(3.93e− 02)− 4.73e− 01(1.23e− 02)−

10 9.55e− 01(9.11e− 03) 9.36e− 01(6.97e− 03)− 9.17e− 01(1.17e− 02)− 2.07e− 01(6.36e− 02)− 5.14e− 01(2.10e− 02)−

WFG8
5 6.63e− 01(3.75e− 03) 6.73e− 01(5.41e− 03)+ 6.29e− 01(1.34e− 02)− 4.27e− 01(1.57e− 02)− 3.72e− 01(2.09e− 02)−

8 7.85e− 01(7.46e− 03) 7.97e− 01(3.79e− 02)∼ 6.91e− 01(2.13e− 02)- 9.55e− 02(3.20e− 02)− 4.11e− 01(9.29e− 03)−

10 8.36e− 01(1.30e− 02) 8.62e− 01(4.12e− 02)+ 7.33e− 01(2.04e− 02)− 7.73e− 02(1.27e− 02)− 4.52e− 01(1.90e− 02)−

WFG9
5 6.57e− 01(3.82e− 03) 7.35e− 01(7.32e− 03)+ 6.23e− 01(7.01e− 03)− 5.97e− 01(1.99e− 02)− 4.46e− 01(1.61e− 02)−

8 7.30e− 01(9.96e− 03) 7.65e− 01(6.80e− 02)+ 6.55e− 01(1.17e− 02)− 2.73e− 01(6.06e− 02)− 4.55e− 01(2.39e− 02)−

10 7.49e− 01(9.03e− 03) 7.47e− 01(6.72e− 02)− 6.56e− 01(1.30e− 02)− 2.24e− 01(6.96e− 02)− 4.76e− 01(1.23e− 02)−

Best/all 20/27 6/27 1/27 0/27 0/27
Worse/

similar/better 19−/2∼/6+ 25−/1∼/1+ 27−/0∼/0+ 27−/0∼/0+

Complexity 9



simultaneously to reach the true PF. *e performance of
AGPSO is the best on MaF2 with all objectives. As for
MaF3, with a large number of local fronts and convex PF,
AGPSO and NMPSO are the best in the PSOs described
above and AGPSO performs better than NMPSO with 5
objective and worse with 8 and 10 objectives. MaF4,
containing a number of local Pareto-optimal fronts, is
modified fromDTLZ3 by inverting PF shape and AGPSO is
better than any PSOs mentioned above in Table 3. Re-
garding MaF5, modified from DTLZ4, with badly scaled
convex PF, AGPSO, NMPSO, and MaPSO solved it all well
and the performance of NMPSO is slightly better than
AGPSO andMaPSO with 5 and 8 objectives and worse than
AGPSO with 10 objectives on MaF5. On MaF6 with a
degenerate PF, AGPSO performs best with 8 objectives,
while SMPSO performs best with 5 objectives and MaPSO
performs best with 10 objectives. Finally, AGPSO does not
solve MAF7 with a disconnected PF very well and NMPSO
performs best with all objectives.

In the last row of Table 3, SMPSO and dMOPSO perform
poorly in solving MaF problems with 5 objectives, especially
in the high-dimensional objectives such as 8 and 10 objectives.
*e main reason is that Pareto dominance used by SMPSO
failed in high-dimensional spaces. *e pure decomposition-
based dMOPSO cannot solve MaOPs very well because a
finite fixed reference point does not provide enough search for
high-dimensional spaces. AGPSO is better than dMOPSO
and SMPSO in 20 and 21 out of 21 cases, respectively, which
show superior performance over dMOPSO and SMPSO on
MaF problems. Regarding NMPSO, it is competitive with
AGPSO, while AGPSO is better than NMPSO in 14 out of 21

cases.*erefore, AGPSO showed the better performance over
NMPSO on MaF test problems.

4.3.2. Comparison Results with Five Current MOEAs. In the
sections mentioned above, it is experimentally proved that
AGPSO has better performance compared to existing four
MOPSOs on most test problems (MaF andWFG). However,
there are not many existing PSO algorithms for dealing with
MaOPs. *e comparison of PSO algorithms alone does not
reflect the superiority of AGPSO; thus, we further compared
AGPSO with four current MOEAs (VaEA, θ − DEA,
MOEA/DD, and SPEA2+ SDE).

(1) Comparison Results on WFG1-WFG9. *e experimental
data are listed in Table 4, which shows the HV metric values
and the comparison of AGPSO with four competitive
MOEAs (VaEA, θ − DEA, MOEA/DD, and SPEA2+ SDE)
on WFG1-WFG9 with 5, 8, and 10 objectives. *ese four
competitive MOEAs are specifically designed for MaOPs,
which are better than most of MOPSOs to solve MaOPs;
however, experimental results show that they are still worse
than AGPSO. As observed from the second last row in
Table 4, there are 22 best results in 27 test problems obtained
by AGPSO, while MOEA/DD and SPEA2+ SDE perform
best in 2 and 3 in 27 cases and VaEA and θ − DEA are not
best on any WFG test problem.

Regarding WFG4, AGPSO performs best with 8 and 10
objectives and slightly worse than MOEA/DD with 5 ob-
jectives. For WFG8, MOEA/DD has slightly advantages with
5 objectives compared to AGPSO, but AGPSO shows

Table 3: Comparison of results of NMPSO and four current MOPSOs on MAF1-MAF7 using HV.

Problem Obj AGPSO NMPSO MaPSO dMOPSO SMPSO

MaF1
5 1.31e− 02(1.43e− 04) 1.27e− 02(5.81e− 05)− 1.15e− 02(2.80e− 04)− 1.06e− 02(1.26e− 04)− 6.83e− 03(5.14e− 04)−
8 4.23e− 05(1.80e− 06) 3.64e− 05(7.99e− 07)− 2.79e− 05(2.66e− 06)− 1.30e− 05(1.49e− 05)− 1.21e− 05(1.88e− 06)−
10 6.16e− 07(3.49e− 08) 4.75e− 07(1.83e− 08)− 3.83e− 07(2.83e− 08)− 8.82e− 08(8.92e− 08)− 1.46e− 07(2.86e− 08)−

MaF2
5 2.64e− 01(1.18e− 03) 2.63e− 01(8.71e− 04)− 2.38e− 01(3.57e− 03)− 2.50e− 01(1.55e− 03)− 2.12e− 01(4.05e− 03)−
8 2.46e− 01(2.64e− 03) 2.36e− 01(2.32e− 03)− 2.09e− 01(3.04e− 03)− 2.02e− 01(2.13e− 03)− 1.74e− 01(4.46e− 03)−
10 2.45e− 01(2.08e− 03) 2.23e− 01(2.81e− 03)− 2.06e− 01(5.67e− 03)− 2.05e− 01(2.15e− 03)− 1.88e− 01(4.28e− 03)−

MaF3
5 9.88e− 01(2.87e− 03) 9.71e− 01(1.47e− 02)− 9.26e− 01(5.29e− 02)− 9.38e− 01(8.27e− 03)− 7.34e− 01(4.50e− 01)−
8 9.95e− 01(2.11e− 03) 9.99e− 01(7.50e− 04)+ 9.84e− 01(1.48e− 02)− 9.62e− 01(1.44e− 02)− 0.00e+ 00(0.00e+ 00)−
10 9.85e− 01(2.26e− 03) 1.00e+ 00(1.92e− 04)+ 9.95e− 01(6.00e− 03)∼ 9.71e− 01(9.43e− 03)− 0.00e+ 00(0.00e+ 00)−

MaF4
5 1.29e− 01(1.22e− 03) 5.43e− 02(3.25e− 02)− 1.01e− 01(1.07e− 02)− 4.21e− 02(4.98e− 03)− 7.96e− 02(3.93e− 03)−
8 6.02e− 03(9.67e− 05) 2.29e− 03(7.77e− 04)− 3.18e− 03(6.84e− 04)− 1.24e− 04(7.69e− 05)− 1.82e− 03(3.39e− 04)−
10 5.66e− 04(1.89e− 05) 2.10e− 04(1.26e− 04)− 2.36e− 04(6.20e− 05)− 1.55e− 06(8.26e− 07)− 1.12e− 04(2.32e− 05)−

MaF5
5 8.00e− 01(2.70e− 03) 8.11e− 01(1.33e− 03)+ 7.93e− 01(4.06e− 03)− 2.69e− 01(1.30e− 01)− 6.68e− 01(2.99e− 02)−
8 9.32e− 01(1.01e− 03) 9.35e− 01(1.40e− 03)+ 9.29e− 01(4.41e− 03)− 2.01e− 01(6.84e− 02)− 3.59e− 01(1.30e− 01)−
10 9.67e− 01(1.32e− 03) 9.64e− 01(1.61e− 03)− 9.65e− 01(1.90e− 03)− 2.40e− 01(3.18e− 02)− 1.60e− 01(1.00e− 01)−

MaF6
5 1.30e− 01(6.22e− 05) 9.37e− 02(4.55e− 03)− 1.10e− 01(2.78e− 03)− 1.27e− 01(3.33e− 05)− 1.30e− 01(1.40e− 05)+
8 1.06e− 01(1.66e− 05) 9.83e− 02(1.15e− 02)− 9.50e− 02(2.86e− 03)− 1.04e− 01(3.24e− 05)− 9.83e− 02(1.26e− 03)−
10 9.22e− 02(1.18e− 02) 9.12e− 02(0.00e+ 00)∼ 9.24e− 02(1.53e− 03)∼ 1.00e− 01(5.94e− 06)∼ 8.06e− 02(1.42e− 02)−

MaF7
5 2.53e− 01(3.05e− 02) 3.29e− 01(1.70e− 03)+ 2.95e− 01(6.58e− 03)+ 2.26e− 01(2.42e− 03)− 2.37e− 01(6.73e− 03)−
8 1.94e− 01(2.59e− 02) 2.89e− 01(2.36e− 03)+ 2.26e− 01(6.39e− 03)+ 2.88e− 02(9.26e− 02)− 6.78e− 02(9.38e− 02)−
10 1.83e− 01(3.18e− 02) 2.64e− 01(1.78e− 03)+ 2.05e− 01(5.98e− 03)+ 6.37e− 03(5.21e− 04)− 5.57e− 02(1.25e− 01)−

Best/all 12/21 7/21 1/21 0/21 1/21
Worse/

similar/better 14−/0∼/7+ 16−/1∼/4+ 20−/0∼/1+ 20−/0∼/1+
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excellence in 8 and 10 objectives. As for WFG9, θ − DEA and
SPEA2+ SDE have more advantages, and AGPSO is worse
than θ − DEA and SPEA2+SDE slightly on this test problem,
but still better than VaEA and MOEA/DD. For the rest of
comparisons on WFG1-WFG3 and WFG5-WFG7, AGPSO
has the best performance on most of test problems, which
proves the superiority of the proposed algorithm.

In the last row of Table 4, AGPSO performs better than
VaEA, θ − DEA, MOEA/DD, and SPEA2+SDE in 27, 23, 24,
and 23 out of 27 cases, respectively, while θ − DEA, MOEA/
DD, and SPEA2+SDE only have better performance than
AGPSO in 3, 2, and 3 out of 27 cases, respectively. In con-
clusion, AGPSO is found to present a superior performance
over four competitiveMOEAs inmost cases forWFG1-WFG9.

(2) Comparison Results on MaF1-MaF7. Table 5 lists com-
parative results between AGPSO and four competitive
MOEAs using HV on MaF1-MaF7 with 5, 8, and 10 ob-
jectives. *e second last row of Table 5 shows that AGPSO
performs best on 11 out of 21 cases, while VaEA, θ − DEA,
MOEA/DD, and SPEA2+ SDE perform best on 2, 3, 3, 2
cases out of 21 cases, respectively. As a result, AGPSO has a
clear advantage over these MOEAs.

Regarding MaF1-MaF2, AGPSO is the best to tackle
these test problems in MOEAs mentioned above. For MaF3,

MOEA/DD is the best one and AGPSO has a median
performance among the compared MOEAs. Concerning
MaF4 with concave PF, AGPSO shows the best performance
with all objectives and MOEA/DD performs poorly in the
MaF4 test problem. For MaF5, AGPSO only obtained the
3rd rank as it is better than VaEA, MOEA/DD, and
SPEA2+ SDE, while outperformed by θ − DEA with 5 and
10 objectives and θ − DEA with 8 objectives. For MaF6,
AGPSO is the best to tackle it with 10 objectives, worse than
VaEA with 5 and 8 objectives. As for MaF7, AGPSO per-
forms poorly, while SPEA2+ SDE is the best with 5 and 8
objectives and θ − DEA is the best with 10 objectives. As
observed from the one-to-one comparisons in the last row of
Table 5, AGPSO is better than VaEA, θ − DEA, MOEA/DD,
and SPEA2+ SDE on 13, 15, 18, and 16 out of 21 cases,
respectively, while AGPSO is worse than VaEA, θ − DEA,
MOEA/DD, and SPEA2 + SDE on 7, 6, 3, and 5 out of 21
cases, respectively.

In conclusion, it is reasonable to conclude that AGPSO
shows a better performance over four compared MOEAs in
most cases of MaF1-MaF7. *is superiority of AGPSO was
mainly produced by a novel density-based velocity strategy
which enhances the search for areas around each particle
and the angle-based external archive update strategy which
effectively enhances the performance of AGPSO on MaOPs.

Table 4: Comparison of results of NMPSO and four current MOEAs on WF1-WFG9 using HV.

Problem Obj AGPSO VaEA θ − DEA MOEA/DD SPEA2+ SDE

WFG1
5 7.87e− 01(4.27e− 02) 3.64e− 01(4.02e− 02)− 5.73e− 01(4.76e− 02)− 4.94e− 01(2.22e− 02)− 7.26e− 01(2.27e− 02)−
8 8.75e− 01(3.77e− 02) 5.78e− 01(3.32e− 02)− 7.75e− 01(3.51e− 02)− 3.48e− 01(9.75e− 02)− 8.36e− 01(1.00e− 02)−
10 9.45e− 01(3.19e− 03) 8.10e− 01(3.59e− 02)− 8.73e− 01(1.59e− 02)− 3.40e− 01(6.56e− 02)− 8.55e− 01(8.50e− 03)−

WFG2
5 9.76e− 01(5.76e− 03) 9.62e− 01(7.36e− 03)− 9.63e− 01(6.36e− 03)− 9.70e− 01(1.14e− 03)− 9.60e− 01(3.83e− 03)∼
8 9.82e− 01(4.12e− 03) 9.75e− 01(6.91e− 03)− 9.01e− 01(1.65e− 01)− 9.42e− 01(2.37e− 02)− 9.76e− 01(3.56e− 03)−
10 9.93e− 01(1.99e− 03) 9.86e− 01(4.59e− 03)− 9.34e− 01(3.53e− 02)− 9.76e− 01(1.82e− 02)− 9.80e− 01(3.09e− 03)−

WFG3
5 6.59e− 01(5.16e− 03) 5.71e− 01(1.73e− 02)− 6.34e− 01(6.13e− 03)− 5.69e− 01(1.07e− 02)− 5.77e− 01(2.54e− 02)−
8 6.78e− 01(6.20e− 03) 5.77e− 01(2.83e− 02)− 5.69e− 01(6.73e− 02)− 5.05e− 01(1.23e− 02)− 5.55e− 01(4.06e− 02)−
10 6.91e− 01(7.88e− 03) 5.63e− 01(3.05e− 02)− 6.20e− 01(1.76e− 02)− 4.98e− 01(1.55e− 02)− 5.42e− 01(3.89e− 02)−

WFG4
5 7.74e− 01(5.34e− 03) 7.13e− 01(1.06e− 02)− 7.61e− 01(4.28e− 03)− 7.83e− 01(4.35e− 03)+ 7.39e− 01(5.10e− 03)−
8 9.00e− 01(8.05e− 03) 8.05e− 01(9.20e− 03)− 7.89e− 01(2.07e− 02)− 6.81e− 01(2.59e− 02)− 7.85e− 01(1.07e− 02)−
10 9.37e− 01(6.64e− 03) 8.43e− 01(9.97e− 03)− 8.97e− 01(1.14e− 02)− 8.53e− 01(2.69e− 02)− 8.20e− 01(8.19e− 03)−

WFG5
5 7.41e− 01(6.12e− 03) 6.97e− 01(7.19e− 03)− 7.34e− 01(3.91e− 03)− 7.41e− 01(3.39e− 03)∼ 7.08e− 01(6.05e− 03)−
8 8.61e− 01(4.35e− 03) 7.91e− 01(1.00e− 02)− 7.93e− 01(8.22e− 03)− 6.66e− 01(2.51e− 02)− 7.55e− 01(1.42e− 02)−
10 8.88e− 01(8.29e− 03) 8.25e− 01(4.03e− 03)− 8.69e− 01(3.20e− 03)− 8.03e− 01(1.80e− 02)− 7.98e− 01(9.63e− 03)−

WFG6
5 7.50e− 01(8.96e− 03) 7.00e− 01(1.76e− 02)− 7.42e− 01(1.06e− 02)− 7.40e− 01(1.03e− 02)− 7.19e− 01(1.01e− 02)−
8 8.72e− 01(1.26e− 02) 8.18e− 01(9.27e− 03)− 8.16e− 01(1.16e− 02)− 7.23e− 01(2.91e− 02)− 7.79e− 01(1.13e− 02)−
10 9.09e− 01(1.36e− 02) 8.49e− 01(1.10e− 02)− 8.89e− 01(1.08e− 02)− 8.80e− 01(1.29e− 02)− 8.17e− 01(1.80e− 02)−

WFG7
5 7.90e− 01(2.12e− 03) 7.44e− 01(9.10e− 03)− 7.90e− 01(2.04e− 03)∼ 7.85e− 01(3.80e− 03)− 7.62e− 01(4.15e− 03)−
8 9.20e− 01(3.39e− 03) 8.71e− 01(5.41e− 03)− 8.52e− 01(1.16e− 02)− 7.44e− 01(3.15e− 02)− 8.22e− 01(1.28e− 02)−
10 9.55e− 01(9.11e− 03) 9.08e− 01(5.61e− 03)− 9.39e− 01(2.22e− 03)− 9.22e− 01(1.50e− 02)− 8.66e− 01(6.63e− 03)−

WFG8
5 6.63e− 01(3.75e− 03) 5.98e− 01(1.27e− 02)− 6.66e− 01(5.58e− 03)+ 6.81e− 01(3.20e− 03)+ 6.60e− 01(5.95e− 03)−
8 7.85e− 01(7.46e− 03) 6.25e− 01(2.83e− 02)− 6.61e− 01(1.85e− 02)− 6.72e− 01(2.19e− 02)− 7.48e− 01(1.19e− 02)−
10 8.36e− 01(1.30e− 02) 6.73e− 01(3.66e− 02)− 8.02e− 01(1.11e− 02)− 8.12e− 01(7.59e− 03)− 7.88e− 01(9.94e− 03)−

WFG9
5 6.57e− 01(3.82e− 03) 6.43e− 01(1.42e− 02)− 6.71e− 01(4.34e− 02)+ 6.55e− 01(4.42e− 03)− 6.96e− 01(8.52e− 03)+
8 7.30e− 01(9.96e− 03) 7.00e− 01(1.12e− 02)− 7.12e− 01(3.63e− 02)− 6.30e− 01(3.35e− 02)− 7.38e− 01(5.00e− 02)+
10 7.49e− 01(9.03e− 03) 7.20e− 01(2.35e− 02)− 7.69e− 01(5.70e− 02)+ 6.74e− 01(2.56e− 02)− 7.75e− 01(6.87e− 03)+

Best/all 22/27 0/27 0/27 2/27 3/27
Worse/

similar/better 27−/0∼/0+ 23−/1∼/3+ 24−/1∼/2+ 23−/1∼/3+
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4.4. Further Discussion and Analysis on AGPSO. To further
justify the advantage of AGPSO, it was particularly com-
pared to a recently proposed angle-based evolutionary al-
gorithm VaEA. *eir comparison results with HV on MaF
and WFG problems on 5 to 10 objectives are already con-
tained in Tables 3 and 5. According the results in the Tables 3
and 5, we can also conclude that AGPSO showed a superior
performance over VaEA in most problems of MaF1-MaF7
andWFG1-WFG9, as AGPSO performs better than VaEA in
40 out of 48 comparisons and is only defeated by VaEA in 7
cases. We compare the performance of our algorithm with
VaEA’s environment selection on different shapes of PF test
problems (MaF1-MaF7).*ey have the same shape of PF but
have some different characteristics such as the difficulty of
convergence and the deceptive PF property (WFG1-WFG9).
*erefore, the angular-guided-based method embedded into
PSOs is effectively improved in tackling MaOPs. *e an-
gular-guided-based method is adopted as a distributed in-
dicator to distinguish the similarities of particles, which is
transformed by the vector angle.*e traditional vector angle
performs better with concave but worse with convex or
linear PFs based on MOEA/C [52]. *erefore, the angular-
guided-based method improves this situation; the angular-
guided-based method performs better than the traditional
vector angle with convex or linear PFs and it will not behave
badly with concave PFs. On the one hand, compared with
the angle-based strategy designed in VaEA, AGPSO mainly
focuses on the diversity first in the update of its external
archive and convergence second. On the other hand,
AGPSO designed a novel density-based velocity update
strategy to produce new particles, which mainly enhances

the search for areas around each particle and speeds up the
convergence speed, while balancing convergence and di-
versity concurrently. From these analyses, we think that our
environment selection is more favorable for some linear PFs
and concave-shaped PFs with boundaries that are not dif-
ficult to find. In addition, AGPSO also added the evolu-
tionary operator on the external archive to improve the
performance. *erefore, our proposed AGPSO is reasonable
to be regarded as an effective PSO for solving MaOPs.

To visually show and support the abovementioned dis-
cussion results, to better visualize the performance, and to
show the solutions distribution in high-dimensional objective
spaces, some final solution sets with the median HV values
from 30 runs were plotted in Figures 2 and 3, respectively, for
MaF1 with an inverted PF and for WFG3 with a linear and
degenerate PF. In Figure 2, comparedwith the graph of VaEA,
we can find that our boundary cannot be found completely,
but the approximate PF we calculated through our proposed
AGPSO PF is more closely attached to the real PF. *is also
proves the correctness of our analysis on environmental
selection, i.e., our environment selection is more favorable
for some linear PFs and concave-shaped PFs with
boundaries that are not difficult to find.*e HV trend chart
of WFG3, WFG4, and MaF2 with 10 objectives is shown in
Figure 4. As observed from Figure 4, the convergence rate
of AGPSO is faster than that of the other four optimizers.

4.5. Further Discussion and Analysis on Velocity Update
Strategy. *e abovementioned comparisons have fully proved
the superiority of AGPSO over four MOPSOs and four

Table 5: Comparison of results of AGPSO and four current MOEAs on Maf1-Maf7 using HV.

Problem Obj AGPSO VaEA θ − DEA MOEA/DD SPEA2 + SDE

MaF1
5 1.31e− 02(1.43e− 04) 1.11e− 02(2.73e− 04)− 5.66e− 03(2.72e− 05)− 2.96e− 03(8.34e− 05)− 1.29e− 02(1.00e− 04)−
8 4.23e− 05(1.80e− 06) 2.69e− 05(2.04e− 06)− 2.93e− 05(2.03e− 06)− 4.38e− 06(4.77e− 07)− 3.87e− 05(9.83e− 07)−
10 6.16e− 07(3.49e− 08) 3.60e− 07(2.21e− 08)− 3.39e− 07(7.07e− 08)− 3.45e− 08(2.21e− 08)− 5.30e− 07(2.16e− 08)−

MaF2
5 2.64e− 01(1.18e− 03) 2.35e− 01(4.80e− 03)− 2.33e− 01(2.82e− 03)− 2.34e− 01(1.48e− 03)− 2.62e− 01(1.26e− 03)−
8 2.46e− 01(2.64e− 03) 2.00e− 01(7.59e− 03)− 1.71e− 01(1.82e− 02)− 1.88e− 01(1.39e− 03)− 2.36e− 01(3.06e− 03)−
10 2.45e− 01(2.08e− 03) 2.01e− 01(1.25e− 02)− 1.94e− 01(7.96e− 03)− 1.91e− 01(3.21e− 03)− 2.30e− 01(2.48e− 03)−

MaF3
5 9.88e− 01(2.87e− 03) 9.97e− 01(1.13e− 03)+ 9.93e− 01(2.82e− 03)+ 9.98e− 01(9.54e− 05)+ 9.92e− 01(2.12e− 03)+
8 9.95e− 01(2.11e− 03) 9.98e− 01(3.58e− 04)+ 9.92e− 01(3.83e− 03)− 1.00e+ 00(9.42e− 07)+ 9.97e− 01(1.66e− 03)+
10 9.85e− 01(2.26e− 03) 9.99e− 01(9.36e− 04)+ 9.70e− 01(5.68e− 03)− 1.00e+ 00(3.96e− 08)+ 9.99e− 01(4.94e− 04)+

MaF4
5 1.29e− 01(1.22e− 03) 1.17e− 01(3.62e− 03)− 7.32e− 02(8.89e− 03)− 0.00e+ 00(0.00e+ 00)− 1.07e− 01(5.37e− 03)−
8 6.02e− 03(9.67e− 05) 2.44e− 03(3.28e− 04)− 1.32e− 03(8.49e− 04)− 0.00e+ 00(0.00e+ 00)− 3.62e− 04(7.80e− 05)−
10 5.66e− 04(1.89e− 05) 1.48e− 04(9.76e− 06)− 2.29e− 04(3.57e− 05)− 0.00e+ 00(0.00e+ 00)− 4.23e− 06(1.65e− 06)−

MaF5
5 8.00e− 01(2.70e− 03) 7.92e− 01(1.85e− 03)− 8.13e− 01(4.51e− 05)+ 7.73e− 01(3.13e− 03)− 7.84e− 01(4.38e− 03)−
8 9.32e− 01(1.01e− 03) 9.08e− 01(3.80e− 03)− 9.26e− 01(9.79e− 05)− 8.73e− 01(6.71e− 03)− 7.36e− 01(9.62e− 02)−
10 9.67e− 01(1.32e− 03) 9.43e− 01(6.87e− 03)− 9.70e− 01(4.61e− 05)+ 9.28e− 01(8.28e− 04)− 7.12e− 01(1.18e− 01)−

MaF6
5 1.30e− 01(6.22e− 05) 1.30e− 01(7.51e− 05)+ 1.17e− 01(3.12e− 03)− 8.19e− 02(2.96e− 02)− 1.29e− 01(1.84e− 04)−
8 1.06e− 01(1.66e− 05) 1.06e− 01(2.20e− 05)+ 9.18e− 02(1.21e− 03)− 2.48e− 02(1.29e− 02)− 8.81e− 02(2.26e− 04)−
10 9.22e− 02(1.18e− 02) 7.05e− 02(3.95e− 02)− 4.57e− 02(4.66e− 02)− 4.83e− 02(5.24e− 02)− 2.71e− 02(1.00e− 01)−

MaF7
5 2.53e− 01(3.05e− 02) 3.03e− 01(3.50e− 03)+ 2.79e− 01(7.42e− 03)+ 1.19e− 01(2.76e− 02)− 3.31e− 01(1.76e− 03)+
8 1.94e− 01(2.59e− 02) 2.24e− 01(6.17e− 03)+ 2.20e− 01(5.03e− 02)+ 7.06e− 04(7.80e− 04)− 2.45e− 01(1.73e− 02)+
10 1.83e− 01(3.18e− 02) 1.91e− 01(1.19e− 02)∼ 2.27e− 01(2.01e− 02)+ 9.05e− 05(4.81e− 05)− 6.56e− 02(1.05e− 02)−

Best/all 11/21 2/21 3/21 3/21 2/21
Worse/

similar/better 13−/1∼/7+ 15−/0∼/6+ 18−/0∼/3+ 16−/0∼/5+
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MOEAs on the WFG and MaF test problems with 5, 8, and 10
objectives. In this section, we make a deeper comparison of the
speed update formula. In order to prove the superiority of the
formula based on the density velocity update, the effect is
compared with the traditional speed update formula as in [14]
(denoted as AGPSO-I). Furthermore, to show that only em-
bedding local best into the traditional velocity update method

vd(t) � wdvd(t) + c1r1d xd,pbest − xd(t)􏼐 􏼑

+ c2r2d xd,gbest − xd(t)􏼐 􏼑 + c3r3d xd,lbest − xd(t)􏼐 􏼑,

(12)

is not sufficient enough, and the effect is also compared with
equation (12), which is denoted as AGPSO-II.
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Figure 2: *e final solution sets achieved by nine MOEAs/MOPSOs and the true PF on MaF1 problems.
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Table 6 shows the comparisons of AGPSO and two
modified AGPSOs with different speed update formula on
WFG1-WFG9 and MaF1-MaF7 using HV. *e mean HV
values and the standard deviations (included in bracket after
the mean HV results) in 30 runs are collected for comparison.
As in the second last row of Table 6, there are 34 best results in
48 test problems obtained by AGPSO, while AGPSO-I per-
forms best in 10 cases and AGPSO-II performs best only in 4
case, respectively. Regarding the comparison of AGPSO with
AGPSO-I, AGPSO performs better on 33 cases, similarly on 5
cases, and worse on 10 cases. *e novel velocity update
strategy based on density is effective in improving the per-
formance of AGPSO on WFG4, WFG5, WFG7, WFG9, and
MaF2-MaF6. From these comparison data, the novel velocity
update strategy can improve the AGPSO and enable particle
generation to be more efficient under the coordination of the

proposed angular-guided update strategies. Regarding the
comparison AGPSO and AGPSO-II, AGPSO performs better
on 31 cases, similarly on 12 cases, and worse on 5 cases. It also
verified the superiority of the proposed novel velocity update
strategy by comparing the variants of the traditional formula
defined by (12). Adding the local-best (lbest) positional in-
formation of a particle to the traditional velocity formula is
not enough to control the search strength in the surrounding
region of this particle. It also confirmed that the proposed
formula can produce higher quality particles.

4.6. Computational Complexity Analysis on AGPSO. *e
computational complexity of AGPSO in one generation is
mainly dominated by the environmental selection that is de-
scribed in Algorithm 2. Algorithm 2 requires a time complexity
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Figure 3: *e final solution sets achieved by nine MOEAs/MOPSOs and the true PF on WFG3 problems.
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Figure 4: *e HV trend charts (averaged over 30 runs) of AGPSO, SPEA2+ SDE, and NMPSO on WFG3, WFG4, and MaF2 with 10
objectives.

Table 6: Comparison of results of AGPSO with different velocity using HV.

Problem Obj AGPSO AGPSO-I AGPSO-II

WFG1
5 7.91e− 01(3.47e− 02) 7.48e− 01(3.41e− 02)− 7.51e− 01(3.88e− 02)−
8 8.85e− 01(2.54e− 02) 8.14e− 01(3.94e− 02)− 7.96e− 01(3.97e− 02)−
10 9.47e− 01(4.77e− 03) 9.49e− 01(2.59e− 03)+ 9.45e− 01(3.49e− 03)∼

WFG2
5 9.76e− 01(5.13e− 03) 9.76e− 01(2.81e− 03)∼ 9.78e− 01(5.19e− 03)+
8 9.87e− 01(2.65e− 03) 9.89e− 01(2.21e− 03)+ 9.88e− 01(1.84e− 03)∼
10 9.92e− 01(3.30e− 03) 9.93e− 01(1.38e− 03e− )+ 9.92e− 01(1.97e− 03)∼

WFG3
5 6.59e− 01(5.02e− 03) 6.66e− 01(4.17e− 03)+ 6.57e− 01(5.40e− 03)∼
8 6.79e− 01(5.20e− 03) 6.86e− 01(3.41e− 03)+ 6.79e− 01(4.02e− 03)∼
10 6.92e− 01(7.15e− 03) 7.02e− 01(3.08e− 03)+ 6.93e− 01(4.13e− 03)∼

WFG4
5 e− 7.76e− 01(5.69e− 03) 7.57e− 01(7.87e− 03)− 7.68e− 01(5.07e− 03)−
8 9.00e− 01(1.01e− 02) 8.85e− 01(8.62e− 03)− 8.94e− 01(8.43e− 03)−
10 9.39e− 01(7.42e− 03) 9.31e− 01(8.35e− 03)− 9.30e− 01(8.84e− 03)−

WFG5
5 7.42e− 01(4.66e− 03) 7.34e− 01(7.45e− 03)− 7.39e− 01(7.73e− 03)−
8 8.59e− 01(4.74e− 03) 8.52e− 01(6.05e− 03)− 8.58e− 01(5.45e− 03)∼
10 8.91e− 01(5.28e− 03) 8.73e− 01(1.22e− 02)− 8.78e− 01(2.21e− 02)−

WFG6
5 7.53e− 01(7.52e− 03) 6.92e− 01(2.21e− 03)− 7.52e− 01(3.85e− 03)∼
8 8.69e− 01(1.24e− 02) 8.10e− 01(3.63e− 03)− 8.83e− 01(5.64e− 03)+
10 9.12e− 01(1.22e− 02) 8.40e− 01(3.57e− 03)− 9.23e− 01(7.99e− 03)+

WFG7
5 7.90e− 01(2.13e− 03) 7.81e− 01(3.32e− 03)− 7.85e− 01(2.78e− 03)−
8 9.21e− 01(2.89e− 03) 9.15e− 01(3.11e− 03)− 9.13e− 01(3.18e− 03)−
10 9.55e− 01(9.72e− 03) 9.55e− 01(2.26e− 03)∼ 9.44e− 01(1.59e− 02)−

WFG8
5 6.61e− 01(5.62e− 03) 6.44e− 01(3.76e− 03)− 6.54e− 01(5.95e− 03)−
8 7.87e− 01(7.11e− 03) 7.80e− 01(4.75e− 03)− 7.81e− 01(5.89e− 03)−
10 8.41e− 01(5.48e− 03) 8.45e− 01(3.13e− 03)+ 8.31e− 01(1.76e− 02)−
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of O(mN) to obtain the union population U in line 1 and
normalize each particle inU in line 2, wherem is the number of
objectives andN is the swarm size. In lines 3–7, it requires a time
complexity ofO (m2N2) to classify the population. In lines 8–11,
it needs time complexity of O(N). In the loop for association, it
also requires a time complexity ofO(m2N2) as in lines 12–15. In
lines 17–20, it needs a time complexity ofO(N2). In conclusion,
the overall worst time complexity of one generation in AGPSO
is max O(mN), O(m2N2), O(N),􏼈 O(N2)}, which performs
competitive time complexities with most optimizers, e.g., [48].

5. Conclusions and Future Work

*is paper proposes AGPSO, which is a novel angular-guided
MOPSO with efficient density-based velocity update strategy
and excellent angular-guided-based archive update strategy.*e
novel density-based velocity update strategy uses adjacent in-
formation (local-best) to explore information around particles
and uses globally optimal information (global-best) to search for
better performing locations globally. *is strategy improves the
quality of the particles produced by searching for the sur-
rounding space of sparse particles. Furthermore, the angular-
guided archive update strategy provides efficient convergence
while maintaining good population distribution. *is combi-
nation of proposed novel velocity update strategy and excellent
archive update strategy enables the proposed AGPSO to
overcome the problems encountered in the existing state-of-
the-art algorithms for solving MaOPs. *e performance of

AGPSO is assessed by usingWFG andMaF test suites with 5 to
10 objectives. Our experiments indicate that AGPSO has su-
perior performance over four current PSOs (SMPSO,
dMOPSO, NMPSO, and MaPSO) and four evolutionary al-
gorithms (VaEA, θ-DEA, MOEA\D-DD, and SPEA2+SDE).

*is density-based velocity update strategy and angular-
guided archive update strategy will be further studied in our
future work. *e performance of density velocity update
strategy is not good enough on some partial problems, which
will be further studied. Regarding angular-guided archive up-
date strategy, while reducing the amount of computation and
performing better than the tradition angle selection on concave
and linear PFs, it also sacrifices a part of the performance against
many objective optimization problems with convex PFs, the
improvement of which will be further studied in future.

Data Availability

Our source code could be provided by contacting the cor-
responding author. *e source codes of the compared state-
of-the-art algorithms can be downloaded from http://jmetal.
sourceforge.net/index.html or provided by the original au-
thor, respectively. Also, most codes of the compared algo-
rithm can be found in our source code, such as VaEA [27],
θ-DEA [48], and MOEA/DD [50]. Test problems are the
WFG [23] and MaF [24]. WFG [23] can be found at http://
jmetal.sourceforge.net/problems.html and MaF [24] can be
found at https://github.com/BIMK/PlatEMO.

Table 6: Continued.

Problem Obj AGPSO AGPSO-I AGPSO-II

WFG9
5 6.58e− 01(4.54e− 03) 6.53e− 01(3.73e− 03)− 6.53e− 01(2.99e− 03)−
8 7.29e− 01(9.55e− 03) 7.20e− 01(1.21e− 02)− 7.23e− 01(8.94e− 03)−
10 7.51e− 01(1.21e− 02) 7.35e− 01(1.18e− 02)− 7.36e− 01(1.04e− 02)−

MaF1
5 1.30e− 02(1.29e− 04) 1.30e− 02(1.10e− 04)∼ 1.30e− 02(1.04e− 04)∼
8 4.23e− 05(1.45e− 06) 4.12e− 05(1.35e− 06)− 4.14e− 05(1.78e− 06)−
10 6.12e− 07(4.40e− 08) 6.07e− 07(2.30e− 08)∼ 6.10e− 07(2.83e− 08)∼

MaF2
5 2.64e− 01(9.97e− 04) 2.62e− 01(1.08e− 03)− 2.61e− 01(1.10e− 03)−
8 2.46e− 01(1.64e− 03) 2.40e− 01(1.89e− 03)− 2.41e− 01(1.66e− 03)−
10 2.45e− 01(1.84e− 03) 2.39e− 01(2.75e− 03)− 2.41e− 01(2.19e− 03)−

MaF3
5 9.90e− 01(4.96e− 03) 9.76e− 01(2.92e− 02)− 4.96e− 01(3.82e− 01)−
8 9.68e− 01(1.95e− 03) 9.36e− 01(9.22e− 02)− 3.73e− 01(3.08e− 01)−
10 9.92e− 01(2.55e− 03) 9.72e− 01(1.86e− 02)− 4.42e− 01(3.77e− 01)−

MaF4
5 1.29e− 01(1.33e− 03) 1.08e− 01(1.44e− 02)− 1.18e− 01(2.08e− 03)−
8 6.03e− 03(1.88e− 04) 3.33e− 03(1.02e− 03)− 4.74e− 03(2.12e− 04)−
10 5.62e− 04(1.47e− 05) 2.58e− 04(9.13e− 05)− 3.65e− 04(2.55e− 05)−

MaF5
5 8.01e− 01(1.81e− 03) 8.00e− 01(3.40e− 03)∼ 8.00e− 01(2.06e− 03)∼
8 9.32e− 01(1.97e− 03) 9.31e− 01(1.39e− 03)− 9.31e− 01(1.58e− 03)−
10 9.67e− 01(1.09e− 03) 9.66e− 01(7.51e− 04)− 9.66e− 01(1.18e− 03)−

MaF6
5 1.30e− 01(5.82e− 05) 1.30e− 01(3.35e− 05)− 1.30e− 01(5.60e− 05)−
8 1.03e− 01(2.78e− 05) 4.51e− 02(4.39e− 02)− 6.64e− 02(5.81e− 02)−
10 9.49e− 02(1.27e− 02) 4.55e− 02(7.07e− 02)− 4.40e− 02(4.92e− 02)−

MaF7
5 2.51e− 01(4.40e− 02) 3.09e− 01(2.58e− 03)+ 2.49e− 01(3.73e− 02)∼
8 1.91e− 01(4.11e− 02) 2.54e− 01(4.64e− 03)+ 2.22e− 01(1.68e− 02)+
10 1.78e− 01(3.53e− 02) 2.32e− 01(4.46e− 03)+ 2.01e− 01(9.95e− 03)+

Best/all 34/48 10/48 4/48
Better/similar/worse 33−/5∼/10+ 31−/12∼/5+
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