Research Article

Computing Minimal Doubly Resolving Sets and the Strong Metric Dimension of the Layer Sun Graph and the Line Graph of the Layer Sun Graph

Jia-Bao Liu and Ali Zafari

1School of Finance and Mathematics, Huainan Normal University, Huainan 232038, China
2School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
3Department of Mathematics, Faculty of Science, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran

Correspondence should be addressed to Ali Zafari; zafari.math.pu@gmail.com

Received 1 June 2020; Accepted 10 September 2020; Published 24 September 2020

© 2020 Jia-Bao Liu and Ali Zafari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, suppose G is a finite, simple connected graph of order of, at least, 2, with vertex set $V(G)$ and edge set $E(G)$. If x and y are vertices in the graph G, then the distance $d(x, y)$ is the length of the shortest path from x to y. The line graph of a graph G is denoted by $L(G)$, with vertex set $V(L(G)) = E(G)$ and where two edges of G are adjacent in $L(G)$ if and only if they are incident in G, see [1]. Vertices x, y of the graph G are said to doubly resolve vertices u, v of G if $d(u, x) - d(u, y) \neq d(v, x) - d(v, y)$. A set S of vertices of the graph G is a doubly resolving set if every two distinct vertices of G are doubly resolved by some two vertices of S. The minimal doubly resolving set of vertices of graph G is a doubly resolving set with minimum cardinality and is denoted by $\psi(G)$. In this paper, we first construct a class of graphs of order $2n + \sum_{i=1}^{k-1} nm_i'$, denoted by $LSG(n, m, k)$, and call these graphs as the layer Sun graphs with parameters n, m, and k. Moreover, we compute minimal doubly resolving sets and the strong metric dimension of the layer Sun graph $LSG(n, m, k)$ and the line graph of the layer Sun graph $LSG(n, m, k)$.
We recall that the metric dimension of \(n, m, k \) respectively. In particular, each layer in the layer Sun graph \(LSG(n,m,k) \) with parameters \(n, m, k \) and \(\beta \). Also, for \(i \geq 3 \), we recall that \(B_{ij} \) as the components of the layer \(V_i \). \(1 \leq i \leq n \), \(1 \leq j \leq m \). In particular, we say that two components \(B_{ij} \), \(B_{ir} \) in \(V_i \), \(1 \leq i, r \leq n \), \(1 \leq j, s \leq m \) are fundamental if \(i = r \) and \(j \neq s \). It is natural to consider its vertex set of the layer Sun graph \(LSG(n,m,k) \) as partitioned into \(k \) layers. The layers \(V_1 \) and \(V_2 \) consist of the vertices \(\{1, 2, \ldots, n\} \) and \(\{v_1, v_2, \ldots, v_n\} \), respectively. In particular, each layer \(V_i \) \((i \geq 3) \) consists of the \(nm^2 \) vertices. Note that, for each vertex \(i \) in the layer \(V_i \) and every vertex \(x \in B_{ij} \) in \(V_i \), \(1 \leq i \leq n \), \(1 \leq j \leq m \), we have \(d(i, x) = i - 1 \). In this paper, we consider the problem of determining the cardinality \(\psi(LSG(n,m,k)) \) of minimal doubly resolving sets of the layer Sun graph \(LSG(n,m,k) \). First, we find the metric dimension of the layer Sun graph \(LSG(n,m,k) \); in fact, we prove that if \(n, k \geq 3 \) and \(m \geq 2 \), then the metric dimension of the layer Sun graph \(LSG(n,m,k) \) is \(nm^k - 2 - nm^{k-3} \). Moreover, we consider the problem of determining the cardinality \(\psi(LSG(n,m,k)) \) of minimal doubly resolving sets of \(LSG(n,m,k) \) and the strong metric dimension for the layer Sun graph \(LSG(n,m,k) \) and the line graph of the layer Sun graph \(LSG(n,m,k) \). The graph \(LSG(3,3,4) \) is shown in Figure 1.

2. Definitions and Preliminaries

Definition 1. Let \(G \) be a graph. A vertex \(x \in V(G) \) is said to resolve a pair \(u, v \in V(G) \) if \(d_G(u, x) \neq d_G(v, x) \). For an ordered subset \(W = \{w_1, w_2, \ldots, w_k\} \) of vertices in the graph \(G \) and a vertex \(v \in G \), the metric representation of \(v \) with respect to \(W \) is the \(k \)-vector \(r(v/W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k)) \). If every pair of distinct vertices of \(G \) has different metric representations, then the ordered set \(W \) is called a resolving set of \(G \). If the set \(W \) is as small as possible, then it is called a minimal basis of the graph \(G \). We recall that the metric dimension of \(G \), denoted by \(\beta(G) \), is defined as the minimum cardinality of a resolving set for \(G \).

Proposition 1. Let \(G \) be a graph. It is well known that a doubly resolving set is also a resolving set and \(\beta(G) \leq \psi(G) \). In particular, every strong resolving set is a resolving set and \(\beta(G) \leq \text{sdim}(G) \).

3. Main Results

3.1. Minimal Doubly Resolving Sets and the Strong Metric Dimension for the Layer Sun Graph \(LSG(n,m,k) \)

Theorem 1. Let \(G = LSG(n,m,k) \) be the layer Sun graph which is defined already. Suppose that \(n, m, k \) are integers such that \(n, k \geq 3 \) and \(m \geq 2 \). Then, the metric dimension of \(LSG(n,m,k) \) is \(nm^k - 2 - nm^{k-3} \).

Proof. Let \(V(G) = V_1 \cup V_2 \cup \ldots \cup V_k \), where \(V_1, V_2, \ldots, V_k \) are called the layers of vertices in the layer Sun graph \(LSG(n,m,k) \), which is defined already. It is clear that if \(W \) is an ordered subset of the layers \(V_1 \cup V_2 \cup \ldots \cup V_{k-1} \), then \(W \) is not a resolving set in \(LSG(n,m,k) \). We may assume that the layer \(V_k \) is equal to

\[
V_k = \{B_{1k}^{(1)}, B_{1k}^{(2)}, \ldots, B_{1k}^{(m)}, B_{2k}^{(1)}, B_{2k}^{(2)}, \ldots, B_{2k}^{(m)}, \ldots, B_{nk}^{(1)}, B_{nk}^{(2)}, \ldots, B_{nk}^{(m)}\},
\]

where \(B_{ij}^{(k)} = \{\bigcup_{i=1}^m (v_{ij}, t_{ij})\} \), \(1 \leq i \leq n \), \(1 \leq j \leq m \). In the following cases, it can be shown that the metric dimension of the layer Sun graph \(LSG(n,m,k) \) is \(nm^k - 2 - nm^{k-3} \).

Case 1: let \(W \) be an ordered subset of the layer \(V_k \) in the layer Sun graph \(LSG(n,m,k) \) such that

\[
W = \{B_{1k}^{(1)}, B_{1k}^{(2)}, \ldots, B_{nk}^{(1)}, B_{nk}^{(2)}, \ldots, B_{nk}^{(m)}\}.
\]

Hence,

\[
V(G) - W = \{V_1, V_2, \ldots, V_{k-1}, B_{1k}^{(1)}\}.
\]

We know that the cardinality of \(W \) is \(nm^k - 2 - m \) because \(|B_{ij}^{(k)}| = m+1 \leq i \leq n \), \(1 \leq j \leq m \). Therefore, the metric representation of all the vertices \((v_{1k}, 1)^k, (v_{1k}, 2)^k, \ldots, (v_{1k}, m)^k \) in the component \(B_{1k}^{(1)} \) is the same as \(nm^k - 2 - m \)-vector with respect to \(W \). Thus, \(W \) is not a resolving set in \(LSG(n,m,k) \).

Case 2: let \(W \) be an ordered subset of the layer \(V_k \) in the layer Sun graph \(LSG(n,m,k) \) such that

\[
W = \{B_{1k}^{(1)}, \ldots, B_{1k}^{(m)}, B_{2k}^{(1)}, B_{2k}^{(2)}, \ldots, B_{2k}^{(m)}, \ldots, B_{nk}^{(1)}, B_{nk}^{(2)}, \ldots, B_{nk}^{(m)}\}.
\]

Hence,

\[
V(G) - W = \{V_1, V_2, \ldots, V_{k-1}, (v_{1k}, 1)^k, (v_{1k}, 2)^k\}.
\]
We know that $|W| = nm^{k-2} - 2$. Therefore, the metric representation of two vertices $(v_{ij}, 1)^k$, $(v_{ij}, 2)^k$ in the component $B_i^{(k)}$ is the same as $nm^{k-2} - 2$-vector with respect to W. Thus, W is not a resolving set in $LSG(n, m, k)$.

Case 3: let W be an ordered subset of the layer V_k in the layer Sun graph $LSG(n, m, k)$ such that

$$W = \{B_1^{(k)} - (v_{11}, 1)^k, B_2^{(k)} - (v_{11}, 1)^k, \ldots, B_{n,k-3}^{(k)} - (v_{11}, 1)^k, B_{n_1}^{(k)} - (v_{12}, 1)^k, B_{n_2}^{(k)} - (v_{13}, 1)^k, \ldots, B_{n,k-3}^{(k)} - (v_{13}, 1)^k\}.$$ (6)

Hence,

$$V(G) - W = \{V_1, V_2, \ldots, V_{k-3}, (v_{11}, 1)^k, \ldots, (v_{1n}, 1)^k, \ldots, (v_{nk}, 1)^k\}. $$ (7)

We know that $|W| = nm^{k-2} - nm^{k-3}$. We can show that all the vertices in $V(G) - W$ have different representations with respect to W. Let u be the vertex of the layer $V_1 = V(C_n) = \{1, 2, \ldots, n\}$. We can assume without loss of generality that $u = i$, $1 \leq i \leq n$. Hence, $d(u, (v_{ij}, t)^k) = k - 1$, where $(v_{ij}, t)^k \in B_i^{(k)}$, $1 \leq t \leq m$, $1 \leq j \leq m^{k-3}$; otherwise, if $u \neq i$, then $d(u, (v_{ij}, t)^k) > k - 1$. Now, let $u \in V_2 = \{v_{12}, v_{22}, \ldots, v_{21}\}$. We can assume without loss of generality that $u = v_i$, $1 \leq i \leq n$. Hence, $d(u, (v_{ij}, t)^k) = k - 2$, where $(v_{ij}, t)^k \in B_i^{(k)}$, $1 \leq t \leq m$, $1 \leq j \leq m^{k-3}$; otherwise, if $u \neq v_i$, then $d(u, (v_{ij}, t)^k) > k - 2$. In a similar way, we can show that all the vertices in the layers V_3, \ldots, V_{k-1} have different representations with respect to W. In particular, for every vertex $u \in \{v_{ij}, (v_{11}, 1)^k, \ldots, (v_{1n}, 1)^k, \ldots, (v_{nk}, 1)^k\}$, we have $d(u, (v_{ij}, t)^k) = 2$, $2 \leq t \leq m$, if $u = (v_{11}, 1)^k$; otherwise, if $u \in \{(v_{11}, 1)^k, \ldots, (v_{1n}, 1)^k, \ldots, (v_{nk}, 1)^k, \ldots, (v_{nk}, 1)^k\}$ and $u \neq (v_{ij}, 1)^k$, then $d(u, (v_{ij}, t)^k) > 4$. Therefore, all the vertices in $V(G) - W$ have different representations with respect to W. This implies that W is a resolving set in $LSG(n, m, k)$. From the above-mentioned cases, we can be concluded that the minimum possible cardinality of a resolving set in $LSG(n, m, k)$ is $nm^{k-2} - nm^{k-3}$.

Theorem 2. Let $G = LSG(n, m, k)$ be the layer Sun graph which is defined already. Suppose that n, m, k are integers such that $n, k \geq 3$ and $m \geq 2$. Then, the cardinality of minimum doubly resolving set of the LSG (n, m, k) is nm^{k-2}.

Proof. In the following cases, it can be shown that the cardinality of minimum doubly resolving set of the layer Sun graph $LSG(n, m, k)$ is nm^{k-2}.

Case 1: we know that the ordered subset W of vertices in equation (8) in the layer V_k of $LSG(n, m, k)$ is a resolving set for $LSG(n, m, k)$ of cardinality $nm^{k-2} - nm^{k-3}$. We show that this subset is not a doubly resolving set for...
such that for any vertex \(u \) in the layer \(V_i \), then for every \(x, y \in W \), we have \(d(u, x) = d(u, y) = d(v, x) - d(v, y)\).

\[
W = \left\{ B_{i_1}^{(k)} - (v_{i_1}, 1)^k, B_{i_2}^{(k)} - (v_{i_2}, 1)^k, \ldots, B_{i_{n-3}}^{(k)} - (v_{i_{n-3}}, 1)^k \right\}.
\]

Case 2: now, let the subset of vertices in \(LSG(n, m, k) \) be

\[
W = \left\{ B_{i_1}^{(k)} - (v_{i_1}, 1)^k, B_{i_2}^{(k)} - (v_{i_2}, 1)^k, \ldots, B_{i_m}^{(k)} - (v_{i_m}, 1)^k, B_{i_{n-k}}^{(k)} - (v_{i_{n-k}}, 1)^k \right\}.
\]

In a similar fashion as in Case 3 of Theorem 1, we can show that all the vertices in the layers \(V_{l_1}, V_{l_2}, \ldots, V_{l_{n-3}} \) of \(LSG(n, m, k) \) and the vertex \((v_{l_1}, 1)^k \) in the layer \(V_{l_1} \) of \(LSG(n, m, k) \) have different representations with respect to \(W \). So, \(W \) is a resolving set in \(LSG(n, m, k) \) of cardinality \(nm^{k-2} - 1 \). Note that, in this case, by a similar way as in Case 1, we can show that this subset is not a doubly resolving set for \(LSG(n, m, k) \).

Case 3: finally, let the subset of vertices in \(LSG(n, m, k) \) be

\[
W = \left\{ B_{i_1}^{(k)}, B_{i_2}^{(k)}, \ldots, B_{i_{n-1}}^{(k)}, B_{i_m}^{(k)}, B_{i_{n-k}}^{(k)} \right\}.
\]

In a similar fashion as in Theorem 1, we can show that all the vertices in the layers \(V_{l_1}, V_{l_2}, \ldots, V_{l_{n-3}} \) of \(LSG(n, m, k) \) have different representations with respect to \(W \). So, this subset is also a resolving set in \(LSG(n, m, k) \) of cardinality \(nm^{k-2} \). We show that this subset is a doubly resolving set for \(LSG(n, m, k) \). It is sufficient to prove that for two vertices \(u \) and \(v \) in \(LSG(n, m, k) \), there are vertices \(x, y \in W \) such that \(d(u, x) - d(u, y) \neq d(v, x) - d(v, y) \).

Case 3.3: suppose that both vertices \(u \) and \(v \) lie in the layer \(V_{i_j} \), \(1 \leq j \leq m^k \). In this case, \(d(u, v) = 2\). Moreover, we know that the layer Sun graph \(LSG(n, m, k) \) has the property that, for each vertex \(x \in B_{i_j}^{(k)} \) in the layer \(V_{i_j} \), there is a component of the layer \(V_{i_j} \), say \(B_{i_j}^{(k)} \), \(1 \leq i \leq n, 1 \leq j \leq m^k \) such that for any vertex \(x \in B_{i_j}^{(k)} \), we have \(d(u, x) = k - l \). In the same way, for the vertex \(v \) in \(B_{i_j}^{(k)} \) in the layer \(V_{i_j} \), there is a component of the layer \(V_{i_j} \), say \(B_{i_j}^{(k)} \), \(1 \leq i \leq n, 1 \leq j \leq m^k \) such that for any vertex \(y \in B_{i_j}^{(k)} \), we have \(d(v, y) = k - l \). Thus, \(d(u, x) - d(u, y) = d(v, x) - d(v, y) \) because \(d(u, y) = k - l + 2 \) and \(d(v, x) = k - l + 2 \).

Case 3.4: suppose that both vertices \(u \) and \(v \) lie in the layer \(V_{i_j} \), \(1 \leq j \leq m^k \) such that these vertices lie in the two different components of the layer \(V_{i_j} \). We can assume without loss of generality that \(u \in B_{i_j}^{(k)} \) and \(v \in B_{i_j}^{(k)} \), \(1 \leq p, q \leq n, 1 \leq j \leq m^k \). Moreover, we know that the layer Sun graph \(LSG(n, m, k) \) has the property that, for each vertex \(x \in B_{i_j}^{(k)} \) in the layer \(V_{i_j} \), there is a component of the layer \(V_{i_j} \), say \(B_{i_j}^{(k)} \), \(1 \leq r \leq m^k \) such that for any vertex \(x \in B_{i_j}^{(k)} \), we have \(d(u, x) = k - l \). Moreover, \(d(v, y) = k - l \). Thus, \(d(u, x) - d(u, y) = d(v, x) - d(v, y) \).
Theorem 3. Let \(G = \text{LSG}(n,m,k) \) be the layer Sun graph which is defined already. Suppose that \(n,m,k \) are integers such that \(n,k \geq 3 \) and \(m \geq 2 \). Then, the strong metric dimension of \(\text{LSG}(n,m,k) \) is \(nm^{k-2} - 1 \).

Proof. In the following cases, it can be seen that the cardinality of the minimum strong resolving set of the layer Sun graph \(\text{LSG}(n,m,k) \) is \(nm^{k-2} - 1 \).

\[
W = \left\{ B^{(k)}_{l_1} - (v_1,1)^k, B^{(k)}_{l_2} - (v_2,1)^k, \ldots, B^{(k)}_{l_m} - (v_m,1)^k \right\},
\]

(11)

Case 1: we know that the ordered subset \(W \) of vertices in equation (11) in the layer \(V_k \) of the layer Sun graph \(\text{LSG}(n,m,k) \) is a resolving set for \(\text{LSG}(n,m,k) \) of cardinality \(nm^{k-2} - nm^{k-3} \). Now, let \(N = V_k - W = \left\{ (v_1,1)^k, \ldots, (v_{i_{n-1}},1)^k, \ldots, (v_{n-1},1)^k \right\} \) for considering distinct vertices \(u,v \in N \), we can show that there is not a vertex \(w \in W \) such that \(u \) belongs to a shortest \(u-v \) path or \(v \) belongs to a shortest \(u-w \) path because the valency of every vertex in the layer \(V_k \) is one. So, this subset is not a strong resolving set for \(G \). Thus, we can be conclude that if \(W \) is a strong resolving set for graph \(G \), then \(|W| \geq nm^{k-2} - 1 \) because \(|N| \) must be less than 2.

Case 2: on the other hand, we can show that the subset \(W \) of vertices in equation (12) in the graph \(G \) is a resolving set for graph \(G \). We show that this subset is a strong resolving set in graph \(G \). It is sufficient to prove that every two distinct vertices \(u,v \in V(G) - W \) are strongly resolved by a vertex \(w \in W \). Then, we have the following:

\[
W = \left\{ B^{(k)}_{l_1} - (v_1,1)^k, B^{(k)}_{l_2} - (v_2,1)^k, \ldots, B^{(k)}_{l_m}, B^{(k)}_{l_{n-1}}, \ldots, B^{(k)}_{l_{n-3}} \right\}.
\]

(12)

Case 2.1: suppose that both vertices \(u \) and \(v \) lie in the layer \(V_{l_1} \). Hence, there are \(r,s \in \{1,2,\ldots,n\} \) such that \(u = r \) and \(v = s \). Moreover, we know that the layer Sun graph \(\text{LSG}(n,m,k) \) has the property that, for each vertex \(r \) in the layer \(V_{l_1} \), there is a component \(B^{(k)}_{l_r} \), \(1 \leq j \leq m^{k-3} \) in the layer \(V_k \) such that, for every vertex such as \(w \in B^{(k)}_{l_r} \), we have \(d(u,w) = k-1 \) and \(d(v,w) > k-1 \), and hence, \(u \) belongs to a shortest \(w-v \) path.

Case 2.2: now suppose that both vertices \(u \) and \(v \) lie in the layer \(V_{l_1} \). In a similar way as in Case 2.1, we can show that the vertices \(u \) and \(v \) are strongly resolved by a vertex \(w \in W \).

Case 2.3: suppose that both vertices \(u \) and \(v \) lie in the layer \(V_{l_1} \), \(l \geq 3 \) such that these vertices lie in the one component of the layer \(V_{l_1} \), say \(B^{(k)}_{l_i} \), \(1 \leq i \leq n \), \(1 \leq j \leq m^{k-3} \). In this case, \(d(u,v) = 2 \). Moreover, we know that the layer Sun graph \(\text{LSG}(n,m,k) \) has the property that, for each vertex \(u \in B^{(k)}_{l_i} \) in the layer \(V_{l_1} \), there is a component of the layer \(V_k \), say \(B^{(k)}_{l_j} \), \(1 \leq i \leq n \), \(1 \leq r \leq m^{k-3} \) such that for any vertex \(w \in B^{(k)}_{l_j} \), we have \(d(u,w) = k-l \), and hence, \(u \) belongs to a shortest \(w-v \) path.

Case 2.4: suppose that both vertices \(u \) and \(v \) lie in the layer \(V_{l_1} \), \(l \geq 3 \) such that these vertices lie in the two distinct components of the layer \(V_{l_1} \). We can assume without loss of generality that \(u \in B^{(k)}_{l_{i_1}} \) and \(v \in B^{(k)}_{l_{i_2}} \), \(1 \leq p,q \leq n \), and \(1 \leq j_1,j_2 \leq m^{k-3} \). Moreover, we know that the layer Sun graph \(\text{LSG}(n,m,k) \) has the property that, for each vertex \(u \in B^{(k)}_{l_{i_1}} \) in the layer \(V_{l_1} \), there is a component of the layer \(V_{l_1} \), say \(B^{(k)}_{l_{j_1}} \), \(1 \leq r \leq m^{k-3} \) such that for any vertex \(w \in B^{(k)}_{l_{j_1}} \), we have \(d(u,w) = k-l \), and hence, \(u \) belongs to a shortest \(w-v \) path.

Case 2.5: suppose that vertices \(u \) and \(v \) lie in distinct layers \(V_{l_{i_1}}, V_{l_{i_2}} \), respectively. Note that if \(a = 1 \) and \(b = 2 \), a = 1 and \(b > 2 \), or \(a = 2 \) and \(b > 2 \), there is nothing to do. Now, let \(3 \leq b < a \). Hence, there is a component of the layer \(V_{l_{i_1}} \), say \(B^{(k)}_{l_{i_1}} \), \(1 \leq i \leq n \), \(1 \leq j \leq m^{k-3} \) such that \(u \in B^{(k)}_{l_{i_1}} \). Also, there is a component of the layer \(V_{l_{i_2}} \), say \(B^{(k)}_{l_{i_2}} \), \(1 \leq p \leq n \), \(1 \leq q \leq m^{k-3} \) such that \(v \in B^{(k)}_{l_{i_2}} \). In particular, there is a component of the layer \(V_{l_{i_1}} \), say \(B^{(k)}_{l_{j_1}} \), \(1 \leq i \leq n \), \(1 \leq r \leq m^{k-3} \) such that, for any vertex \(w \in B^{(k)}_{l_{j_1}} \), we have \(d(u,w) = k-a \), and hence, \(u \) belongs to a shortest \(w-v \) path.
3.2. Minimal Doubly Resolving Sets and the Strong Metric Dimension for the Line Graph of Layered Sun Graph LSG (n, m, k). Let $G = LSG(n, m, k)$ be the layer Sun graph which is defined already. Now, let H be a graph with vertex set $V(H) = U_1 \cup U_2 \cup \ldots \cup U_k$, where U_1, U_2, \ldots, U_k are the called the layers of H which is defined as follows:

Let $U_1 = V(C_n)$ and $U_2 = \{u_1, u_2, \ldots, u_n\}$, and for $l \geq 3$, we have

$$U_l \subseteq \{D_{l,i}, D_{l,i+1}, D_{l,i+2}, D_{l,i+3}, \ldots, D_{l,m}, D_{l,m+1}, D_{l,m+2}, D_{l,m+3}, \ldots\},$$

and let $D_{l,i} = \{u_{l,i}, \ldots, u_{l,i+t}\}$ such that every $(u_{l,i}, t)$ is a vertex in the layer U_l and $D_{l,i} \subseteq K_m$ in the layer U_l, $1 \leq i \leq n$, $1 \leq j \leq m^l - 3$, $1 \leq i \leq m$, where K_m is the complete graph on m vertices. Now, suppose that every vertex $i \in [2, 3, \ldots, n]$ in the cycle C_m or the layer U_l is adjacent to exactly two vertices in the layer U_2 say $u_i, u_{i-1} \in U_2$. In particular, for the vertex 1 in the layer U_1, we have 1 adjacent to exactly two vertices in the layer U_2, say $u_1, u_n \in U_2$. Also, every vertex u_i in the layer U_2 is adjacent to exactly m vertices $(u_{i1}, 1), (u_{i2}, 1), \ldots, (u_{im}, 1) \in D_{l,i} \subseteq U_l$; in particular for $l \geq 3$, every vertex $(u, t) \in D_{l,i} \subseteq U_l$ is adjacent to exactly m vertices $\cup_{i=1}^m (u_{i1}, 1), (u_{i2}, 1), \ldots, (u_{im}, 1) \in U_{l+1}$, and then, the resulting graph is isomorphic with the line graph of the layer Sun graph LSG (n, m, k) with parameters n, m, and k; in fact, $L(G) \cong H$. Note that simply we use refinement of the natural labelling of the line graph of the graph LSG (n, m, k). Also, for $l \geq 3$, we recall $D_{l,i}^v$ as the components of U_l, $1 \leq i \leq n$, $1 \leq j \leq m^l - 3$. In particular, we say that two components $D_{l,i}^v, D_{l,s}^v, 1 \leq i, r \leq n, 1 \leq j, s \leq m^l - 3$ are fundamental if $i = r$ and $j \neq s$. It is natural to consider its vertex set of the line graph of the layer Sun graph LSG (n, m, k) is also as partitioned into k layers. The layers U_1 and U_2 consist of the vertices $\{1, 2, \ldots, n\}$ and $\{u_1, u_2, \ldots, u_n\}$, respectively. In particular, each layer U_l $(l \geq 3)$ consists of the $m^l - 1$ vertices. Note that, for each vertex i in the layer U_1 and every vertex $x \in D_{l,i}^v \subseteq U_l$, $1 \leq j \leq m^l - 3$, we have $d(i, x) = 1 - i$. In this section, we consider the problem of determining the cardinality $\psi(L(G))$ of minimal doubly resolving sets of the line graph of the layer Sun graph LSG (n, m, k). We find the minimal doubly resolving set for the line graph of the layer Sun graph LSG (n, m, k), and in fact, we prove that if $n, k \geq 3$ and $m \geq 2$, then the minimal doubly resolving set of the line graph of the layer Sun graph LSG (n, m, k) is $nm^{k-2} - nm^{k-3}$. Figure 2 shows the line graph of the graph LSG $(3, 3, 4)$. Note that simply we use refinement of the natural labelling of the line graph of the graph LSG $(3, 3, 4)$.

Theorem 4. Let $G = LSG(3, 3, 4)$ be the layer Sun graph which is defined already. Suppose that n, m, k are integers such that $n, k \geq 3$ and $m \geq 2$. Then, the cardinality of minimal doubly resolving set in the line graph of the graph G is $nm^{k-2} - nm^{k-3}$.

Proof. Let W be an ordered subset of the layer U_k in the line graph of the graph G such that

$$W = \left\{D_{l,1} - (u_1, 1), D_{l,2} - (u_1, 1), \ldots, D_{l,k} - (u_1, 1)\right\},$$

$$-\left\{(u_{l-k+1}, 1), \ldots, D_{l,k} - (u_{n+1}, 1), D_{l,k+1} - (u_{n+1}, 1)\right\}.$$

Hence,

$$V(L(G)) = W = \left\{U_1, U_2, \ldots, U_{k-1}, (u_1, 1), \ldots, (u_{l-k+1}, 1), \ldots, (u_{n+1}, 1), \ldots\right\}.$$

We know that $|W| = nm^{k-2} - nm^{k-3}$. In a similar way as in Theorem 1, we can show that this subset is a minimal resolving set for the line graph of the graph G. We prove that this subset is a doubly resolving set for the line graph of the graph G, and hence, $\beta(L(G)) = \psi(L(G))$. It is sufficient to prove that, for any two vertices u and v in $L(G)$, there are vertices $x, y \in W$ such that $d(u, x) - d(u, y) \
(\nu, \psi) - d(\nu, \psi)$. Consider two vertices u and v in $L(G)$. Then, we have the following:

Case 1: suppose that both vertices u and v lie in the layer U_1. Hence, there are $r, s \in \{1, 2, \ldots, n\}$ such that $u = r$ and $v = s$. Moreover, we know that the line graph of the graph G has the property that, for each vertex r in
the layer U_1 there is some vertex such as $x = (u_{ij}, t)^k$ in the component $D^{(k)}_i$, $1 \leq j \leq m^{k-3}$ in the layer U_2, at distance $k - 1$ from u, and in fact, $d(u, x) = k - 1$. In the same way, there is some vertex such as $y = (u_{ij}, t)^k$ in the component $D^{(k)}_j$, in the layer U_2, at distance $k - 1$ from v. In particular, it is easy to prove that $d(u, x) - d(u, y) < 0$ because $d(u, y) \geq k$. Also, $d(v, x) - d(v, y) > 0$ because $d(v, x) \geq k$.

Case 2: now suppose that both vertices u and v lie in the layer U_1. In a similar way as in Case 1, we can show that there are vertices $x, y \in W$ such that $d(u, x) - d(u, y) \neq d(v, x) - d(v, y)$.

Case 3: suppose that both vertices u and v lie in the layer U_1, $l \geq 3$ such that these vertices lie in the one component of the layer U_1, say $D^{(l)}_i$, $1 \leq i \leq n, 1 \leq j \leq m^{l-3}$. In this case, $d(u, v) = 1$. Moreover, we know that the line graph of the graph G has the property that, for each vertex $u \in D^{(l)}_i$ in the layer U_1, there is a component of the layer U_k, say $D^{(k)}_j, 1 \leq i \leq n, 1 \leq j \leq m^{k-3}$ such that, for every vertex $x \in D^{(k)}_j$, we have $d(u, x) = k - l$. In the same way, for the vertex $v \in D^{(l)}_i$ in the layer V_i, there is a component of the layer V_k, say $D^{(k)}_j, 1 \leq i \leq n, 1 \leq j \leq m^{k-3}$, $r \neq s$ such that, for every vertex $y \in D^{(k)}_j$, we have $d(v, y) = k - l$. Thus, $d(u, x) - d(u, y) \neq d(v, x) - d(v, y)$ because $d(u, y) = k - l + 1$ and $d(v, x) = k - l + 1$.

Case 4: suppose that both vertices u and v lie in the layer U_1, $l \geq 3$ such that these vertices lie in the two distinct components of the layer U_1. We can assume without loss of generality that $u \in D^{(l)}_{p_1}$ and $v \in D^{(l)}_{p_2}$, $1 \leq p_q \leq n$, and $1 \leq j_1, j_2 \leq m^{l-3}$. Moreover, we know that the line graph of the graph G has the property that, for each vertex $u \in D^{(l)}_{p_1}$ in the layer U_1, there is a component of the layer U_k, say $D^{(k)}_j, 1 \leq r \leq m^{k-3}$ such that, for every vertex $x \in D^{(k)}_j$, we have $d(u, x) = k - l$. In the same way, for the vertex $v \in D^{(l)}_{p_2}$ in the layer V_l, there is a component of the layer V_k, say $D^{(k)}_j, 1 \leq r \leq m^{k-3}$, such that, for every vertex $y \in D^{(k)}_j$, we have $d(v, y) = k - l$. In the following, let two components $D^{(k)}_{p_1}$ and $D^{(k)}_{p_2}$ be fundamental; indeed, $p = q$. Hence, $d(u, v) = 2l - 4m^{l-3}$ because $d(v, x) = k - l + 1 > 0$ because $d(v, x) \geq k$.

Case 5: suppose that vertices u and v lie in distinct layers U_{a_1}, U_{b_1}, respectively. Note that if $a = 1$ and $b = 2$, $a = 2$ or $b = 2$, there is nothing to do. Now, let $3 \leq a < b$. Hence, there is a component of the layer U_a, say $D^{(a)}_{p_1}$, $1 \leq i \leq n, 1 \leq j \leq m^{a-3}$ such that $u \in D^{(a)}_{p_1}$. Also, there is a component of the layer U_b, say $D^{(b)}_{p_2}$, $1 \leq p \leq n, 1 \leq q \leq m^{b-3}$ such that $v \in D^{(b)}_{p_2}$.

In particular, there is a component of the layer U_k, say $D^{(k)}_j, 1 \leq i \leq n, 1 \leq r \leq m^{k-3}$ such that, for any vertex $y \in D^{(k)}_j$, we have $d(u, x) = k - a$. Now, let $i = p$; if we consider $y \in D^{(k)}_j, z \neq i, 1 \leq z \leq n$, and $1 \leq s \leq m^{k-3}$, then we have $d(u, x) - d(u, y) \neq d(v, x) - d(v, y)$ because $d(u, y) = k - a + 4 + d_{U_j}(u_p, u_z)$, $d(v, y) = k + b - 4 + d_{U_j}(u_p, u_z)$, and $d(u, x) \neq d(v, x)$.

Thus, from the abovementioned cases, we conclude that the cardinality of minimum doubly resolving set in the line graph of the graph G is $nm^{k-2} - nm^{k-3}$.
Theorem 5. Let $G = \text{LSG}(n, m, k)$ be the layer Sun graph which is defined already. Suppose that n, m, k are integers such that $n, k \geq 3$ and $m \geq 2$. Then, the strong metric dimension in the line graph of the graph G is $nm^{k-2} - 1$.

Proof. In a similar way as in the proof of Theorem 3, we can show that the subset
\[W = \left\{ k^{(i)} - (v_{1}, 1)^{k}, D_{1}^{(k)}, \ldots, D_{1}^{(k)}, D_{2}^{(k)}, \ldots, D_{n}^{(k)} \right\} \]
(16)
of vertices in the line graph of the graph G is a minimal resolving set of $L(G)$.

4. Conclusions

In this paper, we have constructed a layer Sun graph $\text{LSG}(n, m, k)$, discussed this graph, and computed the minimum cardinality of the doubly resolving set and strong resolving set of layer Sun graph $\text{LSG}(n, m, k)$ and the line graph of the layer Sun graph $\text{LSG}(n, m, k)$. We deduce that, by this way, we can construct a layer jellyfish graph $\text{JFG}(n, m, k)$, of order $n + 2nm$, where the jellyfish graph is $\text{JFG}(n, m)$, which is defined in [5], and by a similar way, we can obtain and compute the minimum cardinality of doubly resolving set and strong resolving set of layer jellyfish graph $\text{JFG}(n, m, k)$ and the line graph of the layer jellyfish graph $\text{JFG}(n, m, k)$.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was partially supported by the Project of Anhui Jianzhu University under grant nos. 2016QD116 and 2017dc03.

References