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In this paper, we investigate the impact of a periodically evolving domain on the dynamics of the diffusive West Nile virus. A
reaction-diffusion model on a periodically and isotropically evolving domain which describes the transmission of the West Nile
virus is proposed. In addition to the classical basic reproduction number, the spatial-temporal basic reproduction number
depending on the periodic evolution rate is introduced and its properties are discussed. Under some conditions, we explore the
long-time behavior of the virus. )e virus will go extinct if the spatial-temporal basic reproduction number is less than or equal to
one. )e persistence of the virus happens if the spatial-temporal basic reproduction number is greater than one. We consider
special case when the periodic evolution rate is equivalent to one to better understand the impact of the periodic evolution rate on
the persistence or extinction of the virus. Some numerical simulations are performed in order to illustrate our analytical results.
Our theoretical analysis and numerical simulations show that the periodic change of the habitat range plays an important role in
theWest Nile virus transmission, in particular, the increase of periodic evolution rate has positive effect on the spread of the virus.

1. Introduction

West Nile virus (WNv) is an arbovirus with natural trans-
mission cycle between mosquitoes and birds. When infected
mosquitoes bite birds or other animals including humans,
they transmit the virus [1]. WNv is different from other
arbovirus since it involves a cross infection between birds
(hosts) and mosquitoes (vector) and those birds might travel
with spatial boundaries. Also, WNv can be passed via vertical
transmission from mosquito to its offspring which increases
the survival of the virus [2]. WNv was first isolated and
identified in 1937 from the blood of a febrile woman in the
West Nile province of Uganda during research on yellow fever
virus [3]. It is worthmentioning thatWNv is endemic in some
temperate and tropical regions such as Africa and the Middle
East; it has now spread to North America; the first epidemic
case was introduced in New York City in 1999 and then
propagated across the USA [4–6]. )e USA had experienced
one of its worst epidemics in 2012; there were 5387 cases of
infections in humans [7]. As we know, there are no

indications that the spread of the virus has stopped. Con-
sequently, it is very necessary to acquire some insights into the
propagation of WNv in the mosquito-bird population.

Mathematical nonspatial models have been proposed
and analyzed in an attempt to study the transmission dy-
namics of WNv, in order to elucidate control strategies
[2, 6, 8, 9]. It is essential to study and understand its temporal
and spatial spread, but most of the models are focused on the
nonspatial transmission dynamics of the virus between birds
and mosquitoes.

With respect to spatial models of WNv, Lewis et al. [4]
studied the spatial spread of WNv to describe the movement
of birds and mosquitoes, established the existence of trav-
elling waves, and calculated the spatial spreading rate of the
infection. )e effects of vertical transmission in the spatial
dynamics of the virus for different bird species were pro-
posed by Maidana and Yang in [10], and they studied the
travelling wave solutions of the model to determine the
speed of virus dissemination. Liu et al. [11] presented the
directional dispersal of birds and impact on spatial spreading
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of WNv. Likewise, Lin and Zhu studied spatial spreading
model and dynamics of WNv in birds and mosquitoes with
free boundary [12].

To investigate the existence of travelling wave and cal-
culate the spatial spread rate of infection, Lewis et al. in [4]
proposed the following simplified WNv model:

zIb

zt
� D1ΔIb + αbβb

Nb − Ib( 􏼁

Nb

Im − cbIb, (x, t) ∈ Ω ×(0, +∞),

zIm

zt
� D2ΔIm + αmβb

Am − Im( 􏼁

Nb

Ib − dmIm, (x, t) ∈ Ω ×(0, +∞),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where the positive constants Nb and Am denote the total
population of birds and adult mosquitoes; Ib(x, t) and
Im(x, t) represent the populations of infected birds and
mosquitoes at the location x in the habitat Ω ⊂ RN and at
time t≥ 0, respectively, and Ib(x, 0) + Im(x, 0)> 0. )e
parameters in the above system are defined as follows:

(i) αm, αb: WNv transmission probability per bite to
mosquitoes and birds, respectively

(ii) βb: biting rate of mosquitoes on birds
(iii) dm: adult mosquito death rate
(iv) cb: bird recovery rate from WNv
(v) D1, D2: diffusion coefficients for birds and mos-

quitoes, respectively

As in [13], throughout this paper, we assume that the
mosquitoes’ population does not diffuse (D2 � 0).

For the corresponding spatially independent model of
(1), the basic reproduction number is

R0 �

���������

αmαbβ
2
bAm

dmcbNb

􏽳

, (2)

such that for 0<R0 < 1, the virus always vanishes, while for
R0 > 1, a nontrivial epidemic level appears, which is globally
asymptotically stable in the positive quadrant [4]. As pointed
out in [14], the basic reproduction number R0 is a very
important concept in epidemiology and it defined as an
expected number of secondary cases produced by a typical
infected individual during its entire period of infectiousness
in a completely susceptible population, and mathematically
it is introduced as the dominant eigenvalue of a positive
linear operator. It is important to mention that usually the
basic reproduction numbers for the nonspatial models are
calculated by the next generation matrix method [15], while
for the spatially dependent systems, the numbers could
expressed in terms of the principal eigenvalue of related
eigenvalue problem [16] or the spectral radius of next in-
fection operator [17].

)e dynamics of the spatial dependence model (1) has
been studied. )e existence and nonexistence of the coex-
istence states in a heterogeneous environment have been
investigated in [18]. )e impact of the environmental het-
erogeneity and seasonal periodicity on the transmission of
WNv was considered in [19].

In recent years, the impact of change of the habitat range
on biological population has attracted much attention. We
know there are two aspects: one is the domain changing with
unknown boundary, which describes the domain change
induced by the activity of population itself, and the other is the
domain changing with known boundary, which characterizes
the domain change induced by objective environments. For
the domain changing with unknown boundary, many re-
searchers have proposed and considered the free boundary
problem, for example, [20–23] for the persistence of invasive
species and [24, 25] for the transmission of diseases. In ad-
dition, Tarboush et al. [13] discussed the corresponding free
boundary problem to model (1). Wang et al. investigated the
spreading speed for a WNv model with free boundary in a
homogeneous environment [26]. )eir results indicated that
the asymptotic spreading speed of the WNv model with free
boundary is strictly less than that of the corresponding model
in Lewis et al. [4]. For the domain changing with known
boundary, there are also some papers, for instance, [27–30]
for a growing domain and [31–34] for a periodically evolving
domain. In [31], the authors introduced the periodically
evolving domain into a single-species diffusion logistic model
and studied the influence of periodic evolution on the survival
and extinction of species. Recently, Zhang and Lin considered
the diffusive model for Aedes aegypti mosquito on a peri-
odically evolving domain in order to explore the diffusive
dynamics of Aedes aegypti mosquito [32]. )eir results in-
dicated that the periodic domain evolution has a significant
impact on the dispersal of Aedes aegypti mosquito. To in-
vestigate the impact of periodically evolving domain on the
mutualism interaction of two species, Adam et al. [33] studied
a mutualistic model on the periodic evolving domain. )ey
suggested that the periodic evolution of domain places sig-
nificant influence on the interaction of two species. Zhu et al.
[34] used a periodic evolving domain to investigate the
gradual transmission of a dengue fever model. )ey found
that the periodic domain evolution has a significant effect on
the transmission of dengue.

In this paper, we will consider the impact of the periodic
evolving domain on the dynamics of a diffusive WNv model
corresponding to system (1). We followed the methods of
Adam et al. [33], Zhang and Lin [32], and Zhu et al. [34].

)e rest of this paper is organized as follows. We will
present the formulation of our problem in Section 2. In
Section 3, we introduce the spatial-temporal basic
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reproduction number and present its properties. )e exis-
tence and nonexistence of the periodic solutions on a pe-
riodically evolving domain Ωt are discussed in Section 4.
Section 5 is devoted to the attractivity of periodic solutions
on a periodically evolving domain Ωt. In Section 6, we deal
with the existence, nonexistence, and attractivity of the
periodic solutions on a fixed domain Ω0. Some numerical
simulations are given in Section 7. Section 8 provides some
conclusions.

2. Model Formulation

Motivated by [27], we let Ωt ⊂R
n(n≥ 1) be a periodically

evolving domain and zΩt be the evolving boundary. For any

point, x(t) ∈ Ωt satisfies x(t + T) � x(t) for some positive
constant T. Also, we assume that the domain Ωt grows
uniformly and isotropically, that is,

x(t) � ρ(t), for allx(t) ∈ Ωt and (y, t) ∈ Ω0 ×[0, T],

(3)

where ρ(t) ∈ C1[[0, T]; (0,∞)] and y represents the spatial
coordinates of the initial domain Ω0. Moreover, ρ(t) is T-
periodic in time, i.e., ρ(t + T) � ρ(t), ρ(0) � 1 and _ρ(t)≥ 0
for t> 0.

According to the principle of mass conservation and
Reynolds transport theorem [35], in this paper, we will focus
on the following problem:

zIb

zt
+ a · ∇Ib + Ib(∇ · a) � D1ΔIb + αb(x(t), t)βb(x(t), t)

Nb − Ib( 􏼁

Nb

Im − cb(x(t), t)Ib, in Ωt,

zIm

zt
+ a · ∇Im + Im(∇ · a) � αm(x(t), t)βb(x(t), t)

Am − Im( 􏼁

Nb

Ib − dm(x(t), t)Im, in Ωt,

Ib(x(t), t) � Im(x(t), t) � 0, on zΩt,

Ib � Ib,0(x), Im � Im,0(x), in Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where Ib(x(t), t) and Im(x(t), t) represent the densities of
infected birds and mosquitoes at position x(t) ∈ Ωt and
time t, respectively, and Ib,0(x) and Im,0(x) are positive
smooth functions in Ω0. )e functions αb(x(t), t),
βb(x(t), t), cb(x(t), t), αm(x(t), t), and dm(x(t), t) are all
sufficiently smooth, T-periodic, and strictly positive when
t≥ 0. According to [36, 37], the evolution of domain Ωt

generates a flow velocity a(x(t), t). In addition, the evolving
domain Ωt represents two kinds of extra terms into the
problem, one of which is the advection terms ∇Ib · a and
∇Im · a representing the transport of material around Ωt at
a rate determined by the flow a, and the other is the dilution
terms (∇ · a)Ib and (∇ · a) Im due to local volume
expansion.

Since problem (4) is involving the terms of advection and
dilution, it is not easy to study the long-time behavior of its
solutions; therefore, we will transform the continuously

deforming domain in problem (4) to a fixed domain by using
Lagrangian transformations [29, 36].

We suppose that a(x(t), t) � _x(t) is the flow velocity,
which is identical to the domain velocity.

)is means that a � _x(t) � _ρ(t)y � ( _ρ(t)/ρ(t))x(t).
Define

Ib(x(t), t) � u(y, t),

Im(x(t), t) � v(y, t),
(5)

and assume

αb(x(t), t) ≡ αb(y, t), αm[x(t), t] ≡ αm(y, t),

βb(x(t), t) ≡ βb(y, t),

cb(x(t), t) ≡ cb(y, t), dm(x(t), t) ≡ dm(y, t).

(6)

)erefore, problem (4) is transformed to

zu

zt
−

D1(y, t)

ρ2(t)
Δu +

n _ρ(t)

ρ(t)
u � αb(y, t)βb(y, t)

Nb − u( 􏼁

Nb

v − cb(y, t)u, y ∈ Ω0, t> 0,

zv

zt
+

n _ρ(t)

ρ(t)
υ � αm(y, t)βb(y, t)

Am − v( 􏼁

Nb

u − dm(y, t)v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0, y ∈ zΩ0, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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with the periodic condition

u(y, 0) � u(y, T),

v(y, 0) � v(y, T),

y ∈ Ω0,

(8)

and under the initial condition

u(y, 0) � η1(y) � Ib,0(y),

v(y, 0) � η2(y) � Im,0(y),

y ∈ Ω0.

(9)

Moreover, we assume that the functions αb(y, t),
αm(y, t), βb(y, t), cb(y, t), and dm(y, t) ∈ Cα,α/2(Ω0 ×

[0,∞)) for some α ∈ (0, 1); all are positive bounded in the

sense that there exist constants α∗b , αb∗, α∗m, αm∗, β
∗
b , βb∗, c∗b ,

cb∗, d∗m, and dm∗ such that αb∗ ≤ αb(y, t)≤ α∗b , αm∗ ≤ αm

(y, t)≤ α∗m, βb∗ ≤ βb(y, t)≤ β∗b , cb∗ ≤ cb(y, t)≤ c∗b , and
dm∗ ≤dm(y, t)≤d∗m. Furthermore, αb(y, t) � αb(y, t + T),
αm(y, t) � αm(y, t + T), βb(y, t) � βb(y, t + T),
cb(y, t) � cb (y, t + T), and dm(y, t) � dm(y, t + T) for all
t> 0.

3. Spatial-Temporal Basic
Reproduction Number

In this section, we will introduce the spatial-temporal basic
reproduction number R0(ρ) and exhibit its properties. To
address this, we consider the following linearized periodic
reaction-diffusion problem:

zu

zt
−

D1

ρ2(t)
Δu � αb(y, t)βb(y, t)v − cb(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡u, y ∈ Ω0, t> 0,

zv

zt
� αm(y, t)βb(y, t)

Am

Nb

u − dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T),

y ∈ zΩ0, t> 0,

y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Employing the ideas go back to [17, 32, 38], and we letCT

be the ordered Banach space consisting of all T-periodic and
continuous functions from R to C(Ω0, R)‖·‖ with the
maximum norm C+

T � η ∈ CT : η(t)y≥ 0, for all t ∈ R,􏼈

y ∈ Ω0} and the positive cone η ∈ CT. For any given
η(y, t) � η(t)y, we have m � (m1, m2) ∈ CT × CT. Next, we
suppose that is the density distribution at the spatial location
y ∈ Ω0 and time s and let Φ(t, s), t≥ s{ } be the evolution
family determined by

zu

zt
−

D1

ρ2(t)
Δu � − cb(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡u, y ∈ Ω0, t> 0,

zv

zt
� − dm(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0, y ∈ zΩ0, t> 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Define the operator G(t) by

G(t)ϕ � G1(t)ϕ2, G2(t)ϕ1􏼂 􏼃, for allϕ ∈ CT × CT, t> 0,

(12)

where

G1(t)ϕ2 � αb(·, t)βb(·, t)ϕ2,

G2(t)ϕ1 � αm(·, t)βb(·, t)
Am

Nb

ϕ1.
(13)

Now under the same boundary conditions in problem
(11), we let Φ1(t, s), t≥ s􏼈 􏼉 and Φ2(t, s), t≥ s􏼈 􏼉 be the evo-
lution families determined by the first equation and second
equation in problem (11), respectively. Moreover, let A and
B be two bounded linear operator defined by

Am � A1m1, A2m2( 􏼁,

Bm � B1m2, B2m1( 􏼁,
(14)

for m ∈ CT × CT, where [A1m1](t) � 􏽒
∞
0 Φ1(t, t − s)m1(t −

s)ds and [A2m2](t) � 􏽒
∞
0 Φ2(t, t − s)m2(t − s)ds, [B1m2] �

G1 (t)m2, [B2m1] � G2(t)m1, and define

Lm � ABm � A1B1m2, A2B2m1( 􏼁. (15)

Consequently, we define the spatial-temporal basic re-
production number of system (10), that is,

R0(ρ) � r(L), (16)

where r(L) is spectral radius of the operator L.
With the above discussion, we have the following result

(see [19, 32] for more details).

Lemma 1. sign[1 − R0(ρ)] � sign(λ0), where R0(ρ) � μ0 is
the principal eigenvalue of the eigenvalue problem
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zϕ
zt

−
D1

ρ2(t)
Δϕ �

αb(y, t)βb(y, t)

μ
ψ − cb(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡ϕ, y ∈ Ω0, t> 0,

zψ
zt

� αm(y, t)βb(y, t)
Am

Nbμ
ϕ − dm(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡ψ, y ∈ Ω0, t> 0,

ϕ(y, t) � ψ(y, t) � 0, y ∈ zΩ0, t> 0,

ϕ(y, 0) � ϕ(y, T), ψ(y, 0) � ψ(y, T), y ∈ Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

and λ0 is the principal eigenvalue of the eigenvalue problem

zϕ
zt

−
D1

ρ2(t)
Δϕ � αb(y, t)βb(y, t)ψ − cb(y, t) +

n _ρ(t)

ρ(t)
􏼢 􏼣ϕ + λϕ, y ∈ Ω0, t> 0,

zψ
zt

� αm(y, t)βb(y, t)
Am

Nb

ϕ − dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡ψ + λψ, y ∈ Ω0, t> 0,

ϕ(y, t) � ψ(y, t) � 0, y ∈ zΩ0, t> 0,

ϕ(y, 0) � ϕ(y, T),ψ(y, 0) � ψ(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

In what follows, we will present the properties of the
spatial-temporal basic reproduction number R0(ρ), that is,
μ0. Note that problem (17) is degenerate, so we will not able
to derive the existence of the principal eigenvalue by using
Krein–Rutman theorem [39] because of the lack of com-
pactness for the solution semigroup. )erefore, we first
transform the equations of (17) to one equation. To achieve
this, let

g1(y, t) � cb(y, t) +
n _ρ(t)

ρ(t)
,

g2(y, t) � dm(y, t) +
n _ρ(t)

ρ(t)
,

(19)

and then the second equation of (17) can be written as
zψ
zt

� αmβb(y, t)
Am

Nbμ
ϕ − g2(y, t)ψ, (20)

which gives rise to

e
􏽒

t

0
g2(y,s)dsψ􏼠 􏼡

t

� αmβb(y, t)
Am

Nbμ
ϕe

􏽒
t

0
g2(y,s)ds

. (21)

Together with the periodic condition ψ(y, 0) � ψ(y, T),
direct computations yield

ψ(y, t) �
e

−􏽒
t

0
g2(y,s)ds

1 − e
− 􏽒

t

0
g2(y,s)ds

􏽚
T

0
αmβb(y, τ)

Am

Nbμ
ϕ(y, τ)e

−􏽒
τ

T
g2(y,s)ds

+ 􏽚
t

0
αmβb(y, τ)

Am

Nbμ
ϕ(y, τ)e

−􏽒
τ

t
g2(y,s)ds

≔
1
μ

G[ϕ(y, t)].

(22)

Here, one can easily see that the function G(ϕ(y, t)) is
monotonically nondecreasing with respect to βb(y, t) and
decreasing with respect to dm(y, t). Hence, problem (17)
reduces to the following form:

zϕ
zt

−
D1

ρ2(t)
Δϕ �

αb(y, t)βb(y, t)

μ2
G[ϕ(y, t)] − cb(y, t) +

n _ρ(t)

ρ(t)
􏼢 􏼣ϕ, y ∈ Ω0, t> 0,

ϕ(y, t) � 0, y ∈ zΩ0, t> 0,

ϕ(y, 0) � ϕ(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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By employing the integration by parts to problem (23)
and denoting the principal eigenvalue of (17) as μ0, we obtain

μ0 ≤ sup
ϕ∈G1 ,ϕ≠ 0

�����������������������������������������

􏽚
T

0
􏽚
Ω0
αm(y, t)βb(y, t)Am/NbG(ϕ)dydt

􏽚
T

0
􏽚
Ω0

D1/ρ
2
(t)|∇ϕ|

2dydt + 􏽚
T

0
􏽚
Ω0

g1(y, t)ϕ2dydt

􏽶
􏽵
􏽵
􏽵
􏽴

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (24)

where

G1 � ϕ ∈ C2+α,1+(α/2) Ω0 ×[0, +∞)( 􏼁 : ϕ(y, t) � 0, fory ∈zΩ0, t ∈ [0, +∞), ϕ is T − periodicin t􏽮 􏽯. (25)

For formula (24), in some special cases, we can replace
the sign of inequality (≤ ) by equality sign by using the
variational methods [40–42].

In order to give the relationship between the spatial-
temporal basic reproduction number R0(ρ) and the periodic
evolution rate ρ(t), we adopt the notation ρ− 2 � 1/T
􏽒

T

0 (1/ρ2(t))dt. λ∗ is the principal eigenvalue of the following
eigenvalue problem:

−Δφ � λ∗φ, y ∈ Ω0,

φ � 0, y ∈ zΩ0.
􏼨 (26)

Consequently, we have the following result.

Theorem 1. 4e following assertions are valid:

(a) If αb(y, t) � αb(t), αm(y, t) � αm(t), βb(y, t) �

βb(t), cb(y, t) � cb(t), and dm(y, t) � dm(t), then
the principal eigenvalue R0(ρ) for (17) is expressed by

R0(ρ)≥

�����������������������������������

1/T 􏽒
T

0

�����������������������

αb(t)αm(t)β2b(t) Am/Nb( 􏼁dt

􏽱

􏼔 􏼕
2

1/T 􏽒
T

0 dm(t)dt 1/T 􏽚
T

0
cb(t)dt + λ∗D1ρ−2􏼢 􏼣

􏽶
􏽵
􏽵
􏽴

.

(27)

(b) Moreover, if αb(y, t) � α∗b , αm(y, t) � α∗m,
βb(y, t) � β∗b , cb(y, t) � c∗b , and dm(y, t) � d∗m, then
we have

R0(ρ)≥

������������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ρ−2 + c∗b􏽨 􏽩

􏽶
􏽴

. (28)

Furthermore,

R0(1) �

���������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ + c∗b􏽨 􏽩

􏽶
􏽴

, (29)

in the sense that ρ(t) � 1.

Proof. Let

ϕ(y, t) � p(t)φ(y),

ψ(y, t) � q(t)φ(y),

(y, t) ∈ Ω0 ×(0,∞),

(30)

where p(t) and q(t) are functions to be determined later and
[λ∗,φ(y)] is the principal eigenpair of the eigenvalue
problem

−Δφ � λ∗φ, y ∈ Ω0,

φ � 0, y ∈zΩ0.
􏼨 (31)

Together with (17), we obtain

dp(t)

dt
�
αb(t)βb(t)

R0(ρ)
q(t) −

D1λ
∗

ρ2(t)
+ cb(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡p(t),

dq(t)

dt
� αm(t)βb(t)

Am

NbR0(ρ)
p(t) − dm(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡q(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where

p(t) � p(t + T),

q(t) � q(t

t � [0,∞),

(33)

and (R0(ρ); p(t)φ(y), q(t)φ(y)) is the unique principal
eigenpair of problem (17).

Rewriting (32) as

1
p(t)

dp(t)

dt
�
αb(t)βb(t)

R0(ρ)

q(t)

p(t)
−

D1λ
∗

ρ2(t)
+ cb(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡,

1
q(t)

dq(t)

dt
� αm(t)βb(t)

Am

NbR0(ρ)

p(t)

q(t)
− dm(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(34)
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and integrating from 0 to T yield

1
R0(ρ)

􏽚
T

0
αb(t)βb(t)

q(t)

p(t)
dt � 􏽚

T

0

D1λ
∗

ρ2(t)
+ cb(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡dt,

Am

NbR0(ρ)
􏽚

T

0
αm(t)βb(t)

p(t)

q(t)
dt � 􏽚

T

0
dm(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡dt.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(35)

By using Hölder inequality, one can easily obtain that

R0(ρ)
2 ≥

(1/T) 􏽒
T

0

���������������������

αb(t)αm(t)β2b(t) Am/Nb( 􏼁

􏽱

dt􏼒 􏼓
2

(1/T) 􏽒
T

0 dm(t)dt (1/T) 􏽒
T

0 cb(t)dt + λ∗D1ρ−2􏼒 􏼓

.

(36)

)e proof of assertion (a) is completed.
For assertion (b), since we assumed that all coefficients

are constants, we can get

R0(ρ)≥

������������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ρ−2 + c∗b􏽨 􏽩

􏽶
􏽴

, (37)

directly from (27).

To prove the rest of assertion (b), let ρ(t) ≡ 1, that is,
Ωt � Ω0 is a fixed domain and rewrite (32) as

dp(t)

dt
�
α∗b β
∗
b

R0(1)
q(t) − D1λ

∗
+ c
∗
b( 􏼁p(t),

dq(t)

dt
� α∗mβ

∗
b

Am

NbR0(1)
p(t) − d

∗
mq(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

which are explicitly given by

p(t) � e − D1λ
∗− c∗

b
+ Cα∗

b
β∗b /R0(1)( )( )t,

q(t) � Ce − D1λ
∗− c∗

b
+ Cα∗

b
β∗b /R0(1)( )( )t,

⎧⎨

⎩ (39)

with

C �
−d∗m + D1λ

∗ + c∗b +

����������������������������������������

d∗m − D1λ
∗ − c∗b􏼐 􏼑

2
+ 4 Amα∗b β∗b( 􏼁

2α∗m/NbR2
0(1)􏼐 􏼑

􏽱

2 α∗b β
∗
b /R0(1)􏼐 􏼑

. (40)

According to (38), direct computations yield

R0(1) �

���������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ + c∗b􏽨 􏽩

􏽶
􏽴

, (41)

which is consistent with the result given from the variational
method. □

4. Periodic Solutions on Evolving Domain

In this section, we discuss the existence and nonexistence of
T-periodic solutions. To begin, we first consider the T-pe-
riodic boundary problem corresponding to (7) and (8):

zu

zt
−

D1

ρ2(t)
Δu � f1(t, u, v), y ∈ Ω0, t> 0,

zv

zt
� f2(t, u, v), y ∈ Ω0, t> 0,

u(y, t) � υ(y, t) � 0, y ∈ zΩ0, t> 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T), y ∈ Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where

f1(t, u, v) � αb(y, t)βb(y, t)
Nb − u( 􏼁

Nb

v − cb(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡u,

f2(t, u, v) � αm(y, t)βb(y, t)
Am − v( 􏼁

Nb

u − dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡v.

(43)
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For later analysis, we give the following definition of
upper and lower solutions.

Definition 1. A pair of functions (􏽥u, 􏽥v), (􏽢u, 􏽢v) in C2,1[Ω0 ×

(0,∞)∩C(Ω0 × [0,∞))] is called ordered upper and lower
solutions of problem (42), if (0, 0)≤ (􏽢u, 􏽢v)≤ (􏽥u, 􏽥v)≤
(Nb, Am) and

z􏽥u

zt
−

D1

ρ2(t)
Δ􏽥u≥f1(t, 􏽥u, 􏽥v), y ∈ Ω0, t> 0,

z􏽥υ
zt
≥f2(t, 􏽥u, 􏽥v), y ∈ Ω0, t> 0,

z􏽢u

zt
−

D1

ρ2(t)
Δ􏽢u≤f1(t, 􏽢u, 􏽢v), y ∈ Ω0, t> 0,

z􏽢υ
zt
≤f2(t, 􏽢u, 􏽢v), y ∈ Ω0, t> 0,

􏽥u(y, t)≥ 0≥ 􏽢u(y, t), 􏽢v(y, t)≥ 0≥ 􏽢v(y, t), y ∈ zΩ0, t> 0,

􏽥u(y, 0)≥ 􏽥u(y, T), 􏽢u(y, 0)≤ 􏽢u(y, T), y ∈ Ω0,

􏽢υ(y, 0)≥ 􏽢υ(y, T), 􏽢v(y, 0)≤ 􏽢v(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Now we are in a position to state the existence and
nonexistence of T-periodic solutions to problem (42) as well
as problems (7) and (8). To begin with, in the following result
we give the existence of T-periodic solution.

Theorem 2. If R0(ρ)> 1, then problem (42) admits at least
one positive T-periodic solution (u(y, t), v(y, t)).

Proof. Since R0(ρ)> 1, one can easily verify that (􏽥u, 􏽥v) �

(Nb, Am) and (􏽢u, 􏽢v) � (δϕ, δψ) are ordered upper and lower
solutions of problem (42), where δ is positive constant and
small enough, (ϕ,ψ) ≡ (ϕ(y, t),ψ(y, t)) is (normalized)
positive eigenfunction corresponding to λ0, and λ0 is the
principal eigenvalue of periodic-parabolic eigenvalue
problem (11) (for more details, see [19]).

To establish the nonexistence of a T-periodic solution to
problem (42), we have the following result. □

Theorem 3. If R0(ρ)≤ 1, then problem (42) has no positive
T-periodic solution.

Proof. Suppose that (u∗(y, t), v∗(y, t)) is a positive T-pe-
riodic solution of problem (42), that is, (u∗(y, t),

v∗(y, t))> (0, 0) in Ω0 × (0,∞) and satisfies

zu∗

zt
−

D1

ρ2(t)
Δu∗ +

n _ρ(t)

ρ(t)
u
∗

� αb(y, t)βb(y, t)
Nb − u∗( 􏼁

Nb

v
∗

− cb(y, t)u
∗
, y ∈ Ω0, t> 0,

zv∗

zt
+

n _ρ(t)

ρ(t)
v
∗

� αm(y, t)βb(y, t)
Am − v∗( 􏼁

Nb

u
∗

− dm(y, t)v
∗
, y ∈ Ω0, t> 0,

u∗(y, t) � v∗(y, t) � 0, y ∈ zΩ0, t> 0,

u∗(y, 0) � u∗(y, T), v∗(y, 0) � v∗(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

From the above equations, we have

zu∗

zt
−

D1

ρ2(t)
Δu∗ < αb(y, t)βb(y, t)v

∗
− cb(y, t) +

n _ρ(t)

ρ(t)
􏼢 􏼣u

∗
, y ∈ Ω0, t> 0,

zv∗

zt
< αm(y, t)βb(y, t)

Am

Nb

u
∗

− dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡v

∗
, y ∈ Ω0, t> 0,

u∗(y, t) � v∗(y, t) � 0, y ∈ zΩ0, t> 0,

u∗(y, 0) � u∗(y, T), v∗(y, 0) � v∗(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)
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Recalling (17), one can easily deduce from the mono-
tonicity of the principal eigenvalue R0(ρ) that R0(ρ)> 1 by
comparing (17) and (46), which contradicts the fact
R0(ρ)≤ 1. □

5. Attractivity of Periodic Solutions

In this section, we first construct the true solutions of
problem (42) and then present the attractivity of T-periodic
solutions to problems (8) and (9) in relation to the minimal
and maximal T-periodic solution of problems (8) and (9). In
what follows, we construct the true solutions of problem (42)
by using the monotone iterative scheme. Let

k1 � c
M
b + αM

b βM
b

Am

Nb

+ n
_ρ(t)

ρ(t)
􏼠 􏼡

M

,

k2 � d
M
m + αM

m βM
b + n

_ρ(t)

ρ(t)
􏼠 􏼡

M

,

F1 � k1u + f1(t, u, v),

F2 � k2v + f2(t, u, v),

(47)

where fm � min(−∞,∞)×[0,T]f(t) and fM � max(−∞,∞)×[0,T]

f(t) for any given continuous T-periodic function f. It is
easy to verify that both F1 and F2 are nondecreasing with
respect to u and v. )en, problem (42) is equivalent to

zu

zt
−

D1

ρ2(t)
Δu + k1u � F1(t, u, v), y ∈ Ω0, t> 0,

zv

zt
+ k2v � F2(t, u, υ)v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0, y ∈ zΩ0, t> 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Using (u(0), v(0)) � (Nb, Am) and (u(0), v(0)) � (δϕ, δψ)

as an initial iteration, one can construct a sequence
(u(i), v(i))􏼈 􏼉 from the iteration process

u
(i)
t −

D1

ρ2(t)
Δu(i)

+ k1u
(i)

� F1 t, u
(i− 1)

, v
(i− 1)

􏼐 􏼑, y ∈ Ω0, t> 0,

v
(i)
t + k2υ(i) � F2 t, u(i− 1), v(i− 1)􏼐 􏼑, y ∈ Ω0, t> 0,

u
(i)
t −

D1

ρ2(t)
Δu

(i)

+ k1 u
(i)

� F1 t, u
(i− 1)

, v
(i− 1)

􏼠 􏼡, y ∈ Ω0, t> 0,

v
(i)
t + k2v

(i) � F2 t, u(i− 1), v(i− 1)( 􏼁, y ∈ Ω0, t> 0,

u(i)(y, t) � u(i)(y, t) � v(i)(y, t) � v(i)(y, t) � 0, y ∈ zΩ0, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

with the periodic condition

u(i)(y, 0) � u(i− 1)(y, T), v(i)(y, 0) � v(i− 1)(y, T), y ∈ Ω0,

u(i)(y, 0) � u(i− 1)(y, T), v(i)(y, 0) � v(i− 1)(y, T), y ∈ Ω0,

⎧⎨

⎩

(50)

where i � 1, 2, . . ..
Under condition R0(ρ)> 1, we know that (Nb, Am) and

(δϕ, δψ) are ordered upper and lower solution of problem
(42). Taking (Nb, Am) and (δϕ, δψ) as initial iteration and
employing ideas of [43] with the monotonicity of f1 and f2,
it follows that the well-defined sequences governed by (49)
and (50) possess the monotone property

(􏽢u, 􏽢v)≤ u
(i− 1)

, v
(i− 1)

􏼐 􏼑≤ u
(i)

, v
(i)

􏼐 􏼑≤ u
(i)

, v
(i)

􏼐 􏼑

≤ u
(i− 1)

, v
(i− 1)

􏼐 􏼑≤ (􏽥u, 􏽥v).
(51)

)erefore, the pointwise limits

lim
i⟶∞

u
(i)

, v
(i)

􏼐 􏼑 � (u, v),

lim
i⟶∞

u
(i)

, v
(i)

􏼐 􏼑 � u, v( 􏼁,
(52)

exist and their limits possess the relation

(􏽢u, 􏽢v) ≤ u(i), v(i)( 􏼁≤ u, v( 􏼁≤ u, v( 􏼁≤ u(i), v(i)􏼐 􏼑≤ (􏽥u, 􏽥v).

(53)

)erefore, (u, v) and (u, v) are the true positive T-pe-
riodic solutions of problem (42). Moreover, (u, v) and (u, v)

in respect are the maximal and minimal solutions in the
sense that (u, υ) is any other solution of (42) in
〈(􏽢u, 􏽢v), (􏽥u, 􏽥v)〉, and then (u, v)≤ (u, v)≤ (u, v). Further-
more, if u(y, 0) � u(y, 0) or v(y, 0) � v(y, 0), then (u, v) �
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(u, v) ≔ (u∗, v∗) and (u∗, v∗) is the unique solution of (42)
in Ω0.

From the above conclusions, we have the following
result.

Theorem 4. Let (􏽥u, 􏽥v) and (􏽢u, 􏽢υ) be a pair of ordered upper
and lower solutions of (42), respectively, and then the se-
quences (u(i), v(i))􏽮 􏽯 and (u(i), v(i))􏼈 􏼉 provided from (49), (50)
converge monotonically from above to a maximal solution
(u, v) and from below to a minimal solution (u, v) in Ω0,
respectively, and satisfy the relation

(􏽢u, 􏽢v)≤ u
(i)

, v
(i)

􏼠 􏼡≤ u
(i+1)

, v
(i+1)

􏼠 􏼡≤ u
(i+1)

, v
(i+1)

􏼠 􏼡

≤ u
(i)

, v
(i)

􏼐 􏼑≤ (􏽥u, 􏽥v)

≤ u
(i)

, v
(i)

􏼠 􏼡≤ (􏽥u, 􏽥v).

(54)

Moreover, if u(y, 0) � u(y, 0) or v(y, 0) � v(y, 0), then
(u, v) � (u, v) � (u∗, v∗) and (u∗, v∗) is the unique solution
of (42) in Ω0.

For problems (8) and (9), (􏽥u, 􏽥v) and (􏽢u, 􏽢v) defined in (44)
are also the ordered upper and lower solutions provided the
initial condition is replaced by

(􏽢u, 􏽢v)≤ η1(y), η2(y)≤ (􏽥u, 􏽥v)( 􏼁􏼂 􏼃, inΩ0. (55)

Applying (u(0), v(0)) � (􏽥u, 􏽥v) and (u(0), v(0)) � (􏽢u, 􏽢v) as
an initial iteration again, we denote the sequences generated
by (49) as (u

(i)
A , v

(i)
B )}􏽮 and (u

(i)
A , v

(i)
B )􏽮 􏽯 such that

u
(i)
A , v

(i)
B )(y, 0) � u

(i)
A , v

(i)
B􏼐 􏼑(y, 0) � η1(y), η2(y)􏼂 􏼃􏼈 􏼉, y ∈ Ω0.􏼐

(56)

)e following three lemmas follow from [43], so we omit
their proofs here.

Lemma 2. 4e sequences (u
(i)
A , v

(i)
B )}􏽮 and (u

(i)
A , v

(i)
B )􏽮 􏽯 con-

verge monotonically to a unique solution (u(y, t), v(y, t)) of
problems (7) and (8) and satisfy the relation

(􏽢u, 􏽢v)≤ u
(i−1)
A , v

(i−1)
B􏼐 􏼑≤ u

(i)
A , v

(i)
B􏼐 􏼑≤ (u, v)

≤ u
(i)
A , v

(i)
B􏼐 􏼑≤ u

(i−1)
A , v

(i−1)
B􏼐 􏼑≤ (􏽥u, 􏽥v),

(57)

on Ω0 × [0,∞).

Lemma 3. For any i and j, if the pairs (u(i), v(i)) and
(u(j), v(j)) are ordered upper and lower solutions to problem
(42), then they are also ordered upper and lower solutions of
(7) and (9) provided that (u(j), v(j))(y, 0)≤ [η1(y), η2(y)]

≤ (u(i), v(i))(y, 0) in Ω0.

Lemma 4. Let (u, v)(y, t; η1, η2) be the solution of (7) and
(9) with any

η1(y), η2(y)( 􏼁 ∈ S0, (58)

where

S0 � η1, η2( 􏼁 ∈ C Ω0( 􏼁 : (􏽢u, 􏽢v)(y, 0)≤ η1, η2( 􏼁􏼈

≤ 􏽥u, 􏽥v)(y, 0) onΩ0( 􏼉.
(59)

4en,

u
(i)

, v
(i)

􏼠 􏼡(y, t)≤ (u, v) y, t + iT; η1, η2( 􏼁≤ u
(i)

, v
(i)

􏼐 􏼑(y, t),

(60)

on Ω0 × [0,∞).

In the next theorem, we present the attractivity of T-
periodic solutions to problems (7) and (9) in relation to the
maximal and minimal T-periodic solution of problems (7)
and (8).

Theorem 5. Let (u, v)(y, t; η1, η2) be any solution of prob-
lems (7) and (9). 4e following assertions hold:

(a) If R0(ρ)> 1, then

lim
i⟶∞

u y, t + iT; η1, η2( 􏼁, v y, t + iT; η1, η2( 􏼁( 􏼁

�
u, v( 􏼁(y, t) if (􏽢u, 􏽢v)≤ η1, η2( 􏼁≤ u, v( 􏼁 inΩ0,

(u, v)(y, t) if (u, υ)≤ η1, η2( 􏼁≤ (􏽥u, 􏽥v) inΩ0.
􏼨

(61)

In addition, for any (η1, η2) ∈ S0,

u, v( 􏼁(y, t)≤ (u(y, t + iT), v(y, t + iT)) η1, η2( 􏼁

≤ (u, v)(y, t), onΩ0 ×[0,∞),
(62)

as i⟶∞. Furthermore, if (u, v)(y, t) � (u, v)(y, t):

� (u∗, v∗), then

lim
i⟶∞

(u, v) y, t + iT; η1, η2( 􏼁 � u
∗
, v
∗

( 􏼁,

onΩ0 ×[0,∞).
(63)

(b) If R0(ρ)≤ 1, then for any (η1, η2),

lim
t⟶∞

(u, v) y, t; η1, η2( 􏼁 � (0, 0). (64)

Proof. Let (ui, vi)(y, t) � (u, v)(y, t + iT; η1, η2) for every
i � 1, 2, . . ., where (η1, η2) ∈ S0 (see Lemma 4). It follows
from Lemma 2 that the solution (ui, υi) is in Ω0 × [0,∞)

and, in particular, (􏽢u, 􏽢v)(y, t + T)≤ (u1, v1)≤ (􏽥u, 􏽥v)(y, t +

T) on Ω0 × [0,∞). Next, we consider (7) with the initial
condition [η1(y), η2(y)] in Ω0. By the iteration process in
(49) for i � 1, we have

u
(1)

, v
(1)

􏼐 􏼑(y, 0) � u
(0)

, v
(0)

􏼐 􏼑(y, T) � (􏽥u, 􏽥v)(y, T),

u
(1)

, v
(1)

􏼠 􏼡(y, 0) � u
(1)

, v
(1)

􏼠 􏼡(y, T) � (􏽢u, 􏽢v)(y, T).
(65)
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)erefore, one can see that

u
(1)

, v
(1)

􏼠 􏼡(y, 0)≤ u1, v1( 􏼁(y, 0)≤ u
(1)

, v
(1)

􏼐 􏼑(y, 0), (66)

in Ω0.
According to Lemma 2, (u(1), v(1))(y, t) and

(u(1), v(1))(y, t) are ordered upper and lower solutions of
(7), respectively, when [η1(y), η2(y)] � (u1, υ1)(y, 0) inΩ0.
With respect to )eorem 4, we can see that

u
(1)

, v
(1)

􏼠 􏼡(y, t)≤ u1, v1( 􏼁(y, t)≤ u
(1)

, v
(1)

􏼐 􏼑(y, t), (67)

on D. By the principle of induction,

u
(i)

, v
(i)

􏼠 􏼡(y, t)≤ ui, vi( 􏼁(y, t)≤ u
(i)

, v
(i)

􏼐 􏼑(y, t) (68)

holds on Ω0 × [0,∞). On the other hand, relation (63)
directly follows from (62) with the assumption that
(u, v)(y, t) � (u, v)(y, t): � (u∗, v∗). )e proof of assertion
(a) is completed.

When it comes to assertion (b), in fact, it is easy to see
that (Nb, Am) and (0, 0) are a pair of ordered upper and
lower solutions of problems (7) and (8). Using the same
argument as in assertion (a), as well as the fact that (0, 0) is
the unique solution to problems (7) and (8), we can conclude
that the solution (u, v)(y, t; η1, η2) of problem (7), associ-
ated with any nonnegative initial function pair
(η1(y), η2(y)), possesses the convergence property

lim
i⟶∞

(u, v) y, t + iT; η1, η2( 􏼁 � (0, 0), (69)

which is equivalent to

lim
t⟶∞

(u, v) y, t; η1, η2( 􏼁 � (0, 0). (70)
□

6. The Impact of Evolving Domain

To better understand the impact of periodic evolving do-
main, in this section, we assume that ρ(t) ≡ 1, that is, Ωt �

Ω0 is a fixed domain, and then problem (7) becomes

zU

zt
− D1(y, t)ΔU � αb(y, t)βb(y, t)

Nb − U( 􏼁

Nb

V − cb(y, t)U, y ∈ Ω0, t> 0,

zV

zt
� αm(y, t)βb(y, t)

Am − V( 􏼁

Nb

U − dm(y, t)V, y ∈ Ω0, t> 0,

U(y, t) � V(y, t) � 0, y ∈ zΩ0, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

with the periodic condition

U(y, 0) � U(y, T),

V(y, 0) � V(y, T),

y ∈ Ω0,

(72)

and under the initial condition

U(y, 0) � η1(y) � Ib,0(y),

V(y, 0) � η2(y) � Im,0(y),

y ∈ Ω0.

(73)

By the similar arguments as in Section 2, we have the
following eigenvalue problem corresponding to problems
(71) and (72):

Φt − D1ΔΦ � αb(y, t)βb(y, t)Ψ − cb(y, t)Φ + λΦ, y ∈ Ω0, t> 0,

Ψt � αm(y, t)βb(y, t)
Am

Nb

Φ − dm(y, t)Ψ + λΨ, y ∈ Ω0, t> 0,

Φ(y, t) � Ψ(y, t) � 0, y ∈ zΩ0, t> 0,

Φ(y, 0) � Φ(y, T),Ψ(y, 0) � Ψ(y, T), y ∈ Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

where (Φ,Ψ) is the eigenfunction corresponding to the
principal eigenvalue and R∗0 � R0(1) is the principal ei-
genvalue of the eigenvalue problem
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Φt − D1ΔΦ �
αb(y, t)βb(y, t)

R∗0
Ψ − cb(y, t)Φ, y ∈ Ω0, t> 0,

Ψt � αm(y, t)βb(y, t)
Am

NbR∗0
Φ − dm(y, t)Ψ, y ∈ Ω0, t> 0,

Φ(y, t) � Ψ(y, t) � 0, y ∈ zΩ0, t> 0,

Φ(y, 0) � Φ(y, T),Ψ(y, 0) � Ψ(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

Moreover, ( 􏽥U, 􏽥V) � (Nb, Am) and ( 􏽢U, 􏽢V) � (δΦ, δΨ)

are ordered upper and lower solutions of problems (71) and
(73), where δ is positive constant and small enough.

)emain results of this section are given in the following
two theorems which are parallel to )eorems 2–5.

Theorem 6. 4e following statements are valid:

(a) If R∗0 > 1, then problems (71) and (72) possess a
maximal positive T-periodic solution (U, V) and a
minimal positive T-periodic solution (U, V). Besides,
if (U, V)(y, 0) � (U, V)(y, 0), then (U, V) � (U,

V) ≔ (U∗, V∗) and (U∗, V∗) is the unique T-periodic
solution of problems (71) and (72) .

(b) If R∗0 ≤ 1, then problems (71) and (72) have no positive
T-periodic solution.

Theorem 7. Let (U, V)(y, t; η1, η2) be the solution of
problems (71) and (73).

(a) If R∗0 > 1, then

lim
i⟶∞

(U, V) y, t + iT; η1, η2( 􏼁

�
U, V( 􏼁(y, t) if ( 􏽢U, 􏽢V)≤ η1, η2( 􏼁≤ U, V( 􏼁, inΩ0,

(U, V)(y, t) if (U, V)≤ η1, η2( 􏼁≤ ( 􏽥U, 􏽥V), inΩ0.

⎧⎨

⎩

(76)

Moreover, for any (η1, η2) ∈ S∗0 ,

U, V( 􏼁(y, t)≤ (U, V) y, t + iT; η1, η2( 􏼁≤ (U, V)(y, t),

onΩ0 ×[0,∞),

(77)

as i⟶∞. Additionally, if (U, V)(y, t) � (U, V)

(y, t) ≔ (U∗, V∗), then

lim
i⟶∞

(U, V) y, t + iT; η1, η2( 􏼁 � U
∗
, V
∗

( 􏼁(y, t),

onΩ0 ×[0,∞).
(78)

(b) If R∗0 ≤ 1, then for any (η1, η2),

lim
t⟶∞

(U, V) y, t + iT; η1, η2( 􏼁 � (0, 0), (79)

uniformly for y ∈ Ω0, where

S
∗
0 � η1, η2( 􏼁 ∈ C Ω0( 􏼁 : ( 􏽢U, 􏽢V)(y, 0)≤ η1, η2( 􏼁􏽨

≤ 􏽥U, 􏽥V)(y, 0), inΩ0( 􏽩.
(80)

)anks to the above analysis, here we adopt the integral
average value ρ− 2 � 1/T 􏽒

T

0 (1/ρ2(t))dt generated by the
evolution rate ρ(t). It is easy to see that the spreading or
vanishing of the virus on periodically evolving domain depends
on the spatial-temporal basic reproduction number R0(ρ),
while on the fixed domain, it depends onR∗0 .When ρ− 2 < 1, we
haveR0(ρ)> 1, whichmeans that the spreading of the virus has
increased.Meanwhile, if ρ− 2 > 1, thenR0(ρ)≤ 1, which implies
that the spreading of the virus has decreased.When the domain
is fixed, the parallel results hold with R∗0 � R0(1), then the
virus in the case of vanishing.

7. Numerical Simulation and Discussion

In this section, we first carry out numerical simulations to
illustrate the theoretical results obtained in previous sec-
tions. Our focus is the impact of periodic evolving domain
on the transmission of the West Nile virus (WNv).

For simplicity, first we fix
Am

Nb

� 20,

αb � 0.88,

αm � 0.16,

cb � 0.01,

D1 � 0.06,

λ∗ � π2
,

Ω0 � (0, 1),

Ib,0(x) � 0.3 sin(πx),

Im,0(x) � 0.2 sin(πx) + 0.1 sin(3πx),

(81)

and then change the value of the evolution rate ρ(t) to
observe the long time behavior of problems (7) and (9).

Example 1. In systems (7) and (9), we fix βb � 0.3 anddm �

0.029 with ρ(t) � 1. Direct calculations show that
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R0(1) �

���������������

Am/Nbαb βb( 􏼁
2αm

d∗m D1λ
∗ + cb( 􏼁

􏽳

�

������������������������
20 × 0.88 × 0.09 × 0.16

0.029 ×(0.06 × 9.8596 + 0.01)

􏽳

> 1.

(82)

Hence, the solution of problems (7) and (9) tends to
positive steady states (see Figures 1 and 2), which implies
that the virus will persist in a fixed domain.

Example 2. In systems (7) and (9), we choose βb � 0.09
and dm � 0.29 with ρ(t) � 1. Direct calculations show that

R0(1) �

���������������

Am/Nbαb βb( 􏼁
2αm

dm D1λ
∗ + cb( 􏼁

􏽳

�

�����������������������
20 × 0.88 × 0.0081 × 0.16

0.29 ×(0.06 × 9.8596 + 0.01)

􏽳

< 1.

(83)

It is easy to see that the solution of problems (7) and (9)
decays to zero quickly (see Figures 3 and 4), which implies
that the virus will be extinct in a fixed domain.

Example 3. In systems (7) and (9), we set βb � 0.3 anddm �

0.029 with ρ(t) � e0.1(1− cos(4t)). Direct calculations show that
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Figure 1: ρ(t) � 1. R0(1)> 1, which implies that the solution tends to steady state in a fixed domain.
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Figure 2: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which means that the
domain is fixed when the evolution rate ρ(t) � 1.
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ρ− 2 �
2
π

􏽚
π/2

0
e
0.1(1−cos(4t))dt ≈ 0.8269< 1,

R0(ρ)≥

���������������

Am/Nbαb βb( 􏼁
2αm

dm D1λ
∗ρ−2 + cb􏼐 􏼑

􏽶
􏽴

�

��������������������������������
20 × 0.88 × 0.09 × 0.16

0.029 ×(0.06 × 9.8596 × 0.8269 + 0.01)

􏽳

> 1.

(84)

)erefore, it is easy to see that the solution of problems (7)
and (9) converges to a positive periodic steady state (see
Figures 5 and 6), which means that the virus with periodically

evolving domain will persist. Consequently, we can see that
ρ−2 < 1 has positive effect on the persistence of WNv.

Example 4. In systems (7) and (9), we set βb � 0.09 anddm �

0.29 with ρ(t) � e0.2(cos(4t)−1). Direct calculations show that

ρ−2 �
2
π

􏽚
π/2

0
e
0.2(cos(4t)− 1)dt ≈ 1.5221> 1,

���������������

Am/Nbαb βb( 􏼁
2α∗m

dm D1λ
∗ρ−2 + cb􏼐 􏼑

􏽶
􏽴

�

�������������������������������
20 × 0.88 × 0.0081 × 0.16

0.29 ×(0.06 × 9.8596 × 1.5221 + 0.01)

􏽳

< 1.

(85)

)erefore, one can easily see that the solution of problems
(7) and (9) tends to zero quickly (see Figures 7 and 8), which
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Figure 3: ρ(t) � 1. R0(1)< 1, which implies that the solution decays quickly to zero in a fixed domain.
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Figure 4: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which implies that the
domain is fixed when the evolution rate ρ(t) � 1.
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Figure 5: ρ(t) � e0.1(1− cos(4t)). ρ−2 < 1, R0(ρ)> 1, which means that the solution of problems (7) and (9) converges to a positive periodic
steady state.
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Figure 6: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which implies that the
domain is periodically evolving when the evolution rate ρ(t) � e0.1(1−cos(4t)).
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Figure 7: ρ(t) � e0.2(cos(4t)− 1). ρ−2 > 1, R0(ρ)< 1, which means that the solution (u, v) tends to zero.
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means that the virus with periodically evolving domain will be
extinct. Consequently, we can say that ρ−2 > 1 has negative
effect on the persistence of WNv.

8. Conclusions

Recently, the impact of periodic evolution domain has been
attracting considerable attention. In [31], Jiang and Wang
studied the impact of periodic evolution on the single-
species diffusion logistic model. Asymptotic profile of a
mutualistic model on a periodically evolving domain has
been investigated by Adam et al. in [33]. )e diffusive model
for Aedes aegypti mosquito on a periodically evolving do-
main has been considered by Zhang and Lin in [32]. Zhu
et al. [34] constructed a dengue fever model and studied its
asymptotic profile on a periodically evolving domain. )ese
studies indicated that the periodic domain evolution has a
significant impact on the dispersal of species and trans-
mission of infectious diseases.

In this paper, we study a diffusive West Nile virus model
with periodical and isotropic domain evolution. To cir-
cumvent the difficulty induced by the advection and dilution
terms, we transform the model to a reaction-diffusion model
in a fixed domain. We introduce the spatial-temporal basic
reproduction number R0(ρ) depending on the periodic
evolution rate ρ(t). In the case that all parameters are
constants and ρ(t) ≡ 1, the explicit formula for the spatial-
temporal basic reproduction number is presented ()eorem
1). Moreover, to better understand the impact of periodic
evolution value on the persistence or extinction of the virus,
we assume ρ(t) ≡ 1, that is, the periodic domainΩt becomes
a fixed domain Ω0. Furthermore, the notation
ρ−2 � (1/T) 􏽒

T

0 1/ρ
2(t)dt is utilized as an average value. Our

results show that if R0(ρ)> 1 depending on the evolution
rate ρ(t), then the virus will persist and all solutions possess

the attractor 〈(u, v), (u, v)〉, which is the sector between the
maximal and minimal T-periodic solutions (u, v) and (u, v)

of problems (7) and (8) ()eorems 2–4) (a), whereas, if
R0(ρ)≤ 1, then any solution of problems (7) and (8) decays
to (0, 0), that is, the virus is in the case of extinction
()eorem 3 and 5) (b). In the case that ρ(t) ≡ 1, we in-
troduce R∗0 . For this case, if R∗0 > 1, the model admits a
maximal and minimal T-periodic solutions, while if R∗0 ≤ 1,
the model has no positive solution ()eorem 6 and 7). It is
important to mention that numerical simulation in this
paper is presented by using some parameters given in Lewis
et al. [4], namely, Am/Nb � 20, αb � 0.88, αm � 0.16,

cb � 0.01, βb � 0.3, and dm � 0.029.
From our theoretical and numerical results, we believe

that the periodic domain evolution has a significant impact
on the transmission of WNv.
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Figure 8: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which implies that the
domain is not periodically evolving when the evolution rate ρ(t) � e0.2(cos(4t)−1).
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