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+is study presents a combined Long Short-Term Memory and Extreme Gradient Boosting (LSTM-XGBoost) method for flight
arrival flow prediction at the airport. Correlation analysis is conducted between the historic arrival flow and input features. +e
XGBoost method is applied to identify the relative importance of various variables. +e historic time-series data of airport arrival
flow and selected features are taken as input variables, and the subsequent flight arrival flow is the output variable. +e model
parameters are sequentially updated based on the recently collected data and the new predicting results. It is found that the
prediction accuracy is greatly improved by incorporating the meteorological features. +e data analysis results indicate that the
developed method can characterize well the dynamics of the airport arrival flow, thereby providing satisfactory prediction results.
+e prediction performance is compared with benchmark methods including backpropagation neural network, LSTM neural
network, support vector machine, gradient boosting regression tree, and XGBoost. +e results show that the proposed LSTM-
XGBoost model outperforms baseline and state-of-the-art neural network models.

1. Introduction

+e airport is the terminal for aircraft taking off and
landing. It is also the transferring point for passenger
distribution. +e daily air traffic flow has strong periodicity
and randomness. +ere are many factors influencing the
airport arrival flow, among which the most widely ac-
knowledged are the complex meteorological factors, for
example, the change of short-term arrival flow caused by
severe weather such as thunderstorm in summer and
blizzard in winter, as well as the unfavorable weather
conditions that may affect visibility [1, 2]. Real-time and
high-precision arrival flow prediction at the airport is of
great significance to identify similar patterns, implement
passenger evacuation strategy, alleviate airport congestion,
and improve air transportationmanagement systems [3–5].
It can also assist passengers to make better traffic mode
selection decisions. +erefore, it is necessary to take the
meteorological factors into account when forecasting the
short-term arrival flow at the airport.

Recently, a series of studies have been conducted re-
garding the short-term traffic flow prediction based on time-
series data. +e commonly used methods can be categorized
into two groups, including parametric algorithms such as
linear regression, time-series models, and Kalman filtering
and nonparametric algorithms such as k-nearest neighbor
method, support vector regression, deep-learning methods
such as neural networks (e.g., convolutional neural network
and recurrent neural network), and a combination of these
methods [6–11]. +e parametric algorithms are easy to
implement and can reflect the relation between the inde-
pendent variables and dependent variable directly, while the
nonparametric algorithms, especially the deep-learning
method, show superiority with higher prediction accuracy
and less computation time for large datasets. For example,
Lu et al. proposed a combined method for short-term
highway traffic flow prediction based on a recurrent neural
network [12]. Asadi and Regan presented a spatiotemporal
decomposition-based deep neural network for time-series
forecasting with the case of highway traffic flow data from
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the Bay Area of California. A multikernel convolutional
layer is designed to maintain the network structure and
extract short-term and spatial patterns [13]. Li et al. pro-
posed an adaptive real-time prediction model under un-
containable conditions. +e model consists of two stages,
including an online sequence extreme learning machine
with a forgetting factor for noise processing and a hidden
Markov model for traffic flow prediction [14].

As compared with highway traffic flow prediction, the
short-term prediction of airport arrival flow tends to be
more complicated, due to the stochasticity and dynamic
nature of air traffic flow considering the various influencing
factors such as weather conditions [15–17]. Until recently,
the short-term prediction of air traffic flow remains a hot
issue. Although different statistical approaches have been
used in past studies, each has suggested that there are
meaningful relationships between various input variables
and traffic flow rate [18–20]. Further development is still
needed to advance the predictive aspects of the linkage
between airport arrival flow and the input variables in-
cluding meteorological variables and then to predict future
arrival flow using data mining techniques.

+e primary objective of this paper is to, first, discover if
there are significant relationships between airport arrival
flow and various meteorological variables; second, identify
which factors can then be used as inputs to estimate airport
arrival flow; and third, select an appropriate model that can
be used to predict the airport arrival flow with decent
performance. To this end, the correlation between historic
arrival flow and various features is calculated. +en, a
combined Long Short-Term Memory and Extreme Gradient
Boosting (LSTM-XGBoost) method is proposed for airport
arrival flow prediction. +e selected features including
meteorological variables are input into the network.

+e rest of the paper is organized as follows. Section 2
illustrates the data collection and preparation procedure.
Section 3 presents the proposed framework incorporating
the long short-term memory neural network and the ex-
treme gradient boosting algorithm components. Section 4
describes the data analysis results by comparing the per-
formance of the proposed method with that of commonly
used benchmark methods. Section 5 discusses the conclu-
sions and future works.

2. Data Preparation

To meet the research objective, the airport performance data
and various factors required in the data mining procedure
are collected. +e data sources for analysis can be divided
into two categories: flight arrival data and airport meteo-
rological information.

2.1. Flight Arrival Data. +is paper selects the flight arrival
data of Nanjing Lukou International Airport (NKG) from
January 1, 2018, to December 31, 2018, with a total of 113,243
records of information for data extraction and analysis. +e
specific flight information includes flight ID, aircraft type,
departure airport, destination airport, estimated departure

time, estimated arrival time, actual departure time, actual
arrival time, and status of flight for that day.

+e daily flight information is divided into 48 records,
with 30 minutes as the time horizon of a record. According
to the flight information provided, the flight date, planned
and actual arrival time of the aircraft, and the final status of
the flight are used to calculate the planned and actual flow
data of each time slice of the day. +e canceled flights and
changed flights on that day are excluded. Figure 1 illustrates
the daily arrival and canceled flights in 2018. It can be found
that the trend of flight arrivals is periodically fluctuated,
while the trend of canceled flights tends to be stochastic and
nonscheduled. In addition to the canceled flights, there are
also some cases that may cause the difference between the
scheduled flight counts and the actual flight counts, that is,
change of flight routes, transferring to alternate airports, and
missing values. As for the 30min data records, the difference
between the scheduled flight counts and the actual flight
counts ranges from 0.014 to 6.803 with a mean value of
2.027, which accounts for 17.56% to 88.47%% with an av-
erage of 34.94%.

2.2. Airport Meteorological Information. +e airport me-
teorological information comes from OGIMET [21],
which provides local weather conditions. Data from the
Meteorological Report of Aerodrome Conditions
(METAR) of Nanjing airport in 2018 are collected, in-
cluding the four-character code of the airport, UTC time,
wind direction, wind speed, wind gusts, temperature, dew
point temperature, visibility (runway visual range), air
pressure, cloud height, cloud cover, humidity, pressure,
and weather phenomena such as precipitation, thunder-
storm, fog, snowfall, and haze. Variables about some
weather phenomena are set as dummy variables. Taking
rainfall as an example, 1 indicates the presence of rainfall
and 0 indicates no rainfall. +e collected METAR mes-
sages are summarized. Table 1 presents partial data of the
real-time meteorological indicators of Nanjing Lukou
International Airport from 10:00 to 14:00 on June 28,
2018, for illustration.

As the METAR information is issued roughly hourly,
the linear interpolation method is used to obtain the
30min granularity meteorological data to match the flow
data of 48-time slices per day. Considering that the me-
teorological information includes not only continuous
meteorological factors such as wind speed, temperature,
and visibility but also discrete meteorological factors such
as rain, snow, and thunderstorm, the piecewise linear
interpolation method is used to interpolate the hourly
continuous meteorological data, while the weather phe-
nomena are regarded to be consistent in the current one-
hour period. Figure 2 illustrates the daily arrival flights as
well as the occupied time duration of rain and thunder-
storm of NKG in May 2018.

2.3. Data Preprocessing. +e collected data are preprocessed
by filtering, normalizing, and reconstructing, which effec-
tively improve the convergence speed and prediction
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accuracy of the model. +e final dataset includes one actual
inflow as the output variable and twelve features which
contain eleven real-time weather features and one planned
flow volume as the input variables. All the variables are
normalized using the following equation to transform into a
dimensionless value ranging from 0 to 1:

x′ �
x − min(x)

max(x) − min(x)
, (1)

where x’ represents the normalized dimensionless value and
x represents the original value. +e model is calibrated using
data from January to September with a total of 13,104 30 min
records and then validated using data from October to
December with a total of 4,416 30 min records.

3. Methodology

In this section, a combined LSTM-XGBoost method is
constructed for short-term airport arrival flow prediction.
+e proposed LSTM-XGBoost method contains two com-
ponents, the long short-term memory neural network and
the extreme gradient boosting algorithm. +e methods used
in each component are briefly discussed.

3.1. /e LSTM Method. LSTM is one of the important
variants of Recurrent Neural Networks (RNNs). It has been
proved that LSTM works well on sequence-based tasks with
long-term dependencies. Compared with the traditional
artificial neural network, the LSTM network realizes the
combination of long-term and short-term memory by set-
ting special structures such as forget gate, input gate, and
output gate [22]. In recent years, the LSTMmethod has been
frequently applied in short-term prediction with good
performance [23, 24].

As shown in Figure 3, xt is the input variable and ht is the
output variable at time t. ơ and tanh are the activation
functions of the network, where ơ represents the sigmoid
function and tanh is the hyperbolic tangent function. +eir
role is to introduce nonlinear transformations in neural
networks in order to make the network have stronger
nonlinear expression capabilities. +e data processing
procedure of a unit in the LSTM network structure is like
this. First, xt is input together with the output data at the
previous time into the network. +en, the long-term
memory state variables are selectively remembered through

Table 1: Partial data of the real-time meteorological indicators.

Time
Meteorological indicators

Vwind
a Tb Tdewc Visibility Pressure Cloud cover Rain +under . . .

10:00 2 25 24 9999 1002 18.37 1 1 . . .

11:00 4 25 24 7000 1003 21.67 1 1 . . .

12:00 4 24 24 6000 1002 17.87 1 1 . . .

13:00 4 24 24 9999 1001 19.27 1 1 . . .

14:00 7 25 24 9999 1001 19.27 1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aWind speed (m/sec), btemperature (°C), and cdew point temperature (°C).
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Figure 2: +e daily arrival flights and unfavorable weather in May.
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Figure 1: Daily arrival flights and canceled flights in 2018.
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the forget gate, and a newmemory state variable is formed by
superposing the current state with the long-term state at the
previous time through an input gate. Finally, the output
variable at time t can be obtained as the long-term memory
state variable through the output gate:

it � σ Wxixt + Whiht−1 + Wci ⊙ ct−1 + bi( , (2)

f t � σ Wxfxt + Whfht−1 + Wcf ⊙ ct−1 + bf , (3)

ct � f t ⊙ ct−1 + it ⊙ tanh Wxcxt + Whcht−1 + bc( , (4)

ot � σ Wxoxt + Whoht−1 + Wco ⊙ ct + bo( , (5)

ht � ot ⊙ tanh ct( . (6)

In equations (2) to (6), W∗i, W∗f, W∗c, W∗o, and b∗ are
learning parameters. σ(∗) and tanh(∗) are two commonly
used nonlinear activation functions.

3.2. /e XGBoost Method. +e extreme gradient boosting
(XGBoost) method is an improved method based on Gra-
dient Boosted Decision Tree (GBDT) proposed by Chen and
Carlos (2016) [25]. +e salient features of XGBoost which
make it different from other gradient boosting algorithms
include clever penalization of trees, a proportional shrinking
of leaf nodes, newton boosting, and extra randomization
parameter. In this paper, the XGBoost method is used to
extract features and evaluate relative feature importance.+e
procedures are presented as follows.

For a given dataset with n samples andM characteristics,
represented as |D| � (mi, yi) (mi ∈ Rm, yi ∈ R), assuming
that XGBoost model has K decision trees, the flight flow
prediction model is represented as follows:

yi � 
K

k�1
fk mi( , (7)

where yi is the predicted value at time i; mi is the corre-
sponding input variables for yi; and fk is the prediction

function corresponding to the kth decision tree, which is
defined as follows:

fk mi(  � ωq mi( ), q: R
m⟶M, ω ∈ RM

, (8)

where q(mi) represents the structure function of mapping
mi to the kth decision tree corresponding to the leaf node; ω
is the quantization weight vector of the leaf node; and M is
the number of leaf nodes in the tree.

+e loss function L of the XGBoost algorithm includes
error term l and regularization term Ω. +e prediction
model is learned by minimizing the loss function of the
formula. In this paper, the root-mean-square error is se-
lected as error term l, which is defined as follows:

L � 
n

i�1
yi − yi( 

2
+ 

K

k�1
Ω fk( . (9)

In the formula, the regularization term prevents the
model from overfitting.

3.3. /e Combined LSTM-XGBoost Method. As mentioned
above, the daily air traffic flow has strong periodicity and
randomness. Data analysis indicates that there are several peak
time of arrival flights, from 8:30 am to 11:00 am, from 12:30 pm
to 13:30 pm, and from 17:00 pm to 19:00 pm.+e airport arrival
flow is influenced by many external factors, among which
meteorological factors are commonly recognized that may be
significant. +e LSTMmodel has been widely used to deal with
time-series problems, which can capture the temporal corre-
lation of time-series data. However, the traditional LSTM lacks
the ability to extract the external features that may affect the
predicted variables. To this end, this paper proposes an LSTM-
XGBoost model, which can well characterize the temporal
correlation as well as the influence of external characteristics.

+e structure of the LSTM-XGBoost model is shown in
Figure 4. +e input data of the LSTM cell consists of two
parts, including the scheduled flight flow data z,

i and historic
flight flow data x,

i, constituting the input matrix X,
i, where

X,
i ∈ R

2×T; T represents the prediction timestep. After the
LSTM layer, the Rectified Linear Unit (Relu) is used as the
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Figure 3: +e internal structure of an LSTM cell.
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activation function to output the predicted value yT+i at
T + i time, which is shown as follows:

yT+i � relu ωh · hi + bh( . (10)

+en, the XGBoost model is used to predict the arrival
flow at time T+ i from input features mT+i, which incor-
porates the predicted value from LSTM at time T+ i () ( yT+i)
and external meteorological characteristics ET+i:

yT+i � 
K

k�1
fk mT+i( . (11)

3.4. Evaluation Metrics. To evaluate the performance of the
proposed model, mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE) are calculated for each method, respectively. +e
equations are shown as follows:

MAE �
1
n



n

i�1
yi − yi


,

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




,

MAPE �
1
n



n

i�1

yi − yi

yi




,

(12)

where yi represents the actual value of sample i; yi represents
the predicted value of sample i; yi represents the average
value of the real data; and n is the sample size.

4. Data Analysis Results

4.1. Correlation Analysis of Input Features. As mentioned
above, twelve features are collected and incorporated in the
proposed model, including scheduled flights, wind speed,
temperature, dew point temperature, visibility, atmospheric
pressure at nautical height (QNH), cloud, rain, thunder-
storm, fog, snowfall, and haze. To identify the relationship of
various factors, the Pearson correlation coefficient (r) be-
tween actual arrival flow and the explanatory variables as
well as the correlation between different explanatory vari-
ables is calculated. +e equation is shown as follows:

r �


n
i�1 yi − y(  xi − x( 

������������


n
i�1 yi − y( 

2
 ������������


n
i�1 xi − x( 

2
 . (13)

In this formula, x is the independent variable; y is the
dependent variable; x is the mean of the independent
variable; and y is the mean of the dependent variable. +e
Pearson correlation coefficient (r) ranges from −1 to 1,
which represents the strength of the linear correlation be-
tween two variables. +e results are shown in Figure 5.

As shown in Figure 5, it can be found that, besides
scheduled flights that are highly related, the actual flights are
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Figure 4: +e structure of the proposed LSTM-XGBoost method.
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also positively related to visibility, wind speed, and tem-
perature, while negatively related to fog. In addition, the
visibility is positively related to temperature, wind speed,
scheduled flights, and dew point temperature, while nega-
tively related to fog, cloud, rain, QNH, and haze. It should
also be noted that although thunderstorm and snowfall have
a weak correlation with the other features with the current
data, it does not indicate that these two factors can be ex-
cluded from consideration. On the contrary, as rare events,
these extreme bad weather conditions may seriously affect
the arrival of flights. Considering that, as input features, the
temperature is highly positively related to dew point tem-
perature and highly positively negatively to QNH, these two
variables (dew point temperature and QNH) are removed
from input features in the subsequent models.

4.2. Analysis of Variable Importance. With the selected
features, the XGBoost method is applied to identify the
relative importance of various variables. +e results are
shown in Figures 6(a)–6(c) for the 30min, 60min, and
120min prediction time horizon, respectively. Generally, the
meteorological variables have a similar impact on the arrival
flow for all the three scenarios. +e most important influ-
ential feature is scheduled flights, which is congenial with
common sense. +e other two important influential features
include temperature and visibility. As for the temperature, it
is due to the reason that first, the collected data indicate that,
in general, people prefer to travel more in warmer days,
except for the traditional holidays. Second, there are more
flights in the daytime with higher temperature, as compared

with nighttime. Considering the visibility, it is acknowledged
that there are visibility requirements for the operation of
aircraft. +e flights tend to be delayed with poor visibility
until it returns to normal conditions.

+ere are some slight differences for the relative impor-
tance of variables of the prediction models with different time
periods, which are temperature, followed by visibility, wind
speed, cloud, and snow for the 30min perdition model; visi-
bility, temperature, wind speed, cloud, and snow for the 60min
perditionmodel; and visibility, temperature, wind speed, snow,
and thunderstorm for the 120min perdition model.

It is also found that the F-scores for the meteorology
features are relatively low, while the extreme weather condi-
tions may have strong impacts on the actual flight arrival rate.
+e collected data indicate that the difference between the
actual flow rate and the scheduled flow rate has a higher
fluctuation under bad weather conditions. +e reason for the
small F-scores is that almost all the extreme weather conditions
are rare events. +e feature importance is generated according
to the degree of influence of the feature on the accuracy of the
prediction during the process of generating the model. Besides,
some of the weather conditions occur at specific time periods
during a day. For example, the fog usually appears in the early
morning with a lower arrival flow rate. +us, the calculated
importance of the feature will be small according to the col-
lected data. In addition, it is acknowledged that most of the
meteorology features are associated with visibility. +e impacts
of these bad weather conditions are reflected through the
perspective of the feature of visibility to a certain extent, rather
than the occurrence of snow, thunderstorm, rain, haze, fog, and
so on, in terms of dummy variables.
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4.3. Comparison of Prediction Results. With the selected
features as inputs, the LSTM-XGBoost model is con-
structed. +e hyperparameters are testified, including
hidden layers, number of neurons in each hidden layer,

and timestep for the LSTM component as well as the depth
of the tree, learning rate, and number of decision trees for
the XGBoost component. +e input values are shown in
Table 2.

Table 2: Selection of hyperparameters in the model.

Models Description of hyperparameters Input values +e selected optimal hyperparameter

LSTM
Hidden layers {1, 2, 3, 5, 10} 3

Number of neurons in each hidden layer {2, 4, 6, 8, 10, 15, 20, 25, 30} 6
Timestep {6, 12, 18, 24, 30, 36, 42, 48} 36

XGBoost
Depth of the tree {1, 2, 3, 5, 10} 3
Learning rate {0.01, 0.02, 0.05, 0.1, 0.15} 0.05

Number of decision trees {50, 100, 200, 300, 500} 100

Table 3: Comparison of performances for different methods.

Prediction time horizon (min) Incorporated features Model MAE RMSE MAPEa (%)

30

Historic and scheduled flights

BP 1.623 2.188 16.657
SVM 1.825 2.489 23.972
GBRT 1.628 2.179 16.132
LSTM 1.580 2.107 14.839

XGBoost 1.607 2.176 15.050
LSTM-
XGBoost 1.634 2.286 15.005

Historic and scheduled flights and meteorological variables

BP 1.594 2.148 16.243
SVM 1.668 2.211 23.474
GBRT 1.532 2.047 15.257
LSTM 1.557 2.095 14.515

XGBoost 1.511 2.023 15.036
LSTM-
XGBoost 1.443 1.989 14.735

60

Historic and scheduled flights

BP 2.408 3.457 13.447
SVM 2.611 3.714 16.183
GBRT 2.334 3.301 11.424
LSTM 2.406 3.254 15.279

XGBoost 2.307 3.301 11.071
LSTM-
XGBoost 2.319 3.331 11.730

Historic and scheduled flights and meteorological variables

BP 2.347 3.311 11.557
SVM 2.447 3.439 14.829
GBRT 2.324 3.235 11.279
LSTM 2.365 3.262 17.672

XGBoost 2.191 3.054 10.783
LSTM-
XGBoost 2.065 2.934 10.834

120

Historic and scheduled flights

BP 3.299 5.171 9.038
SVM 3.336 5.491 9.372
GBRT 3.230 4.940 8.693
LSTM 3.352 5.376 9.359

XGBoost 3.128 4.933 8.398
LSTM-
XGBoost 3.330 5.387 8.917

Historic and scheduled flights and meteorological variables

BP 3.166 5.070 8.452
SVM 3.160 5.187 9.146
GBRT 3.051 4.782 8.242
LSTM 3.275 4.751 8.630

XGBoost 3.039 4.734 8.031
LSTM-
XGBoost 2.889 4.591 7.811

aMAPE covers the top 50% highest arrival flow samples in the test dataset.
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To testify the performance of the proposed LSTM-
XGBoost model, several benchmark methods are also tested
and compared. +e selected benchmark methods include
backpropagation (BP) neural network, LSTM neural net-
work, support vector machine (SVM), gradient boosting
regression tree (GBRT), and XGBoost, which were com-
monly used in previous studies of short-term traffic flow
prediction. +e hyperparameters for BP and LSTM are
selected in a similar way as that for the LSTM-XGBoost
model. All the benchmark methods are trained and tested
with the same data and input variables, so as to ensure that

the models are comparable. +e results are summarized in
Table 3.

As shown in Table 3, for each method, six short-term
arrival flow prediction models are developed, with 30min,
60min, and 120min as the prediction time level, as well as
historic and scheduled flights and historic and scheduled
flights together with meteorological variables as input fea-
tures. Based on the data analysis results, the following
findings can be obtained.

First, for each method, MAE, MSE, and RMSE increase
sharply with the increase in prediction time horizon, while
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Figure 7: Comparison of model performance under various weather conditions. (a) Sunshine. (b) Rain. (c) Fog. (d) +under. (e) Snow.
(f ) Haze.
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MAPE slightly decreases. Specifically, MAE and RMSE are
the lowest for the 30min prediction time horizon, as the two
metrics increase with the magnitude of the original arrival
flow data, while in terms of MAPE, the model exhibits the
best performance for the 120min prediction time horizon.

Second, for all the five methods, the model performance
can be increased by incorporating meteorological variables,
especially for the 120min prediction time horizon, indi-
cating the fact that these factors may have a significant
impact on airport arrival flow, especially extreme weather
conditions. +e improvement is the most prominent for the
proposed LSTM-XGBoost method.

+ird, the proposed LSTM-XGBoost method generally
outperforms all the other machine learning techniques in
terms of lower MAE, MSE, RMSE, and MAPE, followed by
XGBoost, GBRT, and LSTM. +is confirms the superiority
and feasibility of the proposed model, which can successfully
capture both the temporal features and influencing factors.

To further investigate the performance of the proposed
model affected by various meteorological factors, the pre-
diction accuracy of the airport arrival flow for different
weather conditions is tested and compared, as shown in
Figure 7.

In Figure 7, the x-axis represents the randomly selected
samples with 30min data for each sample. +e y-axis rep-
resents the number of flights. +e prediction results from
LSTM, XGBoost, and LSTM-XGBoost methods are com-
pared with the actual data. It is found that the proposed
LSTM-XGBoost model outperforms the other two methods
for all scenarios. +e results further demonstrate the ro-
bustness and applicability of the proposed model.

5. Conclusions

+is paper proposed a combined Long Short-Term Memory
and Extreme Gradient Boosting (LSTM-XGBoost) method
for arrival flow prediction at the airport. +e traditional
Long Short-Term Memory (LSTM) network and the
XGBoost model are incorporated by taking both the time-
series information and the meteorological features into
account. +e Pearson correlation coefficients are calculated
to describe the strength of the linear correlation between two
variables, and the importance of variables is identified. +e
prediction results are compared with some benchmark
methods, including BP, LSTM, SVM, GBRT, and XGBoost.
+e proposed algorithm improves the accuracy and stability
of short-term airport arrival flow prediction.

Even though the proposed LSTM-XGBoost approach
has exhibited great potential for short-term prediction of
airport arrival flow, several limitations are still needed to be
addressed in this study. First, this study is focused on in-
corporating the meteorological factors in airport arrival flow
prediction. As a matter of fact, the real-time airport arrival
flow is affected by a series of factors. Future research is still
needed to identify the impacts of other significant variables.
Second, the paper used the data from Nanjing Lukou In-
ternational Airport as a case study. Data from other airports
can also be applied to further investigate the robustness and
applicability of the proposed model, especially those with

extreme weather conditions. +e authors recommend that
future studies could focus on these issues.

Data Availability

+e Flight Data.rar file is provided as supplementary ma-
terials, containing all the flight arrival data for Nanjing
Lukou Airport in 2018. +e airport meteorological infor-
mation is collected from OGIMET (http://ogimet.com/
metars.phtml.en).
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