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Deep learning-based visual odometry systems have shown promising performance compared with geometric-based visual
odometry systems. In this paper, we propose a new framework of deep neural network, named Deep Siamese convolutional neural
network (DSCNN), and design a DL-based monocular VO relying on DSCNN. *e proposed DSCNN-VO not only considers
positive order information of image sequence but also focuses on the reverse order information. It employs supervised data-driven
training without relying on any modules in traditional visual odometry algorithm to make the DSCNN to learn the geometry
information between consecutive images and estimate a six-DoF pose and recover trajectory using a monocular camera. After the
DSCNN is trained, the output of DSCNN-VO is a relative pose.*en, trajectory is recovered by translating the relative pose to the
absolute pose. Finally, compared with other DL-based VO systems, we demonstrate the proposed DSCNN-VO achieve a more
accurate performance in terms of pose estimation and trajectory recovering through experiments. Meanwhile, we discuss the loss
function of DSCNN and find a best scale factor to balance the translation error and rotation error.

1. Introduction

Visual odometry (VO) is a fundamental capability of Si-
multaneous Localization and Mapping (SLAM) that allows
mobile robots to accurately navigate when no GPS signal is
available [1]. An important application of VO is to pose
estimation and localization, which has attracted the interest
of researchers in computer vision and robotics [2]. Deep
learning (DL) architectures, or deep neural networks, have
been successfully applied in numerous areas, including
object detection [3], classification [4], and semantic seg-
mentation [5], and have produced results comparable to
and, in some cases, superior to those of human experts.

In robotics and automatic transmission, VO is the
process of determining the position and orientation of a
robot by using associated camera images [6]. *e process
determining the trajectory of automatic vehicles is an es-
sential technique of SLAM, and it is widely used in robotic
applications. *e conventional pipeline of VO has been
developed as a standard rule for both monocular and stereo

VO, containing camera calibration, feature detection, and
bundle adjustment [7]. However, the conventional algo-
rithms are usually hard-coded; it is necessary to fine tune for
each module in state-of-the-art algorithms to ensure per-
formance [8].

Deep learning has dominated many computer vision
tasks with significant technological advancements [9].
However, limited amount of research has examined mon-
ocular visual odometry using deep learning. *is paper
analyzes the problem of VO using a DL-based framework.
As shown in Figure 1, Siamese neural networks (SNN) [10]
are applied to extract various geometric features rather than
abstract features from consecutive image frames. An SNN
has two networks with the same architecture, called network
1 and network 2, as shown in Figure 1. *e twin networks
share weights. *e orders of image frames input to the
networks are different: the order is {It, It+1} for network 1 and
the reverse {It+1, It} for network 2. *is paper study tests and
verifies the use of the deep Siamese convolutional neural
network (DSCNN) for estimating geometric features
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between consecutive image frames of a monocular camera.
Moreover, a VO algorithm based on the DSCNN focuses on
consecutive image rather than a single frame to accurately
and robustly model the dynamics of motion. *e camera
images were from the KITTI VO/SLAM benchmark dataset
[11].

In this paper, an end-to-end monocular VO method
based on the DSCNN is proposed to estimate six-DoF pose
containing 3D locations and 3D rotation. *e method
employs supervised data-driven training without relying on
any module in conventional VO methods. *is paper
contributes to the proposal of a monocular VO based on the
deep Siamese convolutional neural network. It takes ad-
vantage of the architecture of deep neural networks to obtain
the relative geometric feature information among frames
more accurately than other monocular VO methods. As it is
trained in a data-driven manner based on DL, there is no
need to fine tune the VOmethod through the parameters. Its
ability to generalize is also validated in scenarios with limited
information through tests in a qualitative experiment.

2. Related Work

Two types of algorithms have been mainly applied to
monocular VO: methods based on geometry and those based
on deep learning. In this section, we discuss the differences
between them in terms of technique and framework.

2.1. Visual Odometry Based on Geometry. *e conventional
VO based on geometric theory delivers state-of-the-art
performance in terms of accuracy and robustness [6].
*eoretically, VO based on geometrical constraints can be
divided into two methods: the sparse feature method and the
direct method. *e former relies on detecting and tracking a
sparse set of salient image features, whereas the latter directly
applies values of the intensity of pixels of images to estimate
motion.

Feature-based methods employ multiview geometry by
extracting and matching salient feature points to determine
motion from a sequence of images [12]. In computer vision,
the frequently used feature detectionmethods are FAST [13],
SURF [14], ORB [15], and BRIEF [16]. *e Kana-
de–Lucas–Tomasi (KLT) Feature Tracker is a classic feature

point tracking method to track items in the sequential
frames. However, because it attends only to consecutive
frames without intervals, drifts are inevitably accumulated.
*ere are some methods to mitigate this problem by
maintaining a feature map along with pose estimation to
correct drift, e.g., visual SLAM (vSLAM) and Structure from
Motion (SfM) [17]. To parallelize the motion estimation and
mapping tasks, the PTAM [18] approach is used to incor-
porate the advantage of real-time operation. *e algorithms
applied to this method include LIBVISO2 [19] and ORB-
SLAM [20].

Direct methods expend lower computational capacity
than feature-based methods because they minimize errors
directly in the sensor space without feature extraction,
matching, and tracking [21]. As a result, direct methods are
able to exploit all pixels in consecutive image frames to
estimate pose under the planarity assumption of photo-
metric consistency. For a typical SLAM algorithm with the
VO of direct methods, DTAM [22] takes advantage of a
dense depth map for each key-frame to minimize the global
energy function by aligning the entire image. Other ap-
proaches, such as those proposed in [23, 24], employ
nonlinear least squares estimation to orient poses. To mit-
igate the large computational requirements of direct
methods, semidirect approaches in [25, 26] were proposed to
yield superior performance with monocular VO. *ese
approaches combine the parallel tracking and mapping of
feature-based methods with the accuracy and speed of direct
methods. In addition, the algorithm of LSD-SLAM [27] with
a fast and direct monocular VO can work in texture-less
environments in principle, and thus garnering more re-
search interest.

2.2. Visual Odometry Based on Deep Learning. Recently, the
VO method has been studied using deep-learning algo-
rithms without applying explicitly geometric theory. On
some localization related applications, the DL has achieved
promising results trained by data-driven approach. Little
work has been reported on VO or pose estimation, however,
as DL-based methods are freshly emerging.

Transformation estimation is explored efficiently by
CNNs in [28], where a deep network is trained on a large
dataset of warped natural images by directly mapping pairs
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Figure 1: Architecture of the end-to-end DSCNN-based monocular VO.
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of images to motion transforms.*e network called PoseNet
[29] researches camera localization by training CNNs to
learn a mapping from images to absolute six-DoF poses. It is
a feasibility approach used by a deep CNN to directly regress
and estimate the pose of a single RGB image. Features of
CNNs were utilized for appearance-based location recog-
nition in [30], where features have the advantage of being
sufficiently low in level to provide representations for a large
number of concepts, but are abstract enough to allow these
concepts to be recognized using simple linear classifiers.
FlowNet [31] makes use of optical flow between images. *e
method proposed in [32] researches the relocation of the
camera using a single image by fine-tuning images of a
specific scene using CNNs and recommends that images
obtained using SfM should be labelled in large-scale sce-
narios. In [33], a DL-based VO is proposed to detect syn-
chronicity between image sequences and features.*is study
provides a feasible scheme for DL-based stereo VO to
predict the discretized changes in direction and velocity by
using a softmax function. *e method proposed in [34], the
GeoNet is a unsupervised learning framework for monoc-
ular depth, optical flow, and ego-motion estimation from
videos. It has an adaptive geometric consistency loss to
increase robustness against outliers, which resolves occlu-
sions and texture ambiguities effectively. From the method
proposed in [35], VLocNet is a CNN architecture for six-
DoF global pose regression and odometry estimation from
consecutive monocular images. A loss function is developed
which utilizes auxiliary learning to leverage relative pose
information to constrain the search space and obtain con-
sistent pose estimates.

VO based on DL is a regression and not a classification
problem. *e biggest difficulty when applying DL to VO is
the generalization ability of the neural networks. A trained
deep neural network (DNN) model works as an outstanding
VO of a given scene; however, it should be retrained to adapt
to a new environment. *is problem can be overcome by
making use of CNNs with dense optical flow for motion
estimation [36]. However, the input of dense optical flow to
CNNs requires preprocessing. Because VO with only one
CNN has no ability to extend to a new environment, the
DSCNN is proposed here to deliver better performance.

3. Methodology

In this section, the monocular VO based on the DSCNN is
detailed. We give our motivation and idea for our paper.
*en, data processing for training is first described, fol-
lowed by the architecture of the proposed DSCNN-VO.
Finally, the loss function to optimize the neural network is
presented.

3.1. Motivation and Idea. First of all, through the above-
mentioned related work, we can see that a VO system is an
essential technique for autonomous robot and automatic
driverless vehicles. A mobile robot obtains the surrounding
information through a camera; the camera and vehicle form
as a rigid body; then the image sequences obtained by

camera can be used to estimate the pose; then the trajectory
of the mobile robot can be recovered.

VO is a significant part of the SLAM system, and the
main function of VO is to estimate the relative transfor-
mation matrix between consecutive image frames. *e
classical VO algorithm uses geometric-based theory to
compute translation vector and rotation matrix, such as
Essential Matrix algorithm, PnP algorithm, and ICP algo-
rithm. However, these geometric-basedmethods are affected
by some situation in which the VO fail to estimate an ac-
curate pose, such as the scene has insufficient texture with no
enough feature points and the scene is not static with some
moving objects. As the amazing development of DL tech-
nology in image processing area, researchers make great
efforts to try to use DL technology to deal with the VO
system. Some research results achieve an end-to-end VO,
but there are still some problems such as low estimation
accuracy and insufficient generalization capacity.

In this paper, one of the research goals is to improve the
capacity of DL-based VO from the term of the architecture
of network. *ere are some limited works on DL-based VO,
and the network architectures of these networks belong to
the model of Figure 2(a), such as CNN-VO and CNN-
LSTM-VO. *is kind of VO system only considers the
positive order correlation of image sequence, in other words,
there is an image pair, (It, It+1), and these network focuses on
the information from It to It+1, as shown in Figure 2(a). In
this paper, the proposed DSCNN framework belongs to the
model of Figure 2(b). Considering the constraint of reverse
order of the image sequence, a twin network is added to the
architecture to focus on the reverse geometric information
between image frames. As shown in Figure 2(b), network 1
and network 2 have the same configuration and share
weights. Network 1 tries to extract the geometric infor-
mation from It to It+1; correspondingly, network 2 focuses on
extracting the reverse geometric information from It+1 to It.

It is a strong constraint to train the DSCNN-VO to
converge to more excellent network parameters. After the
DSCNN is trained, network 1 is used as a working network,
and the output of which is a relative pose. *en, trajectory is
recovered by translating the relative pose to the absolute
pose. *is is the design idea of our work, and the experi-
ments in the following section show that the proposed
DSCNN-VO has more accurate performance in terms of
pose estimation and trajectory recovering.

3.2. Data Processing. *e KITTI VO/SLAM benchmark [11]
is used in the experiments in this paper. *is dataset was
collected by the Karlsruhe Institute of Technology and the
Toyota Technological Institute by driving a vehicle in dif-
ferent scenarios. It consists of 22 stereo sequences, the first
11 (00–10) with ground truth (GT) trajectories and the
second 11 sequences (11–21) without them. Given that this
paper focuses on monocular vision, only video sequences
from the left camera were considered. *e frequency of
acquisition of this dataset is 10Hz, a relatively low frame
rate. *e scenarios of the dataset were set in urban areas, in
this situation there are many dynamic objects, and the
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maximum driving velocity is 90 km/h. It is no doubt that it is
a challenge for monocular VO algorithms.

*e original GTpose information is available in terms of
a sequence of 3 × 4 transformation matrices. *e absolute
pose describes changes between the given location and the
original location, for instance, Tt and Tt+1 in Figure 3. *e
relative pose describes changes between consecutive image
frames, such as Tt,t+1 in Figure 3. It indicates the relative
changes in pose of images in the pair It and It+1, which
represent images at the tth and (t+ 1)th time steps, respec-
tively. *e relative transformation matrix is given as follows:

Tt,t+1 � T
−1
t Tt+1. (1)

*e relative pose is expressed in terms of a 3 × 4 relative
transformation matrix Tt,t+1, containing a 3 × 3 relative
rotational matrix and 3 × 1 relative translational vector. In
this paper, the Eulerian angle is assumed and considered to
describe rotational information and thus should have a step
to translate the 3 × 3 rotation matrix to the pitch, yaw, and
roll (Δψ, Δχ, and Δϕ).*en, the label containing the six-DoF
transformation is generated to train the DSCNN. *us, the
final formation of the dataset containing the label and a pair
of images can be expressed as follows:

It, It+1, (Δx,Δy,Δz,Δψ,Δχ,Δϕ)t⟶(t+1) . (2)

Given that the size of the original image in every se-
quence of the KITTI benchmark dataset is different, it is
necessary to render the sizes uniform to adapt to the re-
quirement of inputs to the DSCNN. Resizing the original
image to 384 × 1280maintains feature of images and satisfies
the input demand of the CNN.

3.3. Architecture of the Proposed DSCNN. *e DL has been
developed rapidly in recent years, and many powerful DNN
architectures have been proposed, including the CNN and
RNN, such as AlexNet [4], VGGNet [37], GoogleNet [38],
and ResNet [39]. *ey are designed for classification, object
detection, and recognition in computer vision, and most of
them have delivered remarkable performance in ILSVRC
competitions [40].

However, VO focuses on logistic regression rather than
classification and thus cannot accurately obtain the relative
pose by identifying objects in image frames because it operates
consecutive image frames depending on the order for every
input. It is a significant ability for a DNN framework to learn
geometric feature representations in a DL-based VO system. It
is also necessary to derive the motion information of con-
secutive image frames during movement. *erefore, the
proposed DSCNN considers these requirements. *e archi-
tecture of the proposed end-to-end monocular VO system
based on DSCNN is shown in Figure 4. Sequences of mon-
ocular images are chosen as inputs from the left camera of the
KITTI VO/SLAM benchmark dataset. To ensure that the
image frames are identical in size, we resized the given original
images in multiples of 64, such as 384 × 1280. Simultaneously,
we formed two consecutive image frames stacked together to
form an image tensor and then feed DSCNN-VO the image
tensor. *e final size of the tensor consisting of images was
384 × 1280 × 6 (Weight × Height × Channel).*e input order
is It, It+1  for network 1, and the input to network 2 is
formulated as It+1, It .

*e image tensor was fed into the twin networks to learn
how to extract effective motion features and estimate poses
for the monocular VO.*e DSCNN yielded pose estimation
at each time step after analyzing each image pair. *e VO
system works to estimate new poses while images were
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Figure 2: (a) Current existing of DL network architecture used in DL-based VO. (b) Siamese network architecture used in our paper with
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captured. While two consecutive frames are input to the
DSCNN-VO, network 1 obtains the relative geometric in-
formation of positive order of the two frames and network 2
learns the relative geometric information of their reverse
order. It takes full advantage of the architecture of the DNN
by appending constraints to the extract geometric features
between consecutive frames from a sequence of raw RGB
images. *e pose represented by the output of network 1 is
the rotation and translational motion of It relative to It+1,
and the reverse situation is represented by network 2. *e
weights of both the CNN and the FC in the twin networks
share parameters. *e CNN networks are trained to learn
automatically the effective geometric features from image
feature extracted from two consecutive raw monocular RGB
images in the form of tensor.*e architecture of the DSCNN
proposed in this paper is shown in Figure 4, and the con-
figuration of the CNN in the DSCNN is given in Table 1. It
has ten convolutional layers; a rectified linear unit (ReLU)
was followed after each layer except for Conv6_1. To make
the VO system more robust and prevent the GPU from
running out of memory, a max-pooling layer was designed at
the end of CNN.*e receptive fields of CNN in the DSCNN
gradually decreased from 7 × 7 to 5 × 5 and 3 × 3; in this
way, the VO system was able to capture small and interesting
features from large scale outlines. *e number of filters for
feature detection increased from 64 to 1,024 to learn various
geometric features; in this way, the VO system was able to
generalize and deploy in unknown environments.

As it can be seen in Table 1, there is only one pooling
layer in CNNs. If the pooling layer is added after each
convolutional layer, the resolution of the image will be
reduced and the optical flow prediction will be destroyed.
*erefore, the pooling layer of each layer of the convolu-
tional layer is removed. As the convolutional layer calcu-
lation is working on, the depth information of the image
tensor will be increasing, while the values of Height and
Width per frame will gradually decrease. After 10 layers of
convolutional operation, the size of data is huge and the
shape of data is almost 6× 20×1024 per frame. In order to
prevent the GPU from out of memory, we add a pooling
layer at the end of the CNNs.

To preserve the spatial dimensions of the tensor after
convolution and adapt to the configurations of the receptive
fields, the zero-padding technique was introduced to the
DSCNN-VO. Dropout [41] was used in the network to
overcome overfitting by randomly dropping neural units

along with their connections from the DNN during training.
*e DSCNN network is trained to efficiently extract geo-
metric features for the VO system, and the input of the
CNNs was raw RGB images without preprocessed optical
flow or depth images. In this way, we described the 3-di-
mensional raw RGB image with the pose information as the
image tensor.

Following the above, the output of the max-pooling layer
was passed to the FC network to adjust the dimensions of the
tensor to enable the DSCNN to focus on the geometric
features of motion information. *e configuration of the FC
network is shown in Figure 4, where there are three FC layers
designed after the CNN with the numbers of hidden neural
unit layers set to 4,096, 1,024, and 128. Similarly to the CNN,
each FC layer was followed by a ReLU activation function
except the last one because the numerical value of pose was
either positive or negative. Finally, the output of the DSCNN
in six-DoF information was formulated as
(Δx,Δy,Δz,Δψ,Δχ,Δϕ), which represents the relative pose
between raw RGB image frames. We then use the six-di-
mensional relative pose to calculate the loss function and
optimize the weights of the DSCNN.

3.4. Loss Function and Optimization. *e output of the
proposed DSCNN-based VO system is six-DoF, which in-
cludes translational and rotational information formulated
as p � (Δx,Δy, Δz) and φ � (Δψ,Δχ, Δϕ), respectively.
Assuming that the VO has a conditional probability of poses
Yt � (y1, . . . , yt) and given a sequence of raw monocular
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Figure 4: Framework of the proposed VO based on DSCNN algorithm.

Table 1: Configuration of the CNN in DSCNN.

Layer Tensor size Kernel size Padding Stride
Input 384 × 1280 × 6 — — —
Conv1 192 × 640 × 64 7 × 7 3 2
Conv2 96 × 320 × 128 5 × 5 2 2
Conv3 48 × 160 × 256 5 × 5 2 2
Conv3_1 48 × 160 × 256 3 × 3 1 1
Conv4 24 × 80 × 512 3 × 3 1 2
Conv4_1 24 × 80 × 512 3 × 3 1 1
Conv5 12 × 40 × 512 3 × 3 1 2
Conv5_1 12 × 40 × 512 3 × 3 1 1
Conv6 6 × 20 × 1024 3 × 3 1 2
Conv6_1 6 × 20 × 1024 3 × 3 1 1
Max-pooling 3 × 10 × 1024 2 × 2 0 2
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RGB images Xt � (x1, . . . , xt) up to time t in the proba-
bilistic perspective,

p Yt

 Xt  � p y1, . . . , yt | x1, . . . , xt( . (3)

*e purpose is to find the optimal weights ω∗ of the
DSCNN to ensure the maximization of conditional
probability:

ω∗ � argmax
ω

p Yt

 Xt;ω . (4)

*e Euclidean distance is used to solve the hyper-
parameter ω for the VO. (p1i,φ1i) and (p2i,φ2i) represent
the positive and reverse orders of the GT pose input to
network 1 and network 2, respectively, at time i, and their
estimated poses are expressed as (p1i, φ1i) and (p2i, φ2i),
respectively. For N pairs of sample images, the loss function
is applied to the mean square error (MSE) containing all
positions p and orientations φ of both network 1 and
network 2 as follows:

ω∗ � argmax
ω

1
N



N

k�1


t

i�1
loss1 + loss2,

loss1 � α1 p1i − p1i

����
����
2
2 + β1 φ1i − φ1i

����
����
2
2,

loss2 � α2 p2i − p2i

����
����
2
2 + β2 φ2i − φ2i

����
����
2
2,

(5)

where ‖ · ‖ is the 2-norm.
*e DSCNN was trained in the configuration with the

optimized batch gradient descent algorithm and adaptive
moment estimation (Adam) as the optimizer. All weights of
DSCNN are initialized with Xavier initializing and all biases
with zeros.

As for α1, α2, β1, and β2, they are the scale factor to
balance the weights of the translation error and rotation
error. In this paper, the scale factor is set as α1 � α2 �10 and
β1 � β2 �10. *e reasons for parameter selection are listed
below:

(1) According to the design principle of DSCNN pro-
posed in our paper, network 1 and network 2 have
the same network framework with weight sharing.
So, it is reasonable to set the two loss functions in the
same form, in this way, so set α1 � α2 � α and
β1 � β2 � β.

(2) Translation error and rotation error are output from
the same network, so it is the best ratio to set the
translation error and rotation error to 1 :1, that is, α:
β� 1 :1.

(3) According to the experiment, if the scale factor of
loss function is set α� β� 10, the DSCNN has a
much better performance than any other values of α
and β.

An experiment is operated to verify the correctness of the
abovementioned conclusions, as shown in Figure 5 , and
average errors of the trained model on some results of loss
function with different α and β are given. *is experiment is
as follows: the training samples are Sequence 6 and 10 from

KITTI benchmark dataset, the validating sample is Sequence
5, original learning rate of neural network is set 0.001, and
the training epoch is set 50. *e reason for choosing Se-
quence 6 and 10 as training samples is that these two samples
contain speed values of different spans, and the validating
sample is used to validate the DSCNN is not overfitted.
Finally, the trained model is tested on Sequence 9 according
to the KITTI VO/SLAM evaluation metrics, and the results
are obtained to evaluate the index of scale factor selection.
*e result of experiment is given as follows.

As it can be seen in Figure 5, the back line with the scale
factor α� β� 10 has the minimal error compared with other
lines. *is means that the trained model under the condition
of the black line has the optimal network weights. And it
shows that the configured scale factor of loss function has
better performance.

4. Experimental Results

In this section, the hardware and software configurations
used in our experiments are first given. *en, details of
training and testing are presented. Finally, we compare the
performance of the monocular VO method proposed in this
paper with other algorithms in terms of translational and
rotational accuracies.

4.1. Hardware and Software. *e DSCNN was implemented
on the popular DL framework torch. All experiments were
performed on an Intel E5-2630 v4 CPU with NVIDIA
GeForce GTX 1080Ti GPU. All data processing was pro-
grammed in Python, using the associated libraries for
compatibility with the Python bindings of Torch. Dropout
was introduced into the DSCNN-VO system to prevent the
models from overfitting.

4.2. Training and Testing. *e more accurate the label for
the training dataset is, the more robust is the DL-based
VO. *e average error of each sequence was rather dif-
ferent because of the driving velocity, dynamic moving
objects in scenarios, and a lack of features in large open
areas. To train the DSCNN-VO to be more robust, the
principle used to choose images from KITTI dataset were
designed to (1) guarantee the number of images large
enough with a span of driving speed covering different
velocities and (2) ensure that the labels were accurate
enough for training the DSCNN to regress. According to
the principle, we chose images from Sequences 00, 01, 02,
07, and 08 as training dataset. *e dataset for validation
was chosen from Sequence 05, and the testing dataset was
chosen from Sequences 04, 05, 09, 10, 11, 15, 17, and 18.
*e DSCNN was trained for up to 200 epochs at an initial
learning rate of 0.001 that was appropriately reduced with
increasing number of iterations to guarantee that the loss
function converged to the optimal solution.

When the DSCNN was trained, we used two consecutive
image frames, It and It+1, and stacked them together to form
a tensor in the positive order. We then fed the tensor to the
network to the left in Figure 4; correspondingly, we stacked

6 Complexity



the same frames together to a tensor in reverse order and fed
this tensor to the network to the right in Figure 4. *e
outputs of the two networks formed a pose pair to calculate
the loss function used to optimize the DSCNN. When the
DSCNN was tested, we used the left network as the working
network, the output of which was the relative pose. *en,
trajectory was recovered by translating the relative pose to
the absolute pose.

Overfitting is known to be an undesirable phenomenon
for DL-based methods. Some advanced techniques were
used while training the DSCNN to protect the network’s
goodness of fit, e.g., dropout and early stopping. *e average
losses in training and validation are shown in Figure 6, from
which it is clear that the losses of both training and vali-
dation converged well to a small range of error, as the
number of iterations increased, without overfitting.
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Figure 5: Average errors of the trained model on some results of loss function with different α and β. (a) Translation error against path
length. (b) Rotation error against path length. (c) Translation error against speed. (d) Rotation error against speed.
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Figure 6: Average losses in training and validation from DSCNN-VO loss function over iterations.
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Figure 7: Continued.
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5. Results of Deep Visual Odometry

In view of the abovementioned research methods, two
kinds of experiments were carried out to verify them: a
quantitative and a qualitative experiment. *e former
conducted a quantitative analysis of performance
depending on Sequence 00–10 with GT, and the latter one
qualitatively analyzed the generalization of the DSCNN-
VO on Sequence 11–21 without GT. *e method of
DSCNN-VO is compared with four methods that can be
divided into two categories: the conventional VO method,
represented by VISO-M and VISO-S, and the learning-
based method, represented by CNN-VO and CNN-LSTM-
VO. For fairness of competition, we set the configuration
of the CNN in the CNN-VO and CNN-LSTM-VO to be
identical to that in the DSCNN-VO.

*e quantitative experiment analyzed the performance
of the DSCNN-VO model according to the KITTI VO/
SLAM evaluation metrics in terms of average root mean
squared errors (RMSEs). *e trained DSCNN-VO model is
tested on Sequences 04, 05, 09, and 10. *e results of the
quantitative experiment are given in Figure 7. Each method
that recovered the trajectory in a different sequence is drawn
as the GT for reference. *e trajectory recovered by the
DSCNN-VO is better than the other monocular VO
methods, which indicates that the DSCNN-VO estimated
more accurate pose than the other monocular VOs without
prior information, e.g., neither the intrinsic parameter
matrix of the camera nor its calibration. *ere is no land-
mark alignment or other measure information offered to the
DSCNN-VO to obtain the poses. Table 2 summarizes the
mean errors of each method tested and reveals that the
proposed DSCNN-VO delivered the best performance than
the other monocular VO methods. In addition, the average

errors of each method tested on translation and rotation
with different path lengths and speeds are drawn in Figure 7.

*e error evaluation in Table 2 and Figure 8 is based on
the average RMSE. It depends on calculating the average
RMSE errors of translation and rotation in different lengths
of each subsequence, and the change in speed ranges from
100 to 800meters in the sequences. It is clear that the
proposed DSCNN-VO delivered more robust performance
than the VISO2_M, CNN-VO, and CNN-LSTM-VO but
worse than VISO2_S. *is indicates that the monocular VO
based on DSCNN is better than other monocular VO
methods but worse than the stereo VO. As a learning-based
VO method, the DSCNN-VO is better than state-of-the-art
nets for monocular VO.

As shown in Figures 8(a) and 8(b), the evaluation of the
DSCNN-VO on the errors of translation and rotation
against different path lengths yielded a remarkable im-
provement over other monocular VO methods, and both
of polylines decreased as the length of the trajectory in-
creased and approached the stereo VO method. Corre-
spondingly, the translational error against speed shown in
Figure 8(c) indicates that the DSCNN-VO was better than
the other monocular VOmethods. However, it still had the
tendency to diverge as speed increased. According to our
analysis, the reason for this phenomenon is the limited
number of training samples, the velocities of which were
large. Figure 8(d) shows the rotational error against speed,
where rotational error at a low speed was much higher than
that at high speed. *is might have occurred because the
KITTI dataset was recorded while a car was driving that
tended to rotate at slow speeds and travel straight when
speeding up.

*e qualitative experiment was conducted to validate the
generalization capability of the DSCNN-VO by exploring
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Figure 7: *e quantitative experiment. Trajectories of results of the DSCNN-VO for quantitative analysis on (a) Sequence 04, (b) Sequence
05, (c) Sequence 09, and (d) Sequence 10.
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Table 2: Mean errors of each method on testing sequences.

Seq.
DSCNN-VO CNN-VO CNN-LSTM-VO VISO2_M VISO2_S

trel rrel trel rrel trel rrel trel rrel trel rrel
04 3.02 2.09 8.82 0.77 4.42 2.13 8.46 0.57 0.57 0.32
05 4.53 1.93 7.94 2.79 4.5 1.99 11.17 4.04 2.33 1.10
09 4.69 1.42 8.48 3.11 5.35 1.65 13.98 1.36 3.09 1.17
10 6.30 1.54 10.04 2.93 8.06 1.93 19.68 3.57 1.74 1.07
Mean 4.64 1.75 8.82 2.41 5.58 1.93 13.32 2.39 1.93 0.92
trel: average translational RMSE drift (%) at lengths of 100m–800m. rrel: average rotational RMSE drift (o/100m) on lengths of 100m–800m.

CNN-VO
CNN-LSTM-VO

VISO2_M
VISO2_S
DSCNN-VO

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Tr
an

sla
tio

n 
er

ro
r (

%
)

100 300 400 500 600 700 800200
Path length (m)

(a)

CNN-VO
CNN-LSTM-VO

VISO2_M
VISO2_S
DSCNN-VO

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ro
ta

tio
n 

er
ro

r (
de

g/
m

)

100 300 400 500 600 700 800200
Path length (m)

(b)

CNN-VO
CNN-LSTM-VO

VISO2_M
VISO2_S
DSCNN-VO

5

10

15

20

Tr
an

sla
tio

n 
er

ro
r (

%
)

30 40 5020
Speed (km/h)

(c)

CNN-VO
CNN-LSTM-VO

VISO2_M
VISO2_S
DSCNN-VO

0.02

0.04

0.06

0.08

0.10

0.12

Ro
ta

tio
n 

er
ro

r (
de

g/
m

)

6 8 10 12 14 164
Speed (km/h)

(d)

Figure 8: Average errors tested on translation and rotation against different path lengths and speeds. *e DSCNN-VO, CNN-VO, and
CNN-LSTM-VO were trained and tested in the same conditions. (a) Translation error against path length. (b) Rotation error against path
length. (c) Translation error against speed. (d) Rotation error against speed.
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how it performed in entirely unknown scenarios not con-
sidered in the training dataset. Consider Sequences 11–21 of
the KITTI VO/SLAM benchmark, the scenarios of which
feature different motion patterns and scenes. Because these
sequences do not offer the GT, no quantitative analysis of
these results is available. Figure 9 shows the trajectories
recovered by five VOmethods in the qualitative experiment.
*e DSCNN-VO delivered good performance, with its
trajectory roughly closer to that of VISO2_S than the other
monocular VO methods. *is shows that the DSCNN-VO
can be trained to generalize well in novel scenarios.

Although the proposed method outperformed other
monocular VO systems in terms of the accuracy of trans-
lation and rotation, there is room for improvement. First, the
proposed method takes a long time to train and struggles in

real-time operation. Second, the depth information of the
given image is not considered to estimate pose because of
which the scale estimation is worse than that of the stereo
VO, as evidenced by the VISO2_S. *ird, the proposed
method is a supervised training framework that requires the
GT of the training dataset, and the size and accuracy of the
dataset influence the training of the network.

6. Conclusions

*is paper proposed an end-to-end monocular VO method
called the DSCNN-VO based on the deep Siamese neural
network. In order to obtain relevant geometric information
more accurately than other monocular VO methods, the
deep learning structure of the system is designed deeply, and
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Figure 9: *e qualitative experiment. *e trajectories of DSCNN-VO for qualitative analysis on Sequences (a) 11, (b) 15, (c) 17, and (d) 18
without the ground truth available.
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the structure parameters are optimized through repeated
experiments. *rough qualitative and quantitative test
comparison, the proposed DSCNN-VO achieved good re-
sults in terms of estimating poses and recovering trajectory
by appending constraints to extract geometric features be-
tween consecutive frames.*ere is no need to depend on any
module in state-of-the-art monocular VO algorithms for
pose estimation. Because the DL-based VO system is trained
in a data-driven manner, there is no need to fine tune the
parameters of any modules in the VO system. Its ability to
generalize is also validated in scenarios with little infor-
mation through testing in a qualitative experiment.
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