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Metaheuristic algorithms are often applied to global function optimization problems. To overcome the poor real-time per-
formance and low precision of the basic salp swarm algorithm, this paper introduces a novel hybrid algorithm inspired by the
perturbation weight mechanism. .e proposed perturbation weight salp swarm algorithm has the advantages of a broad search
scope and a strong balance between exploration and exploitation and retains a relatively low computational complexity when
dealing with numerous large-scale problems. A new coefficient factor is introduced to the basic salp swarm algorithm, and new
update strategies for the leader position and the followers are introduced in the search phase. .e new leader position updating
strategy has a specific bounded scope and strong search performance, thus accelerating the iteration process. .e new follower
updating strategy maintains the diversity of feasible solutions while reducing the computational load. .is paper describes the
application of the proposed algorithm to low-dimension and variable-dimension functions. .is paper also presents iteration
curves, box-plot charts, and search-path graphics to verify the accuracy of the proposed algorithm. .e experimental results
demonstrate that the perturbation weight salp swarm algorithm offers a better search speed and search balance than the basic salp
swarm algorithm in different environments.

1. Introduction

In many engineering fields, there are numerous optimiza-
tion problems that must be solved under complicated
constraints, over large search domains and high complexities
[1–3]. Traditional mathematical strategies, such as the
steepest descent method and the variable scale method, can
only calculate simple and continuous functions [4, 5]. .us,
complex features such as nonlinearity, multiple variables,
multiple constraints, and multiple dimensions require new
optimization strategies that have strong calculation abilities
and a high degree of precision [6–8]. Intelligent meta-
heuristic algorithms have received considerable attention
from researchers, and rapid improvements in such tech-
niques have been made in recent years as a result of
their widespread utilization, enhanced computational
technologies, high practicability, and fault-tolerant abilities
[9–13].

Optimization algorithms have strong prospects related
to numerous practical industrial fields and theoretical
mathematics applications, such as global numerical opti-
mization [14], path planning [15], clustering analysis [16], 0-
1 knapsack problems [17], image segmentation [18], PID
tuning [19], obstacle avoidance of robotic manipulator [20],
and feature selection [21]. All of those areas need algorithms
to obtain more precise parameters. In recent years, scholars
have proposed many advanced metaheuristic algorithms,
such as monarch butterfly optimization (MBO) [22], beetle
antennae search algorithm (BAS) [23], earthworm optimi-
zation algorithm (EWA) [24], elephant herding optimiza-
tion (EHO) [25], crow search algorithm (CSA) [26], and
moth search algorithm (MS) [27]. MBO, which is mainly
determined by the migration operator and butterfly
adjusting operator, is ideally suited for parallel searching and
well capable of balancing trade-off between intensification
and diversification. BAS not only has the ability of individual
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recognition and environmental recognition abilities but also
owns the simple code. In EWA, the addition of a Cauchy
mutation can make certain earthworms escape from local
optima and enhance the algorithm searching ability and can
also help the whole earthworm positions proceed to a better
position. EHO is divided into two operators including the
clan updating operators and separating operators. .e worst
elephant position is replaced by randomly generated posi-
tions, which can significantly accelerate convergent speed,
avoiding premature and local convergence. CSA applies a
population of seekers to explore the searching space, by the
use of a population, the probability of searching a feasible
position and escaping from local optima increases. MS
searching process can be seen as exploitation and explora-
tion, and the act of balancing of exploitation and exploration
is indeed. MS has a good performance and effectiveness.

.e salp swarm algorithm (SSA), a nature-inspired
metaheuristic algorithm, is proposed by Mirjalili et al. in
2017 [28], which displays some promising performance for
global optimization functions. SSA imitates the salp living
and predation habits, and the mathematical model of SSA
can be divided into two groups including one leader and
followers..e leader is the first salp in front of the salp chain,
whereas other salps can be seen as followers. .e leader
indirectly guides the salp swarm to follow each other. SSA
has exploration and local optima avoidance abilities, which
originate from the reason that salps tend to interact with
each other; so, salps do not gravitate towards a local feasible
solution easily. .e salp chain makes the SSA search the
finding space and gradually move to the global optimum,
which demonstrates the superior exploitation of SSA. SSA
converges towards the food position proportional to the
iteration number because the connections between the
leaders also pull other salps towards the food position. In
addition, it is observed that SSA can balance exploration and
exploitation. Owing to the distinguishing characteristics
including simple code and easy implementation, it is be-
coming one of the most studying hot areas in algorithm
fields, such as node localization in wireless sensor networks
[29], the Takagi–Sugeno fuzzy logic controller design [30],
the extreme learning machine optimization [31], the IIR
wideband digital differentiators and integrators design [32],
the photovoltaic cell models parameters identification [33],
PEM fuel cells parameters extracting [34], the passive sonar
target classification [35], the airfoil-based savories wind
turbine optimization [36], the model predictive controller
devising [37], and the soil water retention curve parameter
estimation [38]. .ere are different salp swarm algorithm
variants that are used in many areas. Wan et al. [39] pro-
posed that theMPPTcontroller is achieved by combining the
salp swarm algorithmwith the grey wolf optimizer. Gao et al.
[40] combined SSA with quantum swarm intelligence and
proposed the quantum salp swarm algorithm to solve
Nakagami-m quantile functions. Xing and Jia [41] intro-
duced the Lévy flight salp swarm algorithm which can
eliminate the problem of getting stuck in local optima and
applied the proposed algorithm for multilevel color image
segmentation..e literature [42] designed an advanced Lévy
flight salp swarm algorithm for hydraulic systems. Majhi

et al. [43] drafted a chaotic salp swarm algorithm based on
the fire neural model and quadratic integration. Neggaz et al.
[44] created improved leaders of the salp swarm algorithm
using the sine cosine algorithm and disrupt operator, the
updating position it consists to update the leader position by
the sine cosine algorithm and applying the disrupt operator.
.e literature [45] applied diversities of the moth-flame
optimization (MFO) algorithm to weaken the limitations of
basic SSA and the proposed algorithm called SSAMFO.
Ibrahim et al. [46] devised the hybridization algorithm
SSAPSO between SSA and PSO, in which the exploration
and the exploitation steps of SSA are improved. Panda and
Majhi [47] introduced an improved version of SSA, which
can boost the s searching performance of SSA by using space
transformation search. In literature [48], a new SSA binary
version called BSSA was drafted based on an Arctan
transformation. In literature [49], a novel hybrid algorithm
based on SSA and chaos theory was proposed, and the
capability of proposed algorithm in finding an optimal
feature subset can enhance the classification accuracy. Wu
et al. [50] proposed an improved salp swarm algorithm
based on weight factor and adaptive mutation, and testing
results showed the good convergence performance of es-
caping local optimum when compared with basic SSA.

Xiang et al. [51] proposed a modified salp swarm al-
gorithm called polar coordinate salp swarm algorithm
(PSSA), which is inspired by the spiral aggregation chain and
foraging trajectory of salps. Hegazy et al. [52] added a new
control parameter in basic SSA to adjust the present best
solution, and the new method is called the improved salp
swarm algorithm (ISSA). Qais et al. [53] introduced an
enhanced salp swarm algorithm (ESSA) to improve the
power point tracking and the fault ride-through capability of
a grid-tied permanent magnet synchronous generator driven
by a variable speed wind turbine.

.e leader salp searches for the best solution to the given
problems using the difference between the lower searching
bound and the upper searching bounds, which causes that
the local optimum cannot be sufficiently utilized for the
optimization procedure in basic SSA. .e expression factor
with a fixed coefficient is the e exponential function, and the
exponential function will emerge the exponential disaster in
the later iteration phase, which causes premature conver-
gence. .e followers update their next positions by applying
for their neighbor positions. .is single updating mecha-
nism is unfavorable in terms of algorithm diversity. To
overcome the above problems and enhance the performance
of SSA, this paper describes the perturbation weight salp
swarm algorithm (PWSSA). A new coefficient factor, a new
leadership position updating strategy, and new followers
updating strategy are added to the basic salp swarm algo-
rithm. PWSSA uses the perturbation weight mechanism to
weaken the distance difference of the best solution and each
solution and applies the asymptotic circular searching
mechanism to find a better leader position at a faster speed.
Followers’ positions will be changed more and more slightly
with increasing iterations in PWSSA. PWSSA can balance
the leader position, and other followers’ positions can
weaken the exponential explosion problem in basic SSA. As
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a result, the effectiveness of search orientation is significantly
enhanced. For experiments and discussion, this paper used
different algorithms to carry on different function experi-
ments including low-dimension functions and variable-di-
mension functions, and iteration curves, box-plot charts,
and searching path graphics were given to show the strong
searching performance of PWSSA. All experiment results
demonstrate that the proposed algorithm has a stronger
searching accuracy and larger exploration balance than the
basic salp swarm algorithm.

.e rest of this paper is organized as follows: in Section 2,
the basic salp swarm algorithm is presented. In Section 3, the
perturbation weight salp swarm algorithm is proposed.
Experimental parameters, experimental environments, re-
sults, and discussion are given in Section 4. In Section 5, the
conclusion is drawn.

2. Salp Swarm Algorithm

.e salp swarm living in the sea is a transparent organism that
is similar to jellyfish. Mirjalili et al. introduced the salp swarm
algorithm depending on the salp predation strategy, which is a
chain-like behavior relying on the chain mechanism of the
group. SSA, which is based on chain behavior to find the
optimal solution, is one of the evolutionary metaheuristic
algorithms. In the salp swarm, all salps are divided into two
parts including a leader and followers. .e salp presented at
the front of the salp chain is the leader, whereas other salps can
be seen as the followers. In the procedure of the salp predation
mechanism, the leader in the front of the chain guides fol-
lowers search food, and all followers, which follow the recent
salp, deliver food signals to keep the flexibility chain shape.

In this paper, each salp position is set to find food in an
N×D dimension searching space, where N represents the
population size, and D represents the searching dimension.
Hence, ith salp position xi

d(i�1,2,...,N),(d�1,2,...,D) in the in the dth
dimension can be represented as

xi
d �

x11 x12 · x1D
x21 x22 · x2D
· · · ·

xN
1 xN

2 · xN
D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

.e leader position x1
d(d�1,2,...,D) is assigned in d-di-

mension searching space.
.e food source, which can be seen as the best solution in

functions, is also set to be present in the searching area and is
targeted by the salp swarm chain. .e leader updates its
position according to the food source position. .e position
of the leader can be represented as

x
1
d �

Fd + c1 ubd − lbd( c2 + lbd( , c3 ≥p,

Fd − c1 ubd − lbd( c2 + lbd( , c3 <p,
 (2)

where x1
d is the leader position, Fd is the food position, ubd is

the upper bound of dth dimension searching space, and lbd is
the lower bound of dth dimension searching space. Pa-
rameters p, c2, and c3 are random numbers uniformly

obtained in the interval of [0, 1]. .e parameter c1 indicates
the expression coefficient and can be represented as

c1 � 2e
− (4t/T)

, (3)

where t is the current iteration number, T is the maximum
number of iterations, and e is the natural base.

In each searching procedure, each follower tracks the
leader position by following other followers. Each follower
position can be defined as follows:

x
i
d �

1
2

x
i
d + x

i− 1
d , (4)

where i≥ 2, xi
d, and xi− 1

d mean one ith follower position and
its neighbor position in dth dimension.

.e pseudocode of the basic SSA is given in Algorithm 1.
.e SSA main step can be summarized in the pseudocode as
follows:

3. Perturbation Weight Salp Swarm Algorithm

.e leader guides followers find food according to the
difference of the lower searching bound and the upper
searching bound in SSA, but if the searching problem has
large-scale optimization fields, the large searching scope
makes that the local searching is not a sufficient optimization
process, and the neighborhood information near the local
optimization optimum is insufficiently applied. .e ex-
pression factor c1 is the e exponential function with a fixed
coefficient, and the exponential equation will grow explo-
sively at the later of iteration; therefore, the leader searching
strategy has drawbacks of premature convergence and low
searching precision. .e parameter c2 is randomly selected
in the range of [0, 1], which is not suitable for high-precision
searching in the later of iterations. Positions of other salps
are updated by the average position of each follower and its
neighbor. Updated positions of followers have a single di-
rection and blindness, which cause that SSA falls into the
local extremum and maximize the viciousness of iterations.
To get a better searching strategy and avoid the blindness of
the searching process, this paper added the variable per-
turbation weight mechanism into the basic SSA, and the
proposed algorithm is called the perturbation weight salp
swarm algorithm (PWSSA).

.e perturbation weight mechanism works by changing
the distance difference of the optimum solution and the
population solution. .e searching range is regulated by
applying the asymptotic circular searching to obtain a better
leader searching strategy with a faster speed and higher
balance. .e followers’ position will achieve better, and the
position adjusting will change more and more slightly with
increasing iterations. .e perturbation weight mechanism
will make SSA get the optimum solution better. New factors
c1 and c2 can be updated as follows:

c1new � u1 · 1 −
t

T
 , (5)

c2new � u2 · 1 −
t

T
 , (6)
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where u1 and u2 meet the standard normal distribution,
u1∼N (0, 1) and u2∼N (0, 1). .e standard normal fraction
has advantages of the concentration, the symmetry, and the
uniform variability.

.e new leader position can be updated as follows:

x
1
d �

Fd + c1new Fd − x
1
d c2new + lbd , c3 ≥p,

Fd − c1new Fd − x
1
d c2new + lbd , c3 <p.

⎧⎪⎨

⎪⎩
(7)

To increase diversities of followers’ positions, the mul-
tidirectional crossing searching strategy is added in the basic
SSA:

x
i
d � w1 w2 · Fd − x

i
d  + w3 · Fd − x

i− 1
d  , (8)

where w1, w2, and w3 are random parameters in the range of
[− 1, 1].

.e specific steps of PWSSA are described as follows:

Step 1. Set salp population size N and the searching
dimension D. Define the maximum number of itera-
tions T. Determine probability coefficient p. Let t� 0.
Each ith salp position can be seen as xi

d (i�1,2,. . .,N) and
(d�1,2,. . .,D). Set the probability coefficient p.
Step 2. Begin the iteration. Judge whether i is equal to
one. If i is equal to one, jump into Step 3. If i is not equal
to one, jump into Step 4.
Step 3. Use equation (5) to compute the factor c1,new.
Use equation (6) to compute the factor c2,new. Set c3 in
the range of [0, 1]. Compute the current optimal so-
lution Fd. Judge whether c3 is larger than p. If c3 is larger
than p, the leader position can be expressed by part one

of equation (7). Otherwise, the leader position can be
expressed by part two of equation (7).
Step 4. Set parameters w1, w2, and w3 in the range of
[− 1, 1]. Update followers’ positions using equation (8).
Step 5. Record the global optimal solution. If there is a
better solution, replace Fd.
Step 6. Set t� t+ 1. Judge whether the current iteration t
is equal to the maximum number of iterations T; if t is
equal to T, stop the iteration. If not, jump to Step 2.

.e PWSSA main step can be summarized in the
pseudocode shown in Algorithm 2, and the PWSSA main
step flow chart is shown in Figure 1.

4. Results and Discussion

4.1. Experimental Parameters and Environments.
Benchmark function testing is a popular and common way
to indicate the performance of intelligent algorithms. .is
paper introduces benchmark functions to exhibit the su-
perior performance of the proposed algorithm, and the
proposed algorithmwill be evaluated on classical benchmark
functions in this section. To testify the ability of the proposed
algorithm to solve different dimensional complex functions,
eight low-dimension functions (f1–f8) and four variable-
dimension functions (f9–f12) were chosen for algorithm
testing in Table 1. In Table 1, D, scope, and aim represent the
function dimension, the searching range, and the ideal value.

Low-dimension functions (f1–f8) are applied to measure
the global searching ability of the algorithm. Variable-di-
mension functions (f9–f12) are very difficult to converge to
the global optimal solution because of owning unevenly

Input: fitness function F(·). Dimension d. Population size N. Each ith salp position xi
d. Best position Fd. Best function value F∗.

[lbd · ubd]. t� 0. Set T and p.
Output: F∗.
while ( t<T)
c1 � 2e− (4t/T)

c2 ∈ [0, 1]
c3 ∈ [0, 1]
for 1 (i� 1 :N)

if 1 (i� 1)
if 2 (c3≥P)
x1

d � Fd + c1 ((ubd − lbd)c2 + lbd)
else

x1
d � Fd − c1 ((ubd − lbd)c2 + lbd)

end if 2
else

xi
d � (xi

d +xi− 1
d )/2

end if 1
if 3 F (xi

d) is better than F∗

Fd � xi
d

F∗ � F (xi
d)

end if 3
end for 1
t� t+ 1

end while

ALGORITHM 1: SSA.
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distributed local optima points with strong oscillation and
nonconvexity, especially in the case of being large-scale and
high-dimension functions. To test the proposed algorithm in
multisides, dimensions of variable-dimension functions
were selected 2D and 100D in this paper. In the original SSA
literature, authors compared SSA with seven popular

algorithms, and performances of SSA are better than
comparison algorithms. To avoid repeat and unnecessary
experiments, this paper selected other algorithms to carry on
comparative experiments. Comparison algorithms included
the SSA, simulated annealing (SA) [54], Lévy flight trajec-
tory-based whale optimization algorithm (LWOA) [55], and

Input: fitness function F(·). Dimension d. Population size N. Each ith salp position xi
d. Best position Fd. Best function value F∗.

[lbd · ubd]. t� 0. Set T and p.
Output: F∗.
while (t<T)
c1new � u1 (1 − t/T)
c2new � u2 (1 − t/T)
c3 ∈ [0, 1]
for 1 (i� 1 :N)

if 1 (i� 1)
if 2 (c3≥P)
x1

d � Fd + c1new ((Fd − x1
d)c2new+ lbd)

else
x1

d � Fd − c1new ((Fd − x1
d)c2new+ lbd)

end if 2
else
xi

d � w1[(w2 · Fd − xi
d) + (w3 · Fd − xi− 1

d )]
end if 1

if 3 F (xi
d) is better than F∗

Fd � xi
d

F∗ � F (xi
d)

end if 3
end for 1
t� t+ 1

end while

ALGORITHM 2: PWSSA.

Start

Generate ith (i=1, 2, ... , N) salp position.
Initialize all parameters, t = 0, p, D, N, and T

Update c1new, c2new, and c3

i = 1Yes

Yes

No

No

Update the leader position by equation (7) Update followers positions by equation (8)

Update the global optimum solution

t = t +1 t = T

Stop

Figure 1: .e flowchart for PWSSA.
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Lévy flight salp swarm algorithm (LSSA) [41]. All algorithm
processes and details can be found in the original algorithm
literature.

SA is inspired by analogy to the physical annealing
procedure in metals, which is a local searching algorithm
proposed in the early 1980s. .e theory of the annealing
procedure is to heat the solid-state metal to a large tem-
perature, so that atoms of the metal are in a stochastic
condition and then cool the metal down slowly according to
particular procedures. Starting from some random solutions
and fixed initial temperature, SA controls the process by
metropolis criterion and a group of parameters called
cooling schedule. SA has two initial parameters including the
initial temperature T0 and the decay factor k. For SA, pa-
rameter T0 selects 100, and parameter k selects 0.95.

LWOA, which was proposed by Ling et al. in 2017,
combines a Lévy flight trajectory and whale optimization
algorithm to get a better trade-off between the exploration
and exploitation for the basic whale optimization algorithm.
Lévy flight is a special random searching path where walking
steps are selected according to heavy power-law tails. LWOA
has five initial parameters including r, b, l, p, and β. For
LWOA, r and p are random numbers in [0, 1], l is auto-
matically selected in [0, 1], b� 2, and β� 1.5.

LSSA was proposed by Xing and Jia in 2019. Lévy flight
trajectory can not only maximize the diversity of searching
domains but also enhance the global searching ability of SSA
to avoid getting into local optimal values. .ere are two
parameters in LSSA, including the power-law exponent β
and the probability factor P. For LSSA, β� 1.5 and P� 0.5.

For PWSSA and SSA, parameter p equals to 0.5. Initial
parameter values of all algorithms were chosen according to
original algorithm literature, and all algorithms processes
and details can be found in the original algorithm literatures.
For each experiment of an algorithm on different benchmark
functions, ten independent runs were performed to get a fair
comparison among different algorithms. .e maximum
number of iterations was set to 1000, and the population size
was set to 50. .e best value, the worst value, the average
value, and the standard deviation of each algorithm opti-
mization were recorded. To make a fair comparison, all
algorithms were programmed in MATLAB (R2014b, .e
MathWorks, Inc, Natick, MA, USA). All experiments were
conducted on a laptop with Intel (R) Core (TM) i5-4210U
CPU, 2.30GHz, 4GB RAM. All data and figures were
completed in MATLAB (R2014b, .e MathWorks, Inc,
Natick, MA, USA).

4.2. Date Discussion. To demonstrate the optimization ef-
fect, four indicators were selected to comprehensively
evaluate the competitiveness of different algorithms. Four
indicators consist of the best searching value (best), the
worst searching value (worst), the median (med), and the
standard deviation (std). Fixed two-dimension functions
testing results and two dimensions of variable-dimension
functions testing results are given in Table 2. Other variable-
dimension functions (100D) testing results are shown sep-
arately in Table 3. Tables 2 and 3 show that all searching

values of the proposed algorithm are much closer to the ideal
value in Table 1, which demonstrates that PWSSA not only
can obtain the best aim but also have strong searching
abilities. As the dimension of the testing function increases,
the accuracy of the algorithms will decline, but the test
results using PWSSA are consistently better than those using
other algorithms. .e convergence precision and optimi-
zation success ratio of the proposed algorithm is better than
those of the other algorithms for all test functions. When a
set of data changes significantly, the median can be used to
illustrate the centralized trend of the data. PWSSA has the
smallest median value of all the test results, indicating an
outstanding performance compared with the other algo-
rithms. PWSSA also has the smallest standard deviation of
all the algorithms, demonstrating that the proposed algo-
rithm offers good stability and produces relatively few poor
results. Standard deviation, which can measure the discrete
degree of a dataset, is the arithmetic square root of the
variance. In other words, a large standard deviation exhibits
a large difference betweenmost values and the average value,
and a small standard deviation shows that the calculated
value is closer to their average value. PWSSA has the smallest
standard deviation than those of other algorithms, which
display that the proposed algorithm has good stability and a
few poor results. In PWSSA, the good solution in the current
iteration is applied by followers to find the better solution in
the next iteration, and random factors can enhance diver-
sities of solutions in nonlinear high-dimension problems, so
it can be seen from testing results that in f7, f8, and f12,
PWSSA can achieve the best optimization results on best,
worst, mean, and std values.

4.3. 6e Wilcoxon Rank Sum Test Discussion. .e rank sum
test is a nonparametric technique used to define whether a
result is statistically significant. .e nonparametric sta-
tistical test can be used in mathematics fields to check the
algorithm performance [56]. .e rank sum test arranges all
data in order, from small to large, and has strong practi-
cality because there is no special form of dispersed data or
known distribution. However, the rank sum test ignores
absolute value differences in data testing, which not only
makes the test result approximate but also causes the loss of
some test information. Wilcoxon improved the basic rank
sum test by considering the different directions and sizes of
the data. .e Wilcoxon rank sum test can be applied to a
distribution of data to check any differences among them
and offers more effective performance than the basic rank
sum test. .e Wilcoxon rank sum test produces p values: if
the p value is less than 0.05, there is a significant difference
at a level of 0.05. To further compare PWAAS perfor-
mances with those of other algorithms, the Wilcoxon
signed rank test was tested in this paper. All p values are
given in Table 4, and this paper applied the proposed al-
gorithm results against those of other algorithms at the 0.05
significance level. For SSA, the p values of function 1 and
function 6 are equal to 0.011 and are larger than 0.05. For
SA, the p values of function 4 is equal to 0.473 and is larger
than 0.05. For LWOA, the p values of function 2 and
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functions 4–6 are larger than 0.05. For LSSA, the p values in
function 6 is equal to 0.011 and is larger than 0.05. Other
results are all less than 0.05. .e Wilcoxon rank sum test
results display that the proposed algorithm owns the
strongest searching efficiency and the greatest finding
mechanism around the best solution, which further proves
that PWSSA has the wonderful searching performance.

4.4. Iteration Curves Discussion. Iteration is the activity of
repeating a feedback procedure with the purpose of finding
the desired goal. Each repetition of all procedures in an al-
gorithm is called one iteration, and the result of each iteration
provides the initial value for the next iteration. To exhibit the
convergence speed and global search ability of all algorithms
more intuitively, the average convergence curves of all

Table 2: Comparison of testing results for functions (D� 2).

Function Index
Algorithm

PWSSA SSA SA LWOA LSSA

f1

Best 2.59854E − 07 1.03505E − 06 3.80418E − 05 1.76767E − 05 1.62809E − 05
Worst 3.01968E − 05 0.01103 7.43357E − 04 0.00122 0.02305
Med 1.97725E − 05 6.51329E − 04 2.39672E − 04 3.45484E − 04 0.00367
Std 9.78409E − 05 0.00381 2.22456E − 04 3.90852E − 04 0.00868

f2

Best 9.06274E − 09 3.98052E − 06 0.00177 2.57169E − 05 5.59844E − 05
Worst 0.00125 18.45495 1.12698 2.38152 9.20663
Med 7.22103E − 05 0.16124 0.01565 5.99209E − 04 0.00964
Std 4.52172E − 04 6.31572 0.42126 0.87229 2.90774

f3

Best 0 2.46394E − 05 0.00136 5.0005E − 06 2.77604E − 04
Worst 1.58274E − 28 9.78594 37.97164 3.49800E − 04 0.027876542
Med 2.27881E − 30 0.00317 9.56406 4.98979E − 05 6.94903E − 04
Std 5.73257E − 29 4.06975 14.74794 1.14505E − 04 0.00858

f4

Best 9.77441E − 05 0.00285 4.40269E − 05 1.05692E − 04 1.26063E − 04
Worst 0.01444 5.97614 0.00563 0.01279 0.82895
Med 5.39004E − 04 0.19535 9.18479E − 04 0.00275 0.10037
Std 0.00492 2.24549 0.00165 0.00363 0.31098

f5

Best 1.55739E − 09 1.77563E − 05 1.62255E − 04 2.26596E − 06 2.38314E − 05
Worst 4.97218E − 04 2.69243 0.00164 8.58795E − 04 0.20599
Med 2.23530E − 05 0.01289 7.99437E − 04 3.13375E − 05 0.02672
Std 1.52718E − 04 0.85991 4.86968E − 04 2.98953E − 04 0.07261

f6

Best 5.49332E − 08 1.6071E − 07 0.00115 1.02565E − 05 2.62883E − 07
Worst 2.09433E − 04 0.11007 0.03757 1.37803E − 04 0.00534
Med 1.44421E − 05 9.5265E − 04 0.00532 8.72917E − 05 6.50038E − 04
Std 6.36087E − 05 0.04318 0.01402 4.44597E − 05 0.00205

f7

Best 0 1.34499E − 06 5.73498E − 07 1.19744E − 08 1.40161E − 09
Worst 5.99251E − 30 1.30251E − 04 5.94346E − 06 6.66386E − 07 7.96877E − 06
Med 1.81891E − 32 4.21287E − 06 2.21515E − 06 1.01826E − 07 9.11214E − 07
Std 1.87875E − 30 4.77821E − 05 1.6056E − 06 1.9426E − 07 2.36125E − 06

f8

Best 0 2.03368E − 06 3.47271E − 05 7.18475E − 06 7.18865E − 06
Worst 2.27824E − 29 0.00228 8.13039E − 04 1.67183E − 04 3.95153E − 04
Med 1.59887E − 31 0.00133 1.25073E − 04 4.12726E − 05 1.22018E − 04
Std 7.51732E − 30 6.65682E − 04 3.11043E − 04 5.63652E − 05 1.40560E − 04

f9

Best 8.88178E − 16 0.00952 0.00281 7.94444E − 05 742906E − 04
Worst 7.99361E − 15 0.34629 0.13792 0.00999 0.04047
Med 8.88178E − 16 0.04335 0.02221 0.00126 0.00975
Std 2.99591E − 15 0.11375 0.05041 0.00289 0.01123

f10

Best 2.39978E − 08 1.21556E − 06 2.50954E − 05 2.22576E − 07 5.94347E − 08
Worst 4.64332E − 06 1.16567E − 04 18.31331 4.86683E − 06 4.50717E − 05
Med 6.04547E − 07 5.86534E − 05 3.18643 8.57693E − 07 8.81307E − 06
Std 1.38693E − 06 3.70681E − 05 6.67089 1.52368E − 06 1.33158E − 05

f11

Best 2.67505E − 30 8.45269E − 08 6.07517E − 06 1.27075E − 07 1.4559E − 09
Worst 4.22997E − 27 6.40967E − 05 6.85882E − 05 5.10776E − 06 1.59526E − 06
Med 8.13894E − 28 4.51534E − 06 2.80607E − 05 9.86996E − 07 1.22476E − 07
Std 1.40801E − 27 2.2201E − 05 2.19078E − 05 1.84301E − 06 6.34252E − 07

f12

Best 0 1.16251E − 08 1.89741E − 09 2.61773E − 10 5.38026E − 13
Worst 3.14782E − 31 9.51884E − 06 1.087E − 05 1.33367E − 07 4.76809E − 07
Med 1.05963E − 35 2.58401E − 07 1.45518E − 06 1.36857E − 08 1.36892E − 07
Std 1.03358E − 31 2.92926E − 06 3.23044E − 06 4.08975E − 08 1.60624E − 07
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algorithms applied to functions of different dimensions are
displayed in Figures 2 and 3. Single logarithmic coordinates
are used in this paper for a more detailed analysis. Figure 2
exhibits two-dimensional convergence curves of PWSSA and
its competitors. Figure 3 demonstrates iteration graphs of
algorithms at variable-dimension functions (100D), respec-
tively. Note that all convergence curves discussed in the
following subsections are the averages of ten independent
executions. As the dimension increases, the optimization
performance and iteration speed of all algorithms decrease,
although the performance degradation of PWSSA is not
severe. .e proposed algorithm achieves the target value for
most functions with the fastest iteration speed and highest
efficiency. .e LSSA has better iteration rates than SSA in
most functions but still cannot outperform the proposed
algorithm. It is noticeable that PWSSA gives the superior
global iteration rate and accuracy in comparison with original
SSA, which is easy to be trapped to the local optimal. All

figures reveal that SSA will be much poorer as the dimension
increases, while the proposed algorithm still can offer the
distinguished searching ability and its convergence speed and
precision rank number one in all functions. In other words,
PWSSA can apply fewer iterations to solve problems and is
more competent than other algorithms. PWSSA enormously
boosts the iteration speed and searching ability of basis SSA
mainly because of the introduction of the many-sided
learning and local random perturbation strategies between
successive followers positions.

4.5. Box-Plot Charts Discussion. Box-plot charts are used to
show dispersion information about a set of data. .ey have
the advantages of detecting abnormal values and data
skewness and are widely used to distinguish algorithm ca-
pabilities in terms of data symmetry and data dispersion.
.ere are six parameters in a typical box-plot chart, namely,
the maximum value, minimum value, median, upper
quartile, lower quartile, and outliers. A set of data can be
evaluated using five of these parameters. Figures 4 and 5
show box-plot charts of all algorithms after calculating a
different function. .ere are many local optima in high-
dimensional functions, so the aggregation degree of solu-
tions is a crucial index for evaluating algorithm perfor-
mance. If an algorithm becomes trapped around a local
extremum, it can result in premature convergence. PWSSA
produces the narrowest box-plot charts and fewest outliers
for all functions. .e median and upper/lower quartiles
computed by PWSSA are lower than those given by the other
algorithms, demonstrating that the collaborative random
search strengthens the capability for individual diversity and
avoids premature convergence. It is apparent that the
proposed algorithm tends to obtain the best performance in
precision on most functions as the dimension increases,
which is mainly contributed by followers’ random positions
generated, and SA and LWOA have the worst performances.
SA has the largest variance in all algorithms. All box-plot

Table 3: Comparison of testing results for functions (D� 100).

Function Index
Algorithm

PWSSA SSA SA LWOA LSSA

f9(D�100)

Best 8.88178E − 16 0.02270 21.26791 2.07645E − 05 0.00985
Worst 4.44089E − 15 0.22181 21.32175 0.002352706 0.04736
Med 8.88178E − 16 0.07466 21.30594 4.72716E − 04 0.01632
Std 1.12347E − 15 0.06114 0.02102 9. 50222E − 04 0.01411

f10(D�100)

Best 3.55168E − 08 2.65636E − 04 12367.37563 7026.80204 1.65828E − 06
Worst 3.00205E − 04 0.08699 15156.57782 19124.12214 0.00753
Med 6.80021E − 06 0.02705 13920.22547 15014.00730 0.00335
Std 9.50020E − 05 0.03267 863.08271 3611.41568 0.00251

f11(D�100)

Best 4.92091E − 20 1.00288E − 04 150.17481 18.04087 6.10563E − 06
Worst 2.16703E − 18 0.00917 186.65021 53.76659 3.35757E − 04
Med 4.09074E − 19 0.00125 178.64669 27.58041 5.93374E − 05
Std 6.98319E − 19 0.00265 10.44040 13.99187 9.57910E − 05

f12(D�100)

Best 0 1.68224E − 09 2.69963E+ 46 1.69524E − 11 6.33227E − 10
Worst 8.02130E − 31 2.22047E − 06 7.39875E+ 52 2.85668E − 07 1.04169E − 06
Med 2.28378E − 33 1.57269E − 07 1.66322E+ 50 5.03202E − 09 2.29748E − 08
Std 2.50569E − 31 7.15649E − 07 2.31712E+ 52 9.25094E − 08 3.53412E − 07

Table 4: Comparison of the Wilcoxon rank sum test.

Function
Algorithm

SSA SA LWOA LSSA
f1 0.011 0.004 0.004 0.002
f2 0.002 1.83E − 04 0.076 0.003
f3 1.79E − 04 1.79E − 04 1.79E − 04 1.79E − 04
f4 5.83E − 04 0.473 0.186 0.008
f5 7.69E − 04 4.40E − 04 0.273 0.001
f6 0.011 1.83E − 04 0.021 0.011
f7 1.63E − 04 1.63E − 04 1.63E − 04 1.63E − 04
f8 1.73E − 04 1.73E − 04 1.73E − 04 1.73E − 04
f9(D�2) 1.48E − 04 1.48E − 04 1.48E − 04 1.48E − 04
f10(D�2) 4.40E − 04 1.83E − 04 0.273 0.002
f11(D�2) 1.83E − 04 1.83E − 04 1.83E − 04 1.83E − 04
f12(D�2) 1.63E − 04 1.63E − 04 1.63E − 04 1.63E − 04
f9(D�100) 8.74E − 05 8.74E − 05 8.74E − 05 8.74E − 05
f10(D�100) 2.46E − 04 1.83E − 04 1.83E − 04 0.001
f11(D�100) 1.83E − 04 1.83E − 04 1.83E − 04 1.83E − 04
f12(D�100) 1.73E − 04 1.73E − 04 1.73E − 04 1.73E − 04
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Figure 2: Convergence curves for functions (D� 2). (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f6. (g) f7. (h) f8. (i) f9(D�2). (j) f10(D�2). (k) f11(D�2). (l)
f12(D�2).
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Figure 3: Convergence curves for functions (D� 100). (a) f9(D�100). (b) f10(D�100). (c) f11(D�100). (d) f12(D�100).
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Figure 4: Continued.
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charts demonstrate that the proposed algorithm has large
robust and big stability in comparison with other algorithms,
and the figures can show that PWSSA can avoid local
extremum.

4.6. Searching Paths Discussion. To further discuss the
powerful searching capability and optimization performance
in PWSSA, Figure 6 gives the optimal PWSSA search path,
the optimal SSA search path, and the contour plot of each
function in the two-dimension plane.

Searching path figures can examine whether the algo-
rithm will fall into the local optimal solution on complex
functions. .rough comparison of searching paths with the
traditional SSA algorithm, all searching paths of PWSSA are
shorter than SSA, which demonstrate the efficiency of

PWSSA in function problems. PWSSA also applies the
finding mechanism of tightening from the neighborhood to
the extreme point due to average optimality and constrained
average optimality. From Figure 6, we can find that the
PWSSA searching path is much less than the SSA searching
path; SSA has many repeat-invalid short-distance searching
paths and occasional long-distance searching paths. Two sets
of searching paths display that compared with the basic SSA,
PWSSA can explore a wider range and is less affected by
iterations, so PWSSA owns better general-purpose optimi-
zation abilities. PWSSA also is more flexible and can not only
completely avoid collisions with obstacles but also provide
numerous feasible solutions. .e proposed algorithm can
balance the searching speed and accuracy and provide a
brilliant and satisfactory solution as much as possible in the
case of meeting variable-demand requirements. All searching

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

0

0.02

0.04

0.06

0.08

(d)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

×10–3

0

5

10

15

20

(e)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

×10–3

0

2

4

(f )

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

×10–6

0

2

4

(g)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e
×10–3

0

0.5

1

1.5

2

2.5

(h)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

0

0.01

0.02

0.03

0.04

(i)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

×10–4

0

5

10

15

20

SA
2

8
Amplification

(j)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

×10–6

0

5

10

15

20

(k)

Algorithm
PWSSA SSA SA LWOA LSSA

Fu
nc

tio
n 

va
lu

e

×10–7

0

5

10

15

(l)

Figure 4: Box-plot charts of functions (D� 2). (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f6. (g) f7. (h) f8. (i) f9(D�2). (j) f10(D�2). (k) f11(D�2). (l) f12(D�2).
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Figure 5: Box-plot charts of functions (D� 100). (a) f9(D�100). (b) f10(D�100). (c) f11(D�100). (d) f12(D�100).
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paths results can reveal that PWSSA can quickly get the best
solution and can be used to scenarios with high requirements
in a real-time environment.

4.7. Time Complexity Discussion. .e algorithm complexity
is divided into time complexity and space complexity. .e
time complexity refers to the computational workload

required to execute the algorithm, and the spatial com-
plexity refers to the memory space in a computer required
to execute the algorithm. In computer science, the algo-
rithm time complexity, which is a function, qualitatively
describes the algorithm running time and is usually
expressed by symbol O (f (n)), where f (n) means the
mathematical function which includes n, n2, and logn. In
this way, the time complexity can be called asymptotic
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when the input value approaches infinity. In other words,
the time complexity means the linear and nonlinear
mapping of the aim value and the number of testing times.
Population initialization requires O (N×D), where D de-
notes the dimension of solution space, and N is the pop-
ulation size. .e complexity of the proposed algorithm is O
(max_it ×N ×D), where max_it is the number of running
times. To comprehensively compare the time complexity of
different algorithms, this paper calculated running times of
all algorithm for two-dimension functions and selected the
two times of the worst searching value in all algorithms as
the aim value. To comprehensively show the time com-
plexity, this paper selected three indicators including the
maximum number of running times (MAX), the minimum
number of running times (MIN), and the average number
of running times (AVE) for ten independent runs. All
testing results are shown in Table 5. Table 5 shows that the
maximum number of running times, the minimum

number of running times (MIN), and the average number
of running times in the proposed algorithm are smaller
than those of other algorithms. And PWSSA is not easy to
fall into local optimum. In addition, the results also show
that PWSSA has superior searching ability because PWSSA
can get results with good precision than other algorithms.
In summary, the main reason is that PWSSA owns an
excellent balance between global and local searching
phases.

5. Conclusions

Metaheuristic optimization is a significant area, and most
representative computational intelligence algorithms have
permeated into almost all areas of science and engineering.
SSA is a typical metaheuristic algorithm proposed in 2017.
Despite SSA is success and popularity, there are some issues
that need to be addressed in basic SSA. To overcome the
problems of poor real-time stability and low precision of
basic SSA for global function optimization problems, this
paper has introduced a modified version based on the
perturbation weight. PWSSA mainly relies on an asymptotic
circular search strategy, which can achieve fast local
searching and information orientation. PWSSA efficiently
moves towards better function values and offers strong real-
time performance. .e proposed algorithm can effectively
escape premature convergence in the early searching phase
and avoids missing the global optimal solution in the later
searching phase, thus achieving better search diversity and
the possibility of finding a better solution. .is paper has
described the results of tests using eight low-dimension and
four variable-dimension functions. In comparison experi-
ments against other algorithms, PWSSA consistently ob-
tained the best solutions and the smallest function values.
.is paper has described the results of tests using eight low-
dimension and four variable-dimension functions. In
comparison experiments against other algorithms, PWSSA
consistently obtained the best solutions and the smallest
function values. .e proposed algorithm can give high-
quality searching abilities for functions, which is reflected in
the fact that PWSSA can get a more competitive precision
than those of comparison algorithms. Iteration curves, box-
plot charts, and search-path graphics were used to illustrate
the effectiveness of the proposed algorithm, and the results
show that PWSSA can generally obtain better solutions than
previous algorithms. .rough the analysis and comparison
of the results using the different mathematical methods, the
superiority of the proposed algorithm was proved. It has
been proved by the no-free-lunch (NFL) [57] that meta-
heuristic optimization algorithms are able to solve all op-
timization problems. In other words, all metaheuristics
perform similarly when solving all optimization problems,
except the methods used in the paper; some of the most
representative computational intelligence algorithms can be
used to solve the problems, such as the monarch butterfly
optimization (MBO) [22], earthworm optimization algo-
rithm (EWA) [24], elephant herding optimization (EHO)
[25], and moth search (MS) algorithm [27]. In future work,

Table 5: Comparison of the number of running times.

Function Index
Algorithm

PWSSA SSA SA LWOA LSSA

f1
MIN 9 38 51 31 33
MAX 116 215 784 229 157
AVE 37.3 116.1 539.6 112.6 88.2

f2
MIN 2 14 35 18 7
MAX 6 124 147 292 326
AVE 3.3 51.1 93 109.5 118.7

f3
MIN 1 2 38 4 1
MAX 2 12 544 39 3
AVE 1.4 3.7 360.9 17.7 1.6

f4
MIN 2 5 9 13 7
MAX 6 29 89 84 36
AVE 3.9 16.9 46 41.3 19.1

f5
MIN 2 5 16 10 3
MAX 5 137 186 289 106
AVE 2.9 43.9 103.2 147.4 33.9

f6
MIN 5 40 29 10 12
MAX 14 116 897 143 82
AVE 9.7 64.1 386.1 54.4 53.5

f7
MIN 4 39 43 12 22
MAX 9 140 93 184 53
AVE 6.2 92.9 350.1 69.5 34.2

f8
MIN 2 47 65 127 52
MAX 6 240 855 464 161
AVE 4.6 93.9 358 255.3 102.8

f9
MIN 2 25 32 10 18
MAX 5 166 444 55 148
AVE 3.2 75 207.2 23.2 57.7

f10
MIN 1 1 19 1 1
MAX 1 3 494 1 2
AVE 1 1.8 112.6 1 1.6

f11
MIN 3 19 29 87 34
MAX 6 118 606 615 97
AVE 4.9 56.1 256.4 384.8 61

f12
MIN 2 37 55 40 18
MAX 6 97 145 452 53
AVE 4.3 70.9 645.3 161.6 33.9
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we will focus on the proposed algorithm used to solve in-
dustrial application problems.
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