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Symbolic regression has been utilized to infer mathematical formulas in order to solve the complex prediction and classification
problems. In this paper, complex-valued S-system model (CVSS) is proposed to predict real-valued time series data. In a CVSS
model, input variables and rate constants are complex-valued. ,e time series data need to be translated into complex numbers.
,e hybrid evolutionary algorithm based on complex-valued restricted additive tree and firefly algorithm is proposed to search the
optimal CVSS model. ,ree financial time series data and Mackey–Glass chaos time series are collected to evaluate our proposed
method. ,e experiment results show that the predicted data are very close to the target ones and our method could obtain the
better RMSE, MAP, MAPE, POCID, R2, and ARV performances than ARIMA, radial basis function neural network (RBFNN),
flexible neural tree (FNT), ordinary differential equation (ODE), and S-system.

1. Introduction

One of the main purposes of time series analysis is to predict
the future data based on the existing historical one. Its idea is
to search amodel or function, in which the past values are set
as inputs and the future values are utilized as outputs [1–4].
Time series exist in almost all fields of natural science and
social science, so researches of time series analysis methods
are of great significance for prediction, control, and diag-
nosis of practical issues [5–7]. However, due to the nonlinear
characteristics of time series such as noise, irregularity,
randomness, and chaos in practical application, the tradi-
tional time series prediction methods, such as exponential
smoothing method and autoregressive integrated moving
average (ARIMA) model, are not effective in solving such
problems [8,9]. ,us, time series prediction problem has
been considered to be a difficult job.

Because the artificial neural network (ANN) has good
abilities of learning, generalization, and error tolerance,
many ANN models have been utilized widely to capture
nonlinear characteristics for time series prediction problems
in the past decades, such as radial basis function neural
network (RBFNN) [10], Elman neural network [11], wavelet

process neural network [12], recurrent predictor neural
network (RPNN) [13], beta basis function interval type-2
fuzzy neural network [14], flexible neural tree (FNT) [15],
functional link network [16], and deep neural networks
[17,18]. However, most of the ANN models are black boxes,
in which the relationships between input variables and
output variables are not explained and understood easily.
Especially for some practical problems, internal mechanism
could not be understood from the models obtained, which
may lead to restrict the problems to being solved.

Recently, various symbolic regression (SR) methods are
being utilized to solve time series prediction problems.
Compared with ANN models, with the given sets of inde-
pendent variables and functions, SR methods could search
the hiddenmathematical formulas, computer programs, and
logical expressions, which could explain well the internal
mechanisms of the practical problems [19–22]. Johari et al.
presented a genetic programming (GP) approach to predict
the soil-water characteristic curves of soils according to
terminal and function sets [23]. Azzawi et al. proposed gene
expression programming (GEP) and gene extracted ap-
proaches to predict lung cancer from biology data. Mah-
moodi et al. inferred mathematical equations based on GEP
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and computational fluid dynamics data in order to predict the
marine propeller data [24]. Zhang et al. proposed an improved
multiexpression programming (MEP) to predict 28-day ce-
ment compressive strength, which performed better thanMEP,
neural network, and fuzzy logical [25]. We have utilized an
ordinary differential equation (ODE) model to forecast the
small-scale traffic data and model stock index, and the results
shown that the ODE model was more feasible and efficient for
predicting time series data [26]. Zhang et al. utilized an
S-system model for Shanghai stock exchange composite index
prediction and the experiment results revealed that the
S-system has the better performance than an ODEmodel [27].

In order to improve the prediction accuracy of time
series and explain the internal mechanisms of the practical
problems future, a novel SR method based on complex-
valued S-system (CVSS) and complex-valued hybrid evo-
lutionary algorithm are proposed in this paper. A complex
number could broaden the dimension of solution, which
improves the abilities of modeling and generalization, so
complex-valued methods have shown great potential for
forecasting time series data [28–35]. ,us, this paper pro-
poses the complex-valued version of S-system (CVSS) to
solve the time series prediction problem. CVSS could
contain a complex-valued structure and coefficients, which
can enhance the prediction ability of the S-system. ,e
representation of a complex-valued restricted additive tree
(CVRAT) is very close to the form of a CVSS model, so
CVRAT is utilized to search the optimal structure of a CVSS
model. In order to improve the optimization ability of firefly
algorithm (FA), complex-valued firefly algorithm (CVFA) is
presented to optimize the complex-valued and real-valued
parameters of CVSS with faster convergence and ability and
more population diversity. ,e novelty in our approach is to
predict real time series data by a novel complex-valued
model and evolutionary algorithms.

,ree real time series datasets collected from the
Shanghai stock exchange composite index, NASDAQ index
and exchange rate of Hong Kong dollar to renminbi, and
Mackey–Glass chaos time series are utilized to test the
performance of our method. ,e experiment results prove
that our proposed method is superior to classical statistical
method, neural network, and real-valued differential
equation models, and our method could also obtain the clear
and well-understood mathematical formulas.

2. Methods

2.1. Complex-Valued S-System Model. ,e complex-valued
S-system (CVSS) model is the complex-valued version of
S-system, whose coefficients and functions are complex-
valued. Suppose that the time series contain N variables.,e
i − th complex-valued ordinary differential equation model
in the CVSS model is described as follows:

Xi
′ (t) � αi 

N

j�1
X

gij

j (t) − βi 

N

j�1
X

hij

j (t), (1)

where Xi and Xj are the i − th and j − th complex-valued
input variables, respectively; αi and βi are complex-valued

rate constants of the i − th variables; and hij and gij are real-
valued kinetic orders.

2.2. Structure Optimization. A real-valued restricted addi-
tive tree model (RVRAT) was proposed to optimize the
structure of a real-valued S-systemmodel [36,37]. In order to
search the optimal CVSS model, the complex-valued re-
stricted additive tree (CVRAT) is proposed. In CVRAT
algorithm, the root node is set to subtraction (− ). Other
nodes are created by variable (V) and function (F) sets,
which are described as follows:

F � ×2, ×3, . . . , ×n ,

V � z1, z2, . . . , zn, C ,
 (2)

where ×n is the product of n complex-valued input variables.
An example of the complex-valued restricted additive tree
model is depicted in Figure 1. In order to represent the
parameters of the CVSS model, a real-valued parameter (hij

or gij) is assigned to each variable node and a complex-
valued parameter (αi or βi) is assigned to each branch of the
root node. ,e corresponding CVSS model is
dzi/dt � αiz

gi1
1 z

gi2
2 z

gi3
3 − βiz

hi1
1 z

hi2
2 z

hi3
3 z

hi4
4 .

In order to search the optimal CVSS model, genetic
operators, such as selection, crossover, and mutation, are
utilized. ,e selection operation is consistent with standard
genetic programming. ,e greater the fitness values of in-
dividuals, the greater the probability that the individuals are
selected to the next generation. In the crossover operation,
two CVSS models are randomly selected, and two subtrees
are selected to be crossed, which are shown in Figure 2. In
the mutation operation, a mutation node is randomly se-
lected. Another node is created randomly and utilized to
replace the selected node, which are shown in Figure 3.

2.3. Parameter Optimization. Complex-valued firefly algo-
rithm (CFA) is the complex-valued variant of firefly algo-
rithm, in which each firefly represents a complex-valued
solution containing two parts: real part and imaginary part
[38]. ,e multiplication of individual dimension could in-
crease the information capacity and diversity of population.
In this paper, CFA is utilized to evolve the parameters of
CVSS.

In CFA, complex-valued firefly can find its collaborators
and move to the place of the better firefly according to
brightness property. ,e fireflies with low brightness are
attracted by the fireflies with high brightness. For each in-
dividual, the attraction and luminance of other individuals
vary according to distance [39]. ,e flowchart of parameters
optimization of CVSS with CFA is given in detailed as
followed:

(1) In the CVSS model, rate constants (αi and βi) are
complex-valued and kinetic orders (hij and gij) are
real-valued. ,us, the parameter vector of CVSS
contains complex-valued and real-valued parame-
ters. According to the given CVSS model, add up the
number of rate constants R and kinetic orders K.
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Initialize the m complex-valued firefly individuals
[Z1, Z2, . . . , Zm], where Zi � [Z1

i , Z2
i , . . . , ZR+K

i ].
(2) ,e complex-valued distance matrix rm × m of m

fireflies is calculated.
(3) With fitness function f(·), the fitness values of

population [f1, f2, . . . , fm] are calculated. ,e
firefly of CFA is complex-valued, so complex-valued
kinetic orders need to be converted into real-valued
ones. Complex-valued kinetic order Zk is converted
as follows [40]:

ρk �
���������
Z2

k,R + Z2
k,I


,

Xk � ρk × sgn sin
Zk,I

ρk

   +
ak + bk

2
,

(3)

where ρk is the modulus and ak and bk are the mini-
mum and maximum values, respectively.
If the optimal solution is obtained, CFA is stopped.,e
real and imaginary parts of brightness and attractive-
ness of the i − th firefly are calculated.

Bi, R � Bi, 0 × e
− c × rij,R ,

Bi, I � Bi, 0 × e
− c × rij,I ,

(4)

where Bi0 denotes the maximum brightness of the
i − th firefly which is equal to the fitness value fi of
the i − th firefly; c is a coefficient of light absorption;
Bi,R and Bi,I are the real part and imaginary part of
the brightness of firefly i, respectively; and rij,R and
rij,I are the real part and imaginary part of the
distance between firefly i and firefly j, respectively.

(4) For each firefly, search the most attractive firefly
around it and update its position containing real and
imaginary parts.

Zi,R(t +1) � Zi,R(t) + Bi,R Zj,R(t) − Zi,R(t)  +α× εi,R,

Zi,I(t +1) � Zi,I(t) + Bi,I Zj,I(t) − Zi,I(t)  +α× εi,I,

(5)

where Zi,R(t + 1) and Zi,I(t + 1) are the real part and
imaginary part of firefly i at the t + 1 − th time point,

–
dzi/dt

dzi/dt

dzj/dt

dzj/dt

–

Crossover

– –

αi βi

αi βi

αj βj

αj βj

x2

x2 x2 x2

x2

x3

x3

x2 x3

x2 x3z3

z1 z2 z4

z4 z3

z4 z1 z3

z2 z1

z1 z2

z1 z2 z5

z1 z3

z4 z4 z1 z2 z5
z1

x2

gi1

gi2

gi2 gi1 hi1

hi2 hi3 hi4

gj1gj2

gj2 gj3

gi3

hi1 hj1

hj1 hj2 hj3

hj2 hj3

hi2 hi3 hi4

Figure 2: ,e crossover operator.
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Figure 1: An example of the complex-valued restricted additive tree model.
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respectively; Zi,R(t) and Zi,I(t) are the real part and
imaginary part of firefly i at the t − th time point, respec-
tively; εi,R and εi,I are the real part and imaginary part of
complex-valued Gaussian random number, respectively;
and α is a step size randomly created from the interval [0,1].
,en, Go to step (2).

2.4. Time Series Prediction Based on Complex-Valued S-Sys-
tem Model. ,e complex-valued S-system model is uti-
lized to solve the time series prediction problem. In the
prediction process, real-valued time series are firstly
translated into complex-valued data with Algorithm 1.
Complex-valued time series data are utilized to search the
optimal CVSS model, which predicts the complex-valued
outputs. Finally, complex-valued outputs are translated
into real-valued data in order to evaluate the prediction
performance of the model with Algorithm 2. Suppose that
time series data [D1, D2, . . . , Dm] include m variables and

each variable includes n time points
(Di � [D1

i , D2
i , . . . , Dn

i ]). With complex-valued time series
data, our proposed hybrid evolutionary algorithm is
utilized to evolve the complex-valued structure and pa-
rameters of the CVSS model. ,e overall optimization
process is described as follows:

(1) Define the parameters in the algorithm and initialize
N CVSS models.

(2) ,e fitness value of each CVSS model could be
calculated according to Algorithm 3.

(3) RVRAT is applied to search the optimal structure of
the CVSS model, which is introduced in Section 2.2.
At some iterations, CFA is utilized to search the
optimal complex-valued parameters of the CVSS
model, whose structure is fixed.

(4) If the satisfied condition is achieved, the optimal
process stops; otherwise, go to step 2.
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Figure 3: ,e mutation operators.
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3. Experiments

3.1. Data and Evaluation Standard. ,ree real time series
datasets are collected daily to test the performance of the
complex-valued S-system model, which include the
Shanghai stock exchange composite index (SSEI), NASDAQ
index (NASI) and exchange rate of Hong Kong dollar to
renminbi (RHKRMB). ,e data of the past seven days
(x1, x2, . . . , x7) are utilized to predict the current value (y).

Mackey–Glass chaos time series are also utilized to evaluate
our method. RMSE (root mean square error), MAP (mean
absolute percentage), MAPE (mean absolute percentage
error), R2 (coefficient of multiple determinations for mul-
tiple regressions), ARV (average relative variance), and
POCID (prediction of change in direction) are utilized to
evaluate the performance of time series prediction models
[16]. Suppose that time series dataset D contains m time
points. ,e six criterions are defined as follows:

Input: real-valued input vector [g1, g2, . . . , gm] (m is the number of sample points)
Output: complex-valued output vector [z1, z2, . . . , zm]

Count the maximum and minimum values of the input vector (gmax and gmin);
For k� 1; k≤m; k++ do

φk � (gk − gmin/gmax − gmin)(2π − δ); // δ is a shift angle
zk � eiφk

end

ALGORITHM 1: Pseudocode of a real number converted into a complex number.

Input: complex-valued input vector [z1, z2, . . . , zm] and maximum and minimum values of input data gmax and gmin
Output: real-valued output data [y1, y2, . . . , ym]

For k� 1; k≤m; k++ do
arg zk � φk;

yi � ((φk × (gmax − gmin))/(2π − δk)) + gmin;

end

ALGORITHM 2: Pseudocode of a complex number converted into a real number.

Input: real-valued output vector [o1, o2, . . . , om], complex-valued input vector Z � [z1, z2, . . . , zm], step size h, total time point m,
CVSS model dZ/dt � H(t, Z), and fitness function F(·)

Output: fitness fk of the k − th CVSS model
For t� 1; t≤m; t++ do

k1 � H(t, zt);

k2 � H(t + (h/2), zt + h × (k1/2));

k3 � H(t + (h/2), zt + h × (k2/2));

k4 � H(t + h, zt + h × k3);

zo � zt + h × ((k1 + 2k2 + 2k3 + k4)/6);

rot⟵ convert zo into real value with Algorithm 2;
end
fk � F(ro, Z);

ALGORITHM 3: Pseudocode of calculating the fitness of the k − th CVSS model.
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(6)

where yt
k is the target value at k − th time point and y

f

k is the
forecasting value at k − th time point. f is the mean of
dataset D.

In our experiment, ARIMA model [41], radial basis
function neural network (RBFNN) [42], FNT, ordinary
differential equation (ODE) [26], and S-systemmodel [27]
are also utilized to predict three real time series datasets
and Mackey–Glass chaos time series. ARIMA is the most
common statistic model used for time series prediction.
Real-valued firefly algorithm is utilized to optimize the
parameters of RBFNN, FNT, ODE, and S-system, which
are the same as the CVSS model. ,e parameters of the
experiment are set consistently, which are chosen based
on the experience and references [36–38], and listed in
Table 1.

3.2. Shanghai Stock Exchange Composite Index. ,is section
collects the Shanghai stock exchange composite index (SSEI)
from 1 January 1996 to 29 December 2017. 70% of the data
are utilized for training, which contains 3866 time points,
and the rest of the data are utilized for testing.

,rough several runs, the optimal CVSS model is ob-
tained as follows:

dy

dt
� (3.101448 − 7.744888 i)x

6.284683
7 x

− 6.021700
3

− (− 1.540345 − 8.878057 i)x
0.898278
3 .

(7)

From equation (7), it could be seen that our method
selects two important features (x3 and x7), which reveal that
the data of the past third and seven days may play the most

important role in predicting the Shanghai stock exchange
composite index.

,e predicted results of 6 methods are depicted in
Figure 4, which contains the predicted data and predicted
errors. From the results, it could be seen that the predicted
data of CVSS, ODE, and S-system are very close to the target
ones and the predicted errors are very small and close to
zero.,e prediction errors of FNT, RBFNN, and ARIMA are
relatively large.

,e predicted performances of 6 methods are listed in
Table 2. From Table 2, we can see that differential equation
models (ODE, S-system, and CVSS) have smaller RMSE,
MAP, ARV, and MAPE and higher R2 and POCID than the
neural network model (FNTand RBFNN) and classical time
series prediction method (ARIMA). Among three kinds of
differential equation models, the CVSS model has better
performance than real-valued differential equation models
except for POCID. In terms of POCID, S-system performs
best, but there is little difference among these three methods,
which reveals that our method could predict directional
tendency of data fluctuation accurately.

3.3. NASDAQ Index. ,is section collects the NASDAQ
index (NASI) from 2 January 1990 to 29 December 2017.
70% of the data are utilized for training, which contains 4936
time points, and the rest of the data are utilized for testing.

,rough several runs, the optimal CVSS model is ob-
tained as follows:

dy

dt
� (− 0.264201 − 2.017404 i)x

1.285517
3

− (0.200819 − 2.067524 i)x
0.346046
6 x

0.554568
4 .

(8)

In equation (8), our method selects three important
features (x3, x4, and x6) automatically. ,e stock indexes of
the past third, fourth, and sixth days may play the important
role in predicting the current one.

,e predicted NASI data of 6 methods are depicted in
Figure 5, which also contains the predicted errors. For CVSS,
the curves of actual data and predicted data are almost
coincident. ,e predicted errors distribute mainly around
zero. From the prediction results, we can see that our
proposed method could predict the NASI dataset more
accurately.

,e predicted performances of 6 methods are listed in
Table 3. In terms of RMSE, CVSS is 31.7% smaller than
S-system, 33.07% smaller than ODE, 61.65% smaller than

Table 1: Configuration of algorithms in our experiment.

Parameters Values
Population size in CVRAT 30
Maximum iteration in CVRAT 200
pm in CVRAT 0.3
pc in CVRAT 0.7
α in CFA 0.5
Number of fireflies in CFA 50
Maximum iteration in CFA 100

6 Complexity



FNT, 88.23% smaller than RBFNN, and 91.33% smaller than
ARIMA, which reveal that our method has the smallest
prediction errors. In terms of MAP, the CVSS model has the
smallest performance, which is 7.7941. In terms of ARV,
CVSS is 43.77% smaller than S-system, 56.92% smaller than

ODE, 89.7% smaller than FNT, 97.274% smaller than
RBFNN, and 99.195% smaller than ARIMA, which show
that our method has the stronger generalization ability. In
terms of MAPE, CVSS is 16.97% smaller than S-system,
42.58% smaller than ODE, 67.11% smaller than FNT, 81.62%
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Figure 4: ,e predicted results of 6 methods with the SSEI dataset.

Table 2: Performance of ARIMA, RBFNN, FNT, ODE, S-system, and CVSS with the SSEI dataset.

Methods RMSE MAP ARV MAPE R2 POCID
CVSS 0.007053 9.6815 0.005206 1.1121 0.99501 90.1
S-system 0.008105 9.957 0.00535 1.1271 0.99465 90.3
ODE 0.010321 12.349 0.00981 1.391 0.99128 90.1
FNT 0.014559 18.931 0.018903 2.2848 0.9811 89.7
RBFNN 0.014681 20.06 0.018024 2.1804 0.98198 86.5
ARIMA 0.020766 20.533 0.029814 3.9766 0.97019 68.1
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Figure 5: ,e predicted results of 6 methods with NASI dataset.
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smaller than RBFNN, and 84.31% smaller than ARIMA. In
terms of R2 and POCID, CVSS has highest performance
among 6 time series prediction methods. By analysis, the
CVSS model performs best in terms of 6 criterions.

3.4. Exchange Rate of Hong Kong Dollar to Renminbi.
Exchange rate refers to the rate of exchange between two
currencies, which could regulate a country’s import and
export trade. In this section, exchange rates of Hong Kong
dollar to renminbi (RHKRMB) are collected from 2 January
2006 to 29 December 2018. 70% of the data are utilized for
training, which contains 2210 time points, and the rest of the
data are utilized for testing. ,rough several runs, the op-
timal CVSS model is obtained as follows:

dy

dt
� (− 0.010162 + 0.042573 i)x

− 0.506543
2 x

0.189222
1

− (0.01746 + 0.042042)x
0.438178
1 x

0.501454
4 .

(9)

From equation (9), we could see that our proposed
method selects three important features (x1, x2, and x4),
which show that the data of the past first, second, and fourth
days help to forecast the current exchange rate accurately.

,e predicted data and errors by 6models are depicted in
Figure 6, which show that the predicted errors by CVSS are
very small and the predicted curve is almost the same as the
real one. Other models could gain the larger prediction
errors.,e predicted performances of 6methods are listed in
Table 4. For RMSE, ARV, MAPE, R2, and POCID, the CVSS
model performs best among 6 methods. RBFNN has the
lowest MAP. CVSS has worse MAP performance, which
reveals that the predicted errors by CVSS may be very large
at some time points. In terms of RMSE, CVSS is 6.42%
smaller than S-system, 19.59% smaller than ODE, 64.42%
smaller than FNT, 73.87% smaller than RBFNN, and 75.88%
smaller thanARIMA. In terms of ARV, CVSS is 12.11% smaller
than S-system, 43.52% smaller than ODE, 89.61% smaller than
FNT, 94.48% smaller than RBFNN, and 95.29% smaller than
ARIMA, which show that our method has the stronger gen-
eralization ability. In terms of MAPE, CVSS is 5.75% smaller
than S-system, 24.54% smaller than ODE, 87.54% smaller than
FNT, 93.02% smaller than RBFNN, and 93.05% smaller than
ARIMA. In terms of R2, CVSS is 0.048% higher than S-system,
0.269% higher than ODE, 3.0% higher than FNT, 6.34% higher
than RBFNN, and 7.59% higher than ARIMA. In terms of
POCID, CVSS is 0.022% higher than S-system, 1.11% higher
thanODE, 1.99%higher than FNT, 4.87%higher thanRBFNN,
and 22.26% higher than ARIMA, which prove that CVSS could

predict directional tendency of data fluctuation of exchange
rate more accurately.

3.5. Mackey–Glass Chaos Time Series. Since Mackey and
Glass first discovered the chaotic phenomena in time-delay
systems, time-delay chaotic systems have attracted wide
attention and are often utilized to test the performances of
nonlinear system models. ,e chaos time series could be
generated by the time-delayed differential equation [43,44]:

dx(t)

dt
� − 0.1x(t) +

0.2x(t − 17)

1 + x10(t − 17)
. (10)

,e variable vector [x(t − 18), x(t − 12), x(t − 6), x(t)]

is utilized to forecast variable x(t + 6). 500 samples are
utilized to search the optimal structures and parameters of
the CVSS model and the rest of the 500 samples are utilized
as testing data to verify the validity of the CVSS model. ,e

Table 3: Performance of ARIMA, RBFNN, FNT, ODE, S-system, and CVSS with the NASI dataset.

Methods RMSE MAP ARV MAPE R2 POCID
CVSS 0.00632 7.7941 0.00075 0.83321 0.99932 88.1
S-system 0.008324 7.9168 0.001707 1.0035 0.99829 87.2
ODE 0.00841 7.9019 0.001741 1.4512 0.99799 87.7
FNT 0.016468 32.352 0.006859 2.5336 0.99314 87.0
RBFNN 0.03669 37.371 0.027513 4.5327 0.97249 86.7
ARIMA 0.049849 18.46 0.093189 5.31 0.90681 70.0
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Figure 6: ,e predicted results of 6 methods with the RHKRMB
dataset.
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predicted Mackey–Glass chaos time series by 5 methods are
depicted in Figure 7, which also displays the predicted er-
rors. ,e curves of actual data and predicted data obtained
by CVSS are almost the same. ,e predicted errors of CVSS
are smaller than S-system, ODE, FNT, and RBFNN. ,us,
the CVSS model could predict chaos time series accurately.
,e predicted performances of RBFNN, FNT, ODE,
S-system, and CVSS are listed in Table 5. From Table 5, it
could be clearly seen that the CVSS model has the best
performances in terms of RMSE, Map, ARV, MAPE,
POCID, and R2.

According to Tables 2–5, we summarize the perfor-
mances of 6 models in three aspects: fitting the data, gen-
eralization ability, and prediction effect. 6 models are
divided into three levels: strong, medium, and week. ,e
analysis results are listed in Table 6.

4. Discussion

4.1. Statistical Significance Test. In order to measure the
differences of six forecasting models, the Friedman test is
utilized. ,e null hypothesis of the Friedman test is that all
the prediction models are equivalent, so these models have
the same ranks. In order to overturn this null hypothesis,
Friedman statistic χ2F and F-distribution FF are defined as
follows [16]:

χ2F �
12

N × k ×(k + 1)
  × 

k

i�1
R
2
i − 3 × N ×(k + 1),

FF �
(N − 1) × χ2F

N ×(k − 1) − χ2F
,

(11)

where N is the number of the criterions; k is the number of
the prediction models; and Ri is the sum of the averaged
ranks of N criterions for the i − th model. If χ2F is larger than
FF, the null hypothesis could be rejected.

According to the criterions of six models for four time
series prediction problems, six models are sorted and the
averaged ranks are given, which are listed in Table 7. k and N

are set as 6. According to Table 7, Friedman statistic χ2F and
F-distribution FF are calculated as 22.67 and 15.46, re-
spectively. χ2F is larger than FF, so the null hypothesis is
rejected, which reveals that there is the significant difference
among six prediction models.

In order to find out the significant difference between a pair
of models, the Nemenyi post-hoc test is utilized. ,e null
hypothesis of the Nemenyi test is that there is no significant
difference between a pair of models. If there is no significant
difference, the null hypothesis will be rejected. In the Nemenyi
test, critical difference (CD) is calculated to judge whether the
significant difference exits, which is defined as follows:

CD � qα

���������

k ×(k + 1)

6N



, (12)

where qα is a critical value. When α is selected as 0.01, qα is
found to be 0.4643. ,en, the CD could be calculated as
0.502.

If the difference of the average rank values of two models
exceeds the CD value, the null hypothesis is rejected with
corresponding confidence. According to Table 7, the results
of the Nemenyi test by the pairwise comparisons of six
models are depicted in Figure 8. If the difference of the
average rank values of two models is smaller than CD
(0.502), the responding place is set as white box, which

Table 4: Performance of ARIMA, RBFNN, FNT, ODE, S-system, and CVSS with the RHKRMB dataset.

Methods RMSE MAP ARV MAPE R2 POCID
CVSS 0.006601 469.18 0.003469 3.3499 0.99653 90.3
S-system 0.007054 492.67 0.003947 3.5544 0.99605 90.1
ODE 0.008209 511.75 0.006142 4.4394 0.99386 89.3
FNT 0.01855 184.98 0.033387 26.885 0.96661 88.5
RBFNN 0.025259 85.343 0.062869 47.991 0.93713 85.9
ARIMA 0.027369 118.26 0.073748 48.231 0.92625 70.2
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Figure 7: ,e predicted results of 5 methods with Mackey–Glass chaos time series.
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reveals that two models have no significant difference. ,e
gray value of the box indicates the difference between two
models, which is also shown in Figure 8. From Figure 8, it
could be seen that there is no significant difference between
ODE and S-system, while other pairs of models satisfy the
Nemenyi test for significant difference.

4.2. Effect of the Number of Training Sets. In order to test the
effect of increasing the training for our proposed method, two

datasets (SSEI and NASDAQ index) are chosen. ,e numbers
of training sets are set to 500, 1000, 1500, and 2000, respectively,
while the number of testing sets is set as 500. ,e RMSE
performances of our method with different training sets for
SSEI and NASDAQ prediction problems are listed in Table 8.
From Table 8, we could see that with the increase of training
sets our method could gain the smaller and more stable
prediction RMSE values. When the number of training sets
reaches a certain bound, the increase of the training set could
improve the prediction ability of our model slightly.

Table 5: Performance of RBFNN, FNT, ODE, S-system, and CVSS with Mackey–Glass chaos time series.

Methods RMSE MAP ARV MAPE R2 POCID
CVSS 0.009012 5.4256 0.0019403 0.89804 0.99806 96.177
S-system 0.024573 6.9489 0.011983 2.1923 0.98802 94.188
ODE 0.019789 7.4946 0.0074549 1.9057 0.99255 92.958
FNT 0.02445 10.187 0.009756 2.1314 0.99024 90.342
RBFNN 0.032639 13.306 0.020886 3.3305 0.97911 93.561

Table 6: Performance comparison of the 6 prediction models.

Methods Fitting the data Generalization ability Prediction effect
CVSS Strong Strong Strong
S-system Strong Medium Medium
ODE Medium Medium Medium
FNT Medium Medium Weak
RBFNN Weak Weak Medium
ARIMA Weak Weak Weak

Table 7: Reranked values of six models for six criterions in four time series prediction problems.

Models RMSE MAP ARV MAPE R2 POCID Avg. rank Reranking
CVSS 1 1.75 1.25 1 1 1.25 1.21 1
S-system 2.5 3 2.75 2.5 2.5 2.25 2.58 2
ODE 2.75 3.5 3 2.75 2.75 2.75 2.92 3
FNT 3.75 4 3 3.75 3.75 4.25 3.75 4
RBFNN 5 4.25 5 5 5 4.5 4.79 5
ARIMA 6 4.5 6 6 6 6 5.75 6
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Figure 8: ,e results of the Nemenyi test by the pairwise comparisons of six models.
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5. Conclusion

Efficient and accurate time series prediction has been
considered to be a difficult job. In this paper, we have
presented complex-valued version of the S-system model to
predict real-valued time series data. To search the optimal
CVSS model, time series data need to be converted into
complex data firstly. Complex-valued versions of the restricted
additive tree and firefly algorithm are proposed to optimize the
CVSS model. Stock index data from SSEI and NASI, exchange
rate of Hong Kong dollar to renminbi, and Mackey–Glass
chaos time series are collected to evaluate our proposed
method. ,e forecasting capability of the CVSS model is
compared with ARIMA, RBFNN, FNT, ODE, and S-system.
,e experiment results show that the predicted curves of the
CVSS model are very closer to the target ones than other
models. For SSEI dataset prediction, CVSS has the better
performance than S-system, ODE, FNT, RBFNN, and ARIMA
except for POCID. For NASI dataset prediction, compared
with other fivemethods, CVSS could improve 0.103%–99.195%
prediction performances in terms of RMSE, MAP, ARV,
MAPE, R2, and POCID. For RHKRMB dataset prediction, our
method could improve 0.022%–95.29% prediction perfor-
mances in terms of RMSE, ARV, MAPE, R2, and POCID. Our
method gains worse MAP performance, which reveals that the
predicted errors by CVSS may be very large at some time
points. For Mackey–Glass chaos time series prediction, CVSS
could make 1.02%–90.74% prediction improvements in terms
of six criterions.

,e reasons that our method performs better are ana-
lyzed as follows. (1) A complex-valued parameter of the
CVSS model contains two real-valued variables (real and
imaginary parts), so the CVSS model contains twice more
parameters than S-system. CVSS also has complex-valued
functions. Complex-valued functions and parameters make
the CVSS model to have stronger modeling and general-
ization abilities. (2) Complex-valued firefly algorithm has
more population diversity and faster convergence speed
than real-valued firefly algorithm and could search the
optimal solution of the model faster. (3) ,e representation
of CVRAT is very close to the form of the CVSS model, so
CVRAT could search the optimal structure of the CVSS
model faster.
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