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Flexible solar panels play an essential role in the field of aerospace. However, many difficulties appear in the control design due to
the existence of a weakly damped resonance module.)e design for flexible systems often causes an unstable controller so that the
systems after design still have trouble in putting into practice. We adopt H∞ loop-shaping design and put forward a directive
method for selecting the weighting function. )e simulation results indicate that system bandwidth is optimized based on the
stable controller. In this way, the control precision and response speed of the system are improved. In the meantime, the system is
easy to put into use.

1. Introduction

With the rapid development of aerospace, most spacecraft
absorb solar energy to meet their energy needs [1]. One end
of the solar array is connected to the satellite, and the other
end is free to extend. Such structures are called solar panels
[2]. When the satellite is launched, the solar panel is folding;
after the spacecraft gets into orbit, the solar panel is ex-
panded. So, the solar panel often belongs to a multibody
structure, and the mass is light. )e larger the spacecraft is,
the more energy it requires so that its area will be larger and
its structure will be more complicated. For the typical
flexible structure on spacecraft [3], people have increasingly
high requirements for its function, reliability, service life,
and attitude control [4, 5].

Components with flexible structures have gained in
popularity because of their strong reliability, good adapt-
ability, and light weight. However, weakly damped reso-
nance modes in the system bring many difficulties to control
design. For example, they will increase the system setting
time and even cause instability, which may lead to mode
overflow in high-order resonant modes [6]. Many scholars
are committed to solving the control design problem of such
systems so as to suppress the influence of these dynamic

characteristics. )e analysis shows that there are unstable
controllers introduced by many design methods for weakly
damped flexible systems, which make the designed systems
difficult to use [7]. )en, we adopt H∞ loop-shaping design
proposed by McFarlane, and we hope to optimize the system
performance (bandwidth) based on the stable controller. H∞
control design [8, 9] mainly involves structure problems and
weighting function selection. Structural problems include
the two-block problem, the four-block problem, and μ
synthesis. However, no matter what the structure is, the
unstable H∞ controller may be introduced for the weakly
damped flexible system [7, 10–12]. More importantly, it is
difficult to improve the system performance by H∞ loop-
shaping design in practice. For example, the hard disk drive
in [13] shows that the system bandwidth did not increase
after the design, and the system performance did not im-
prove significantly.

)e main indexes to measure the system performance
are frequency bandwidth and precision [14–16]. And the
frequency bandwidth, determined by the frequency re-
sponse, can reflect the rapidity of the system. )e larger the
bandwidth is, the better the rapidity is, which not only
stabilizes the flexible system as soon as possible after rapid
maneuver but also reduces fatigue damage. However, the
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increase of the system bandwidth means more weakly
damped resonance modes will be included so that the sta-
bility of the system cannot be ensured. )erefore, it is ex-
tremely significant to achieve an optimal state in control
design, that is, to find a better trade-off between robustness
and system bandwidth. How to decay rapidly and smoothly,
that is, whether the system performance (bandwidth) can be
improved on the basis of stabilizing the controller, is still an
issue worthy of academic research.

2. Solar Panel System Model

)e solar panel attitude control is taken as an example to
design the control system in the classic literature [10] of H∞
loop-shaping method. Here, we further analyze the design
problem of flexible systems based on the system model.
When only the rigid mode and the first-order mode are
considered, the state-space equations of the system can be
written as [10, 12]

_x �

0 1 0 0

0 0 0 0
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0 0 −ω2
1 −2ζ1ω1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

0

1.7319 × 10− 5

0

3.7859 × 10− 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u,

y � 1 0 1 0􏼂 􏼃x,

(1)

where ω1 � 1.539 rad/s and ζ1 � 0.003. In (1), u is the
control torque (N · m) and y is the roll angle (rad) which can
be measured. )e corresponding transfer function of (1) is

G(s) �
3.9591 × 10−4 s2 + 0.0004s + 0.1036( 􏼁

s2 s2 + 0.009s + 2.369( )
. (2)

Equation (2) can be rewritten as

G(s) �
1.7319 × 10−5

s2
+

3.7859 × 10−4

s2 + 2ζ1ω1s + ω2
1
. (3)

It is obvious that the amplitude of the first-order mode
c1 � 3.7859 × 10−4 is larger, which is an order of magnitude
different from the amplitude of the rigid mode
c0 � 1.7319 × 10−5. So, the solar panel system has strong
flexibility.

Equation (2) shows that the gain of the controlled plant
is low. In the control design, we usually increase the gain of
the system to suppress the possible disturbance. Meanwhile,
the bandwidth should not exceed the frequency range of the
first-order mode. )erefore, multiply (2) by the gain K �

10000 to get G1(s) (see equation (4)). )e corresponding
Bode plot is shown in Figure 1:

G1(s) �
3.9591 s2 + 0.0004s + 0.1036( 􏼁

s2 s2 + 0.009s + 2.369( )
. (4)

Equation (3) and Figure 1 show us that the rigid body
mode component is low, which means that, in the low-
frequency stage, the characteristic of the system will shift to
the first-order flexible mode after ω exceeds 0.332 rad/s. In
other words, it is required to ensure the system stability in
the frequency stage where the amplitude-frequency char-
acteristic drops sharply in the design. )is is the difficulty of

the weakly damped flexible system design [12]. Generally
speaking, H∞ control theory is applicable to all flexible
systems. However, H∞ loop-shaping method in H∞ control
theory is more suitable for the design of the system with
weak damping. )is is because H∞ loop-shaping method
just deals with the stability of the frequency stage crossing
0 dB line in the open-loop characteristic.

3. H‘ Loop-Shaping Design

)e basic principle of H∞ loop-shaping design is to con-
struct the open-loop transfer function to meet the perfor-
mance requirements of the closed-loop system. )e open-
loop transfer function here is technically referred to as “loop
transfer function.” According to this principle, the weighting
function in the compensation link should be determined
firstly according to the performance requirements (steady-
state performance, dynamic performance, noise suppression
performance, etc.), and then the H∞ controller should be
designed so that the system has sufficient robustness.

For the MIMO system, the transfer function matrix
multiplication is divided into premultiplication and post-
multiplication. So, compensation links in series are also
divided into lead compensation (W1) and lag compensation
(W2). )e compensated plant is technically referred to as
“shaped plant” (GS):

GS � W2GW1. (5)

Next, the H∞ controller K∞ is designed for GS to sta-
bilize the shaping design system. K∞ and compensation
links in GS constitute the final controller:

K � W1K∞W2. (6)

)is design method is referred to as “H∞ loop-shaping
design method,” and its system structure diagram is shown
in Figure 2.

)e shaped plant in H∞ loop-shaping design is described
by coprime decomposition. Here, we adopt the right
coprime decomposition, and then the shaped plant can be
expressed as
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Figure 1: Bode plot of the system (4).
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GS � NM
−1

, N, M ∈ RH∞. (7)

Since it is required to adopt normalized coprime fac-
torization, so N and M in (6) should satisfy

[N(−s)]
T
N(s) +[M(−s)]

T
M(s) � I. (8)

Equation (8) is equivalent to N M􏼂 􏼃
T being an internal

matrix [17].
When we use coprime factors to express the shaped

plant, the perturbed shaped plant can be represented by the
additive coprime factor perturbation:

GSΔ � N + ΔN( 􏼁 M + ΔM( 􏼁
−1

, ΔN,ΔM ∈ H∞, (9)

where ΔN and ΔM are stable transfer functions. )e un-
certainty system of this plant is one-input two-output, and
the corresponding matrix is

Δ � ΔN ΔM􏼂 􏼃
T
. (10)

From the perspective of robustness, the uncertainty Δ of
coprime factors is listed separately, and Figure 3 is arranged
into the structure diagram as Figure 4.

Fl(P, K∞) represents the transfer function matrix of the
nominal system, where P is the generalized plant constituted
by GSΔ except (ΔN,ΔM). When using H∞ loop-shaping
design, we can obtain

min
K

Fl P, K∞( 􏼁
����

����∞ � c. (11)

Here, the stability margin ε � c−1 is generally used to
reflect the system’s robustness.

According to the small gain theorem, when the norm of
the uncertainty of coprime factors is less than c− 1, that is,

‖Δ‖∞ ≔
ΔN

ΔM

���������

���������∞
< c

−1 ≔ ε, (12)

the system is stable. We generally require that c should not
be larger than 4∼5 [10, 18], so that this system is still stable
when the perturbation reaches 0.2. It means that this system
has sufficient robustness.

Since N M􏼂 􏼃
T is an internal matrix, the H∞ norm of

the transfer function matrix in the nominal system is
constant after left-multiplied by an internal matrix; that
is,

Fl P, K∞( 􏼁
����

����∞ �
N

M
􏼢 􏼣Fl P, K∞( 􏼁

���������

���������
. (13)

)erefore, in the H∞ problem, the output z can be right-
multiplied by matrices N and M to become two outputs

z1 z2􏼂 􏼃
T, as shown in Figure 5. H∞ norm of this two-input

two-output system is ‖Fl(P, K∞)‖∞. )e intermediate
variable z is no longer needed in the system shown in
Figure 5, and the shaped plant GS can be directly used to
solve the H∞ problem.)erefore, although the loop-shaping
method is an idea based on coprime decomposition,
coprime decomposition is usually unnecessary in actual
design [19].

)e selection of the weighting function is the core
problem in the H∞ design method. )e design methods in
H∞ theory, such as state feedback, output feedback, and
loop-shaping, involve the selection of weighting function (or
weighting coefficients) [9]. In H∞ design, the disturbance
suppression and robustness correspond to the characteristics
of the low- and high-frequency stages of the system, re-
spectively. Hence, the weighting function often relies on the
requirements of low- and high-frequency stages instead of
the middle-frequency stage. In fact, the middle-frequency
stage of a weakly damped flexible system contains several
weakly damped resonant modes that are difficult to control.
)erefore, this program is different from the conventional
design idea in the selection of the weighting function based
on trial and error (only considering Single-Input Single-
Output systems):

K∞

W1 W2

GS

G

(a)

K∞W1 W2

G

K

(b)

Figure 2: Basic system structure diagram of H∞ loop-shaping design.
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Figure 3: Structure diagram of the uncertainty of coprime factors.
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Figure 4: System structure diagram based on robustness analysis.
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W(s) � ρ
s + r1( 􏼁

a

s + r2( 􏼁
a. (14)

In (14), r2 �

����

ω2
1/k

􏽱

and r1 � kr2.
)e specific steps of the H∞ loop forming design are as

follows:

Step 1. Determine the values of r1 and r2 by k.
)e values of r1 and r2 determine the exact position of
the inflection point in the frequency characteristic of
the weighting function. r2 should satisfy r2 ∈ (ω0,ω1);
r1 should satisfy r1 ∈ (ω1,ω1 + σ) and σ > 0, where the
value of σ should be as low as possible (if σ is too large,
it will cause the influence on unmodeled dynamics on
the high-frequency stage). )erefore, the requirements
of r1 and r2 should be considered eclectically according
to the specific transfer function of the controlled object,
and then the value of the parameter k is selected.
Step 2. Determine the power a of the pole-zero.
On the one hand, the value of a determines the at-
tenuation rate of the phase-frequency characteristic
curve of the weighting function; on the other hand, it is
proportional to the gain of the controller in the low-
frequency stage. Meanwhile, the values of a and ρ also
affect the bandwidth and sensitivity of the designed
system. )e gain of the controller reflects the design
requirement, that is, increase the gain of the system as
much as possible to suppress interference. However, for
flexible systems, the gain of the controller decays
rapidly after first-order modal frequency, so as not to
excite the high-order resonant mode in the system. So,
the value of a should be integrated with requirements
from multiple aspects.
Step 3. Determine the value of the parameter ρ.
)e value of ρ is proportional to the gain of the con-
troller. At the low-frequency stage, the gain of the
controller corresponds to (10)aρ; at the high-frequency
stage, the gain of the controller relies only on the value
of ρ. According to the expected gain of the controller
and the performance of the designed system such as
bandwidth and sensitivity, the values of a and ρ should
make adjustments until the designed system reaches the
ideal state.
Step 4. According to the requirement of robustness, the
weighting function should make alternative
adjustments.
Generally speaking, the reference criterion is to make
the value of c not larger than 4∼5. If the criterion is not

met, the weighting function needs to make further
adjustments. And we also can adjust the weighting
function with the value of c not larger than 4∼5 as the
restriction condition.
Step 5. Design H∞ controller K∞ for GS.
We usually use ncfsyn function in the Robust Control
Toolbox of Matlab to design the controller K∞.
Compared with the transfer function, the controller
K∞ is added to the open-loop transfer function after
system design, which mainly corrects the characteris-
tics of the middle- and high-frequency stages to ensure
the stability margin of the system and has little influ-
ence on the low-frequency stage [5]. )is also indicates
that H∞ loop-shaping method not only guarantees the
stability margin of the system but also guarantees the
system performance and robust stability of unmodeled
dynamics.
Step 6. Adjust the weighting function selectively
according to the stability of the controller K.
If the controllerK obtained by the weighting function is
unstable, we need to return “Step 1” to make appro-
priate adjustments to the weighting function.

4. H‘ Loop-Shaping Design for the Solar
Panel System

We take the solar panel system model into the specific steps
of H∞ loop-shaping design in Section 3, so as to further
analyze the system performance after design and the stability
of the controller.

Step 1. Determine the values of r1 and r2 by k.
Since the first-order mode ω1 � 1.539 rad/s is known,
we just need to determine the values of r1 and r2 by k.
)e first inflection point in the amplitude-frequency
characteristic of the weighted function should be be-
tween zero 0.3219 and the first-order mode
ω1 � 1.539 rad/s. )e second inflection point should be
after ω1 � 1.539 rad/s and not exceed too much.
Otherwise, it will cause an influence on unmodeled
dynamics on the high-frequency stage. Taking the
above two factors into consideration, we take k � 10 to
get r1 � 4.876 and r2 � 0.4876.
Step 2. Determine the power a of the pole-zero.
Since the value of a should be integrated with the
requirements from multiple aspects, we take a as 5
preliminarily based on trial and error with the com-
bination of a and ρ.
Step 3. Determine the value of the parameter ρ.
(10)aρ corresponds to the reciprocal of the controller
gain, reflecting the requirements of system design, that
is, to maximize the gain of the system to suppress
interference. However, the gain of the controller decays
rapidly after the first-order modal frequency, so as not
to excite the high-order resonant mode in the system.
Here, we take a � 5 and ρ � 0.023 to get (10)aρ � 2300.

N
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Figure 5: Structure diagram of a two-input two-output system.
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Step 4. According to the requirement of robustness, the
weighting function should make alternative
adjustments.
Based on the previous three steps, the weighting
function has been preliminarily determined as

W(s) � 0.023
(s + 4.876)5

(s + 0.4876)5
. (15)

H∞ norm of the system is

c � Fl G, K∞( 􏼁
����

����∞ � 4.7461< 5. (16)

)is satisfies the requirement of robust stability in loop-
shaping design, and then we obtain the system stability
margin ε � 0.2107.
)e transfer function of the shaped plant can be ob-
tained from equations (2) and (15):

GS � W(s)G(s) �
9.1059 × 10− 6(s + 4.876)5 s2 + 0.0004s + 0.1036( 􏼁

s2(s + 0.4876)5 s2 + 0.009s + 2.369( )
. (17)

)e results of comparing the amplitude-frequency
characteristics of G1(s) with those of W(s) and GS(s)

are shown in Figure 6. We can simply conclude from
the figure that the weighting function in loop-shaping
design not only corrects the high- and low-frequency
stages but also changes the characteristics of the
middle-frequency stage.

Step 5. Design H∞ controller K∞ for GS.
We use ncfsyn function in Matlab to obtain the con-
troller directly. After omitting the high-frequency
mode, the controller is obtained as

K(s) �
0.10671(s + 4.876)5(s + 0.3641)(s + 0.06995) s2 + 1.123s + 0.3173( 􏼁

(s + 0.4876)5 s2 + 1.793s + 0.8568( ) s2 + 0.1399s + 0.0928( )

∗
s2 + 0.9456s + 0.2331( 􏼁 s2 + 0.00923s + 2.369( 􏼁

s2 + 0.9383s + 0.5095( ) s2 + 0.0009546s + 2.371( )
.

(18)
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Figure 6: Bode plot based on comparing G1(s) with W(s) and GS(s). (a) G1(s) and W(s); (b) G1(s) and GS(s).
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)e corresponding H∞ controller is

K∞(s) �
4.6396(s + 0.3641)(s + 0.06995) s2 + 1.123s + 0.3173( 􏼁 s2 + 0.00923s + 2.369( 􏼁 s2 + 0.9456s + 0.2331( 􏼁

s2 + 1.793s + 0.8568( ) s2 + 0.1399s + 0.0928( ) s2 + 0.9383s + 0.5095( ) s2 + 0.0009546s + 2.371( )
. (19)

)e results of comparing the amplitude-frequency
characteristics of the shaped plant GS(s) with K∞ and
the transfer function of the system after design are
shown in Figure 7. We can simply conclude from the
figure that the H∞ controller designed by the loop-
shaping method makes corrections to the original
W(s) G(s), mainly in the middle-frequency stage to
ensure stability and robustness, while only the gain is

adjusted slightly on the low- and high-frequency
stages.

Step 6. Adjust the weighting function selectively
according to the stability of the controller K.
According to equation (18), the controller K after the
loop-shaping design is stable, since there is no pole-
zero in the right half of the complex plane.
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)e sensitivity characteristic S(jω) of the system after
the loop-shaping design is shown in Figure 8.
Figure 9 shows the response curves of the feedback
control system with/without parameter perturbation.
)e response curve of the nominal system
(Figure 9(a)) indicates that the nominal system has
sufficient damping and the steady-state error is 0. )e
system also retains robustness for parameter pertur-
bation after H∞ loop-shaping design. After related
verification, the response curve with perturbation
begins to diverge when the frequency of the flexible
mode perturbs from 1.539 rad/s to 1.7 rad/s, as shown
in Figure 9(b).

In the general H∞ theory, the system will retain
stability as long as the perturbation is less than 21.07%
after design according to small gain theorem. How-
ever, the system begins to diverge in Figure 9(b) when
the frequency only perturbs 14%, which contradicts
small gain theorem. On the one hand, this is mainly
because the weakly damped resonance mode will
increase the norm of coprime factor perturbation, so
that the allowable perturbation range is compressed.
On the other hand, the H∞ loop-shaping method is
not a design aiming at robustness for a given per-
turbation range. It is not known how much pertur-
bation is allowed until the design is completed.
)erefore, the robustness in H∞ loop-shaping method
has its own particularity, which is different from the
conventional concept.

5. Conclusions

We establish the mathematical model of the solar panel
system in this paper and deepen the understanding of the
control design for the weakly damped flexible system. And
then we use H∞ loop-shaping method combined with

proper weighting function selection so as to design the stable
controller for a flexible solar panel system. We try to im-
prove system performance (bandwidth) based on the stable
controller. Finally, we seek the optimal compromise between
robust stability and system bandwidth. Simulation results
indicate that the system after the design has sufficient ro-
bustness while maximizing bandwidth.
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