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-is paper considers the parametric control to the Lorenz system by state feedback. Based on the solutions of the generalized
Sylvester matrix equation (GSE), the unified explicit parametric expression of the state feedback gain matrix is proposed. -e
closed loop of the Lorenz system can be transformed into an arbitrary constant matrix with the desired eigenstructure (eigenvalues
and eigenvectors). -e freedom provided by the parametric control can be fully used to find a controller to satisfy the robustness
criteria. A numerical simulation is developed to illustrate the effectiveness of the proposed approach.

1. Introduction

Lorenz system, first studied by Edward Lorenz, is a sim-
plified mathematical model for atmospheric convection [1],
which can display a phenomenon called chaos. Chaotic
phenomena can be detected in many physical systems such
as mechanical systems, electrical systems, and thermal
systems [2]. Many scholars pay close attention to it and get a
variety of positive achievements. Kim et al. put forward a
robust control approach to regulate and synchronize the
generalized Lorenz system based on the backstepping
method, while the nonlinear and uncertain items can be
estimated and canceled [3]. By using the Lyapunov function
and Barbalat’s lemma, Liu et al. consider the problem of
synchronization and antisynchronization in the Lorenz
system and apply the result to secure communication with
uncertain parameters [4]. Wu et al. propose an adaptive
control controller composed of a wavelet network and a
proportional controller containing adaptive gain; with this
controller, the coupled Lorenz system is globally stable [5].
Yu et al. present a novel approach through switched control
and superheteroclinic loops to linearize two symmetrical
equilibria and also give the circuit implementation [6].
Zhang et al. design a hybrid controller for the Lorenz system
with a piecewise linear memristor and provide criteria to
maintain that the trivial solutions are exponentially stable in

the mean square [7]. Simultaneously, hidden attractors of
the classical Lorenz system are also discussed [8, 9]. More
results of the Lorenz system can be found in the literature
[10, 11].

Robust control is an approach to design controller that
explicitly deals with uncertainty. -e most commonly used
method in the design and synthesis of robust controllers is
based on linear matrix inequalities (LMIs) (see [12–14] and
the references therein). Lindemann and Dimarogonas
consider the robust model predictive control that the robust
optimization problem is transformed into a convex qua-
dratic program [15]. Liu et al. investigate the robust for-
mation of tracking control for multiple quadrotors by linear
quadratic regulation and robust compensation theory [16].
Cristofaro proposes a robust sliding-mode controller to
globally stabilize the tracking error system with disturbances
[17]. -ere also are several methods to deal with robust
control and optimization [18–21]. However, the goal of
existed methods is to obtain a controller that satisfies some
specific requirements, such as robustness. Once the design
requirements change, the design needs to be repeated.

Parametric approach, creatively proposed by Duan
[22, 23], solves the controller design of quasi-linear systems
via state feedback and output feedback, which develops
novel research areas. Furthermore, Gu et al. extend a
parametric approach to second-order and high-order quasi-
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linear systems [24–29] and chaotic systems [30]. In this
paper, based on the solutions of a class of GSE [31, 32], a
whole set of parametric state feedback controllers is
established and the closed-loop system is transformed into
the desired eigenstructure. -e parametric approach pro-
vides a group of arbitrary parameters that represent the
degrees of design freedom, to implement state feedback and
robust optimization.

-e major contributions of this paper are summarized
in two aspects. On the one hand, the complete parame-
terization form of state feedback is established such that
closed-loop system has an expected eigenstructure, which
results in that the chaos phenomenon has been eliminated
effectively. On the other hand, the degrees of design
freedom in arbitrary parameters are fully used to realize the
robust optimization such that robustness can be improved
obviously.

-e remainder of this paper is organized as follows.
Section 2 analyzes the dynamical behaviors of the Lorenz
system. Section 3 presents the problem statement of para-
metric design for Lorenz system via state feedback and
provides some preparations. In Section 4, the generally
parameterized form of state feedback is established in two
cases, and robust optimization is realized by using the de-
grees of freedom in arbitrary parameters. In Section 5, a
numerical example is presented to prove the parametric
approach is effective and feasible. Section 6 concludes the
proposed results.

Notation: we propose some notations which are used in
this paper. RankA, detA, and eigA represent the rank,
determinant, and all eigenvalues of matrix A, respectively.
deg (A(s)) denotes the degree n of polynomial matrix
A(s) � A0 + sA1 + · · · + snAn; diag λ1, λ2, . . . , λn􏼈 􏼉 indicates
the diagonal matrix with diagonal elements λi,
i � 1, 2, . . . , n. max and min represent the maximum and
minimum.

2. Analysis of the Lorenz System

Consider a class of generalized Lorenz systems as follows:

_x1 � σ x2 − x1( 􏼁,

_x2 � cx1 − x2 − x1x3,

_x3 � x1x2 − βx3,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where x1, x2, x3 ∈ R are state variables and σ, c, β are
positive real constants. Let x � x1 x2 x3􏼂 􏼃

T, and the
system (1) can be equivalently written as

_x � Ax +Φ(x), (2)

with

A �

−σ σ 0

c −1 0

0 0 −β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

and Φ(x) is a smooth nonlinear vector field satisfying

Φ(x) �

0

−x1x3

x1x2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � x1Px,

P �

0 0 0

0 0 −1

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(4)

-e divergence of the system (1) is given as

∇V �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
� −σ − β − 1< 0, (5)

and V(t) � V(0)e(− σ− β− 1)t with the rate of contraction
dV/dt � V(0)e− σ− β− 1. Inequality (3) demonstrates the ex-
istence of chaotic attractor of the system (1).

With σ � 5.46, c � 20, β � 1, and x(0) �

0.5 −0.3 −0.1􏼂 􏼃
T, two-dimensional phase portraits of the

system (1) are shown in Figure 1.

3. Problem Statement and Preliminaries

3.1. Problem Statement. Consider the following controlled
Lorenz system:

_x � Ax + Bu, (6)

where u ∈ Rr is the input vector and A � A + x1P and
B ∈ R3×r are coefficient matrices satisfying Assumption 1.

Assumption 1. Rank sI − A B􏼂 􏼃 � 3, ∀s ∈ C.

For the system (6), using the control input

u � Kx, (7)

we can obtain the closed-loop system

_x � Acx, (8)

with

Ac � A + BK, (9)

where K ∈ Rr×3 is the feedback gain matrix to be
determined.

-e parametric control of Lorenz system (6) via state
feedback (7) can be stated as follows.

Problem 1 (PCLS). Let the controlled Lorenz system (6)
satisfy Assumption 1. Given an arbitrary matrix Λ ∈ C3×3,

find for the system, a state feedback controller in the form of
(7) and a nonsingular matrix V ∈ C3×3, satisfying

AcV � VΛ. (10)

Remark 1. -e above problem requirement (10) is equiv-
alent to find a state feedback controller (7) such that the
closed-loop system (8) is similar to a linear time-invariant
form with the desired eigenstructure; that is,Ac is similar to
an arbitrary matrix Λ by the proposed parametric approach.
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Because the closed-loop system (8) is stable [33, 34], Λ is
chosen as a Hurwitz matrix, that is,

eig(Λ) ∈ C−
. (11)

3.2. Preliminaries. When Assumption 1 is met, there exists
the following right coprime factorization (RCF):

(sI − A)N(s) − BD(s) � 0. (12)

Denote D(s) � [dij(s)]r×r, and

ω � max deg dij(s)􏼐 􏼑, i, j � 1, 2, . . . , r􏽮 􏽯. (13)

-en,

N(s) � 􏽘
ω

i�0
Nis

i
, Ni ∈ R

3×r
,

D(s) � 􏽘
ω

i�0
Dis

i
, Di ∈ R

r×r
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

4. Main Results

4.1. Parametric Control of Lorenz System. With the above
discussion, we propose the following -eorem 1 regarding
Problem 1 (PCLS).

Theorem 1. N(s) andD(s) are given by (14) and satisfy RCF
(12). Problem 1 (PCLS) has a general solution if and only if
there exists an arbitrary parameter matrix Z ∈ Cr×3 such that

detV≠ 0, (15)

where

V � 􏽘
ω

i�0
NiZΛ

i
. (16)

Furthermore, the feedback gain matrix K is solved by

K � WV
−1

, (17)

where

W � 􏽘
ω

i�0
DiZΛ

i
. (18)

Proof. Equation (10) is equivalent to

AV + BKV � VΛ. (19)

Let

W � KV, (20)

then equation (19) becomes the GSE:
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Figure 1: Two-dimensional portrait of Lorenz system (1).
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AV + BW � VΛ. (21)

Using (14), we have

(sI − A)N(s) � 􏽘
ω

i�0
Nis

i+1
− 􏽘

ω

i�0
ANis

i

� Nωs
ω+1

+ 􏽘
ω

i�1
Ni−1s

i

− 􏽘
ω

i�1
ANis

i
− AN0

� Nωs
ω+1

+ 􏽘
ω

i�1
Ni−1 − ANi( 􏼁s

i
− AN0,

BD(s) � 􏽘

ω

i�0
BDis

i
� 􏽘

ω

i�1
BDis

i
+ BD0.

(22)

Substituting the above equations into (12) and equating the
coefficients of si on both sides, we obtain

Nω � 0,

AN0 � −BD0,

Ni−1 − ANi � BDi, i � 1, 2, . . . ,ω.

(23)

Based on equations (16), (18), and (23), we have

VΛ − AV � 􏽘

ω

i�0
NiZΛ

i+1
− 􏽘

ω

i�0
ANiZΛ

i

� NωZΛω+1
+ 􏽘

ω

i�1
Ni−1ZΛ

i
− 􏽘

ω

i�1
ANiZΛ

i
− AN0

� NωZΛω+1
+ 􏽘

ω

i�1
Ni−1 − ANi( 􏼁ZΛi

− AN0

� 􏽘
ω

i�1
BDiZΛ

i
+ BD0 � B􏽘

ω

i�0
DiZΛ

i
� BW.

(24)

-is proves that the matrices V in (16) and W in (18)
satisfy the GSE (21). Finally, combining equations (16) and
(18) with (20), the feedback gain matrix can be obtained as
equation (17).

-e proof is completed. □

In application, we choose the matrix Λ in the diagonal
form of

Λ � diag λ1, λ2, λ3􏼈 􏼉, (25)

where λi ∈ C− , i � 1, 2, 3. Based on-eorem 1, we can derive
the following Corollary 1 to Problem 1 (PCLS).

Corollary 1. N(s) and D(s) are given by (9) and satisfy RCF
(8). Problem 1 (PCLS) has a general solution if and only if
there exists a group of parameter vectors zi ∈ Cr, i � 1, 2, 3,

such that condition (15) is satisfied, where matrix V can be
given by columns

V � v1 v2 v3􏼂 􏼃,

vi � N λi( 􏼁zi, i � 1, 2, 3,

Z � z1 z2 z3􏼂 􏼃.

(26)

Furthermore, the feedback gain matrix K is solved by

K � WV
−1

, (27)

where matrix W can be given by columns

W � w1 w2 w3􏼂 􏼃,

wi � D λi( 􏼁zi, i � 1, 2, 3.
(28)

4.2. Robust Optimization. -eorem 1 and Corollary 1 show
that the matrix Z is an arbitrary parameter which can
provide the degrees of freedom to analyse and design
problems. In this subsection, robust optimization is con-
sidered such that regional pole assignment and robustness
criteria are investigated.

4.2.1. Regional Pole Assignment. We aim to locate the ei-
genvalues λi, i � 1, 2, 3 in an admissible set to satisfy control
requirements of practical applications. Actually, eigenvalues
can be considered within a small interval around the ex-
pected locations to reduce the difficulty and improve the
flexibility when implementing controller. In this case, the
complex pole is defined as

λi � λrei + jλimi , i � 1, 2, 3, (29)

with

λrei � λrei + λ
re
i − λrei􏼐 􏼑sin2 zi

����
����2􏼐 􏼑,

λimi � λimi + λ
im
i − λimi􏼒 􏼓sin2 zi

����
����2􏼐 􏼑,

(30)

where λrei and λimi are real and imaginary parts of complex
pole and λ

re
i , λ

re
i and λ

im
i , λimi are the upper and lower bound

of λrei and λimi , respectively. For real pole, equation (29) can
be simplified as

λi � λi + λi − λi􏼐 􏼑sin2 zi

����
����2􏼐 􏼑, i � 1, 2, 3. (31)

Equation (29) shows the arbitrary parameter Z plays an
important role in determining the location of eigenvalues,
which becomes the decision factor in robust optimization.

4.2.2. Robustness Criteria. -us, this paper fully employs the
freedom to find a feedback controller to satisfy the ro-
bustness criteria. For the closed-loop system (8), a bounded
disturbance Gw is considered as

_x � Acx + Gw, (32)

where w ∈ Rp is the disturbance vector and G ∈ Rn×p is the
disturbance matrix. In this subsection, a multiobjective
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robustness criterion is proposed to improve the robustness
of the closed-loop system (8).

First, let us introduce the robustness degree [35], a
simple and useful method to measure the ability of system
for overcoming external disturbances, modeling errors, and
other uncertainties, defined as

J1 � min ψ1,ψ2,ψ3􏼈 􏼉, (33)

where ψi � |eig(1/2(Ac + AT
c ))|, i � 1, 2, 3.

Second, we consider the disturbance attenuation which
investigates the effects of external disturbances to closed-
loop systems, and the objective is expressed in terms of the
H2-norm of the following function [36]:

J2 � ‖VG‖2. (34)

-ird, in order to maintain the performance robustness
and stability robustness when parameter uncertainty exists, a
general way is to minimize the sensitivity function for
closed-loop eigenvalues, and the overall eigenvalue sensi-
tivity is defined as follows:

J3 � ‖V‖2 V
− 1����

����2. (35)

Combining equations (33)–(35), the multiobjective ro-
bustness criteria are established to represent the robustness
as

J � ε1J1 + ε2J2 + ε3J3, (36)

where ε1, ε2, and ε3 are the weight coefficients satisfying

ε1 �
J1

J1 + J2 + J3
,

ε2 �
J2

J1 + J2 + J3
,

ε3 �
J3

J1 + J2 + J3
,

(37)

which means that weight coefficients ε1, ε2, and ε3 can be
updated in real time. -en, we formulate the robust opti-
mization into a multiobjective problem as

min J,

s.t. (10), (18), (22).
􏼨 (38)

Remark 2. Based on the above results, a guideline for robust
parametric control of Lorenz system (1) via state feedback is
proposed as follows:

Step 1: determine a Hurwitz matrix Λ with an expected
eigenstructure.
Step 2: obtain the N(s), D(s){ } based on (12).
Step 3: seek arbitrary parameter Z by robust optimi-
zation problem (38).

Step 4: calculate the coefficient matrix of state feedback
(17).

5. An Example

5.1. System Description. Consider the controlled Lorenz
system (6) with σ � 5.46, c � 20, and β � 1, and we have

A �

−5.46 5.46 0

20 −1 −x1

0 x1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (39)

Let

B �

0 0

0 1

1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (40)

based on RCF (8), and N(s) and D(s) are obtained as

N(s) �

1 0

50
273

s + 1 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D(s) �

−
50
273

x1s − x1 s + 1

50
273

s
2

+
323
273

s − 19 x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(41)

We take

λ1 ∈ [−1.2, −0.8],

λ2 ∈ [−2.1, −1.9),

λ3 ∈ [−3.3, −2.7),

(42)

and a bounded disturbance

G �

0

−0.2

0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

w(t) �
1, t ∈ [8, 8.5],

0, else.
􏼨

(43)

5.2. Nonoptimized Solution. Using the randn function in
Matlab® to generate an arbitrary parameter matrix Z as

Z �
4.2589 1.5079 3.5294

4.6232 4.6535 1.3902
􏼢 􏼣, (44)

and Λ � diag −1, −2, −3{ }; according to -eorem 1 or Cor-
ollary 1 with (41), we have

Complexity 5



V �

4.2589 1.5079 3.5294

3.4789 0.9556 1.5902

4.6232 4.6535 1.3902

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

W �
−3.4789x1 −0.9556x1 − 4.6535 −1.5902x1 − 2.7804

4.6232x1 − 85.1780 4.6535x1 − 31.1136 1.3902x1 − 73.7683
􏼢 􏼣,

(45)

K �
−2.2809 −x1 + 4.3171 −1.1474
−22.0451 2.6074 x1 − 0.0781

􏼢 􏼣. (46)

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

x1

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Robust solution
Non–optimized solution

Figure 2: Comparison of x1 between robust solution and nonoptimized solution.
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0.1

0
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–0.2
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–0.4

–0.5

–0.6

x2

Robust solution
Non–optimized solution

Figure 3: Comparison of x2 between robust solution and nonoptimized solution.
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By using the feedback controller (46), the closed-loop
system is

_x �

−5.46 5.46 0

−2.0451 1.6074 −0.0781

−2.2809 4.3171 −2.1474

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x. (47)

5.3. Robust Solution. Consider the robust optimization
problem (38). Choosing the initial value Z in (44), the

optimal Z can be obtained as by the fminsearch function in
MATLAB Optimization Toolbox:

Z �
4.3072 0.4714 3.3962

−0.5399 6.6488 −0.1831
􏼢 􏼣, (48)

and Λ � diag −0.8527, −2.0722, −3.2605{ }; according to
-eorem 1 or Corollary 1 with (41), we have

V �

4.3072 0.4714 3.3962

3.6345 0.2925 1.3681

−0.5399 6.6488 −0.1831

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

W �
−0.36345x1 − 0.0795 −0.2925x1 − 7.1288 0.4139 − 1.3681x1

−0.5399x1 − 85.6088 6.6488x1 − 9.7416 −0.1831x1 − 71.0166
􏼢 􏼣,

(49)

K �
0.2622 −x1 − 0.4914 −1.0692

−21.5743 1.5682 x1 + 0.0349
􏼢 􏼣. (50)

By using the feedback controller (50), the closed-loop
system is _x �

−5.46 5.46 0

−1.8558 1.3438 −0.0187

0.2622 −0.4914 −2.0692

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦x. (51)

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

Robust solution
Non-optimized solution

x 3

Figure 4: Comparison of x3 between robust solution and nonoptimized solution.
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5.4. Simulation Comparison. Choose the initial value as
x(0) � 0.5 −0.3 −0.1􏼂 􏼃

T, and the simulation results are
shown in Figures 2–6.

Figures 2 and 3 show that robust state feedback yields a
better transient performance than that of nonoptimized one.
In Figure 4, although the amplitude of the robust solution is
higher than nonoptimized one when the disturbance existed,
it reduces the frequency of oscillation and arrives at stability
rapidly. From Figures 5 and 6, we see that the robust solution
consumes less energy.

Let Jo and Jn represent the optimized and nonoptimized
indices, and we have

Jo � 5.0952,

Jn � 9.5467.
(52)

Jo < Jn, which means the robustness of the closed-loop
system is improved effectively through the robust optimi-
zation based on degrees of freedom provided by the pro-
posed parametric approach.
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Figure 5: Comparison of u1 between robust solution and nonoptimized solution.
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Figure 6: Comparison of u2 between robust solution and nonoptimized solution.
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6. Conclusion

A parametric approach, inspired by the solutions of GSE, is
provided aiming at the Lorenz system in this study. -e
proposed parametric approach establishes a more unified
parametric expression of state feedback concerning matrices
Λ and Z and then transforms the closed-loop system into a
linear constant form with the desired eigenstructure.
Meanwhile, a robust optimization scheme is also considered
based on degrees of design freedom given by the parametric
approach. In this scheme, these arbitrary parameters to be
optimized are with no physical significances; thus, the op-
timization interval can be greatly extended, which is a benefit
to obtain an approximately globally optimal solution.
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