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Due to the increasingly complex and dynamic features of global supply chain networks, it is challenging to provide high supply
availability and network connectivity under unexpected disruptions. In this paper, we investigate how to improve the topology
resilience of the supply chain network from its multilayer nature. We �rstly conduct the study on the connectedness in the supply
chain network from a topological perspective and adopt the t-core method to decompose the network into multiple layers. �en,
we propose a layer-based rewiring algorithm to recover the network from disruptions. �e experimental results in the real supply
chain network show that our design greatly improves the network resilience under both random and targeted disruptions.

1. Introduction

Nowadays, the supply chain network is becoming increas-
ingly vulnerable in the dynamic and complex business en-
vironment. �ese disruptions largely come from unexpected
events such as supplier bankruptcies, natural disasters, and
even terrorism attack. One disruption not only disables a few
entities in the local supply system but also propagates or
even ampli�es its impact on the global interconnected
systems [1–3]. �erefore, how to improve the resilience of
complex supply chain networks is very important in the
current global supply system [4, 5].

A multitude of risk management strategies and tech-
nologies have been proposed to identify, assess, and resolve
disruption problems from the perspective of supply network
topology [6]. Studies on the supply network topology enable
the researcher to quantify complexity and understand the
rationale behind the structure and self-organization of the
supply chain network in the current business system. De-
spite much recent progress in analyzing, constructing, and
recovering the topology of the supply chain network, how to
improve the topology resilience from its multilayer nature
has remained elusive.

Supply chain networks represent a graph of nodes and
connections, which transfer goods from suppliers to cus-
tomers. �e entities in a complex supply chain network may

play various roles and have di�erent impacts on the network
resilience. For example, upon removing a few strongly
connected core nodes from the supply chain network, the
periphery nodes connects to the core ones may lose their
connections to the whole network. On the contrary, the
failure of one periphery node may only a�ect the connection
to its upstream node, without catastrophic impact on the
whole supply system. In this sense, as opposed to conven-
tional homogeneous networks, the supply chain networks
have heterogeneous nodes, which could be classi�ed into
di�erent layers according to their impacts on network
resilience. Intuitively, the nodes could be classi�ed according
to their assigned roles. However, current elastic supply chain
networks such as the military logistic network may adap-
tively change the node role and transfer direction according
to real-time requirements [7].�erefore, only using assigned
roles to classify nodes potentially leads to wrong classi�-
cation results in highly complex and dynamic network
scenarios.

In this paper, we investigate how to improve the resil-
ience of complex and heterogeneous supply chain networks
from a topological perspective. Speci�cally, we �rstly study
and analyze the connectedness in the real supply chain
network. �en, we adopt the t-core decomposition method
[8] to distinguish the layers of the network. �at is, all nodes
in the supply chain network are classi�ed intomultiple layers
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based on their impacts on network resilience. Finally, based
on the different layers of each node in the multilayer supply
chain network, we propose a new rewiring algorithm to
recover from the disruptions. *e test results show that our
design greatly improves the network robustness on supply
availability and network connectivity in presence of both
random and targeted disruptions.

*e remainder of the paper is organized as follows. We
first present the related works on the resilience of the supply
chain network in Section 2. In Section 3, we conduct an
extensive study to explore the impacts of disruptions on
network resilience in a typical heterogeneous supply chain
network. In Section 4, we show how to use the t-core de-
composition method to distinguish layers in the supply
chain network. We introduce the rewiring algorithm to
recover the network from the disruptions in Section 5. In
Sections 6 and 7, we show the test results of the military
logistic network. Finally, we give the conclusion remarks and
future research in Section 8.

2. Related Work

*e modern supply chain network are confronted with
dynamic and unpredictable disruption risks with short or
long term negative effects on the network performance
[9, 10]. To recover the network after disruptions, the dy-
namic adjustments and resource reallocation are needed to
ensure the system resiliency [11, 12].

After discovering a disruption, the network manager
should immediately alleviate the disruption impact, handle
ripple effects, and restore network functions. Specifically, to
reduce the impact of disruption in the postdisruption stage,
many proactive risk management strategies including robust
strategy and redundancy strategy are employed in advance
[13, 14]. For example, the backup suppliers, multiple
sourcing, and rerouting strategies are used before and after
disruptions to mitigate the disruption impact [15–17].
Moreover, immediate and effective handling of ripple effect
is also needed to limit the impact of disruption through
multiple echelons [18, 19]. To handle the disruption, these
proactive risk management strategies make mitigation and
contingency plans in advance to certain disruption events.
Unfortunately, due to the highly dynamic feature of the
supply chain network, it is hard to make contingency plans
suitable for all unexpected disruptions [20].

Research on complex networks has revealed that the
real-world networks, such as the Internet and social net-
works, often have complex topologies that are different from
lattice or random graph structures [21]. *e topological
study is also introduced into research of the resilience of
supply chain networks [7]. *e results show that the hier-
archical supply chain networks are easily disconnected
under disruptions.

To improve the robustness of the topology of hierar-
chical supply chains networks, hierarchy + growth model
extends hierarchical supply chains networks by connecting
the edges between nodes of the same type [22]. A proba-
bilistic and localized rewiring approach is proposed to
improve resilience [23] by probabilistically disconnecting

edge from high-degree node and randomly reconnecting to
the other node. Consequently, the hierarchical supply chain
network eventually evolves into a scale-free network with
high resilience. Considering the heterogeneous roles of
nodes, the hybrid and tunable network growth model DLA
extends the hierarchy + growth model by allowing new
nodes to make connections according to both degree and
locality [24]. *e study of self-organization characteristic in
the cluster supply chain network reveal that the key to re-
silient recovery lies in the local self-organization repair
behavior of old and new nodes [25]. Based on the hetero-
geneous feature of the supply chain network, a resilient SC
growth (RSCG) model [26] is established by using the
preferential attachment (i.e., each node preferentially at-
taches based on its unique degree and characteristics).

In contrast with the above study on the supply chain
network, we analyze and recover the topology through a new
perspective and improve the topology resilience from its
multilayer nature, which has remained elusive from the
recent research. We adopt the t-core decomposition to
distinguish the layers of the network according to the node
impact and propose the layer-based rewiring algorithm to
recover from disruptions. With the consideration of mul-
tilayer nature of the supply chain network, our design
successfully improves the network resilience on supply
availability and network connectivity.

3. Connectedness Analysis

In this section, we analyze the characters of a typical supply
chain network in the real world. We use the topological
metrics to investigate the relationship between nodes and
give the insight into connectedness of the supply chain
network.

3.1. Evaluation Settings and Metrics. We use the data set
collected from the supply chain network of transportation of
freight and cargo [27], which consists of 626 nodes and 1112
edges. *e nodes represent the source and intermediate and
destination locations in the transportation of freight and
cargo. *e edges are the transportation paths between pairs
of nodes.We count the number of goods on the edges during
different given time periods and use it as the weight of edge.
In this test, we use the topological metrics of average path
length, clustering coefficient, and distribution of node de-
gree, which are defined as the following.

Average path length (APL): we define APL as the av-
erage value of the number of edges in the shortest path
between all pairs of nodes.
Average clustering coefficient (ACP): suppose that a
node has k neighbors. *en, for the k neighbors, there
at most exist k(k − 1)/2 edges between them (this
occurs when each neighbor is connected to every other
neighbor). We use the clustering coefficient to denote
the fraction of these actually existing edges in the k(k −

1)/2 edges. *en, we define the average clustering
coefficient as the average of clustering coefficient over
all nodes.
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Node degree (ND): for each node, its node degree is the
number of neighbors. If the node degree is large, it is
strongly connected to the other nodes.

3.2. Results. Firstly, we measure the average path length of
the transportation paths between pairs of nodes. Figure 1
shows the measurement results with different time periods.

As shown in Figure 1(a), when the measurement period
is less than 5 days, the average path length of the trans-
portation paths shows some deviations. However, when the
measurement period is large enough (i.e., >5 days), the
measurement result converges to 3.55. We also measure the
network diameter, which is the largest path length of
transportation paths between pairs of nodes. As shown in
Figure 1(b), the network diameter becomes 11 when we
collect enough data traces. *is results mean that the
transportation could be finished within 4 hops at average
between any pairs of nodes even when the network diameter
is as large as 11.

Next, we calculate the average clustering coefficient,
which reflects the cliquishness of network. To get an accurate
result, we set the measurement period as 10 days. *e av-
erage clustering coefficient of all nodes is 0.39, which is much
larger than a random network with the same network scale.
Since both the average clustering coefficient and average
path length is small, the supply chain network of trans-
portation of freight and cargo shows the features of the small
world network.

Finally, we plot the cumulative distribution function
(CDF) of degrees of all nodes in Figure 2. A node with more
degree has more connections with the other nodes and larger
impact on network resilience. As shown in Figure 2, the
degree of 80% nodes is less than 2, while less than 5% nodes
has their degrees larger than 4, exhibiting a heavy-tailed
distribution. *is result reflects the fact that, in the supply
chain network of transportation of freight and cargo, the
goods are firstly transferred to a few strongly connected
nodes and then distributed to a large number of downstream
nodes.

4. Decomposition of Multilayer Supply
Chain Network

Based on the connectedness of the abovementioned typical
supply chain network, we observe that it shows the features
of the small world and has the heavy-tailed distribution of
node degree. In this section, we further use the t-core de-
compositionmethod [8] to distinguish the layers of network.

*e steps of the t-core decomposition algorithm include

(1) Firstly, the nodes with degree�1 are removed from
the network and included in the 1st layer. Moreover,
if some nodes become completely disconnected from
the main network after the abovementioned re-
moving operations, these nodes are also included in
the 1st layer.

(2) In the next iterations, all nodes with degree � t

(t � 2, 3, . . . , max) are removed from the network.

Here, max is the maximum degree of all nodes. In
step t, if the degree of a node is less than t after the
removal, the node is also removed in the current
iteration. In each iteration, the removed nodes form
the corresponding layer.

(3) When all nodes are removed from the network, the
decomposition algorithm stops in iteration tmax.
Nodes removed in iteration tmax are included in the
last layer.

We use the t-tcore decomposition method to distinguish
the layers in the supply chain network of transportation of
freight and cargo.*e network is decomposed into 10 layers.
However, it is hard to analyze a complex network with too
many layers. *us, we merge some layers according to the
average clustering coefficient of nodes.

As shown in Table 1, since the average clustering co-
efficient of nodes in layer 1 ∼ 3 are very close, we merge the
layers 1, 2, and 3 into one layer. Similarly, we also merge
layer 4 ∼ 5, layer 6 ∼ 7, and layer 8 ∼ 10 into three layers,
respectively. Finally, the original 10 layers are merged into 4
layers, making it easier to analyze the supply chain network.

Figure 3 shows the decomposition result of the supply
chain network of transportation of freight and cargo. In each
layer, the nodes have the close clustering coefficients. With
the increasing layer number, the nodes have larger clustering
coefficient and thus have greater impact on the other nodes.

5. Rewiring Approach for Multilayer Supply
Chain Networks

A resilient supply chain network should be adaptive to
disruptions and be able to effectively recover from disrup-
tions. In this section, we present the rewiring approach,
which improves the network resilience according to the
multilayer feature of supply chain networks.

To improve the resilience of supply chain networks, we
add randomness into the network topology in a controlled
way. Algorithm 1 shows the pseudocode for rewiring a
network after node failure.

When a node fails, we rewire the failure edges between
the failed node and its direct neighbors as the following
steps. Firstly, the failure edges are removed from the edge set
E. To avoid being isolated from the network, the other
endpoint of the rewired edge will rewire the edge to connect
with another new node within a radius dmax.

To reduce the cliquishness, we randomly choose a new
node in the layer with the smallest layer number. *at is,
the rewired edge will connect to a node with low clustering
coefficient. Consequently, the connectedness in rebuilt
network becomes more balanced, improving the resilience
of the supply chain network under unexpected
disruptions.

Moreover, the maximum rewiring radius dmax gives a
distance constraint for rewiring. In the real world, it is more
economical to connect two nodes that are closer to each
other. *erefore, we set the upper limit on the rewiring
radius, which can be either topological distance (i.e., in
number of hops) or physical distance.
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6. Robustness Evaluation under Disruptions

In this section, we analyze how a disruption affects the
robustness of the supply chain network with multiple layers.
Firstly, we describe the evaluation metrics for network ro-
bustness. *en, we test the network robustness on supply
availability and network connectivity in presence of random
and targeted disruptions.

6.1. Evaluation Metric. *e modern supply chain network
has complex structure and dynamic environment. It is very
important to evaluate the network robustness, which rep-
resents its ability to maintain function and connectedness
once some nodes or edges are lost. A resilient supply chain
network is able to maintain the delivery of supplies in re-
sponse to demands under unexpected disruptions. We use
the following metrics to evaluate the network robustness,
network efficiency, and impacts of disruption in different
layers on the whole network performance.

6.1.1. Network Connectivity. We use the size of the largest
connected component to evaluate the network connectivity.
In a largest connected component (LCC), there is a path
between any pair of nodes [28]. After disruptions occur, for a
well-connected network, the size of the largest connected
component should still be close to the original network size.
*erefore, we use the normalized size of the largest con-
nected component NS to assess the connectivity of the whole
network. *at is,

NS �
N∗

N
, (1)

where N∗ is the number of nodes in the largest connected
component after disruption andN is the number of nodes in
the network before disruption. *e value of NS ∈ [0, 1]

represents the scale of network connectivity after disruptions
occur. *e supply chain network with a larger NS has better
connectivity and robustness.

6.1.2. Network Efficiency. In the high effective supply chain
network, the goods should be transferred within a very short
distance. *ough the size of largest connected component
indicates the network connectivity after disruptions, it
cannot directly show the network efficiency. *erefore, we
define the network efficiency E as

E �
2

N(N − 1)
􏽘

i≠j∈V

1
dij

, (2)

whereN is the number of nodes in the whole network and dij

is the length of the shortest path between node vi and node
vj. It there is no path between node vi and node vj, dij equals
infinity and then 1/dij equals 0.

We define the normalized network efficiency NE as

NE �
E∗

E
, (3)

where E∗ and E are the network efficiency after and before
disruption, respectively.
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Figure 1: Path length. (a) Average path length. (b) Network diameter.
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6.1.3. Variation Ratio of Robustness. In the multilayer
supply chain network, the nodes in different layers have
different impacts on the network robustness. To assess the
impact of disruption in different layers, we define the var-
iation ratio of network connectivity as

ΔS �
NS1 − NS2
ΔN

, (4)

where NS1 and NS2 are the normalized sizes of the largest
connected component after two different disruptions, re-
spectively, and ΔN is the difference between numbers of
failure nodes in two disruptions.

Similarly, we define the variation ratio of network effi-
ciency as

ΔE �
NE1 − NE2

ΔN
, (5)

where NE1 and NE2 are the normalized network efficiency
after two different disruptions, respectively.

6.2. Test Setting. In this test, we use the supply chain network
of transportation of freight and cargo [27] to assess its ro-
bustness under random disruptions and targeted disruptions.
*e nodes in the supply chain network of transportation of
freight and cargo are already classified into 4 layers.

We removed a set of nodes from the network to simulate
two types of network disruption including random and
targeted disruptions. (1) Random disruptions: in order to
simulate random disruptions, we progressively remove a
randomly selected set of nodes from the whole supply chain
network. (2) Targeted disruptions: for the targeted disrup-
tions, we select the removed nodes in the certain layer to test
the impact of different layers.

7. Results

We measure the resilience metrics including network
connectivity, network efficiency, and variation ratio of ro-
bustness after disruptions to evaluate and compare the
network connectivity and efficiency under random dis-
ruptions and targeted disruptions.

7.1. Network Connectivity and Efficiency under Random
Disruption. We measure the network connectivity and effi-
ciency under random disruption. We increase the ratio of
failure nodes from 0 to 100%. As shown in Figure 4, when the
ratio of failure nodes increases, both network connectivity and
efficiency are reduced. Moreover, the decreasing speed of
network efficiency is faster than that of network connectivity.
*is result shows that, the nodes have multiple optional paths
to keep good network connectivity under random disruption.
However, since the optional paths are usually larger than the
failure path, the network efficiency is unavoidably degraded.

7.2. Network Connectivity under Targeted Disruption. We
measure the normalized size of the largest connected com-
ponent with the increasing ratio of failure nodes in different
layers. Figure 5(a) shows that, when targeted disruptions
happen in all layers, the network connectivity decreases. *e
disruptions in layers with larger layer number have greater
impact on the network connectivity due to the higher clus-
tering coefficient of nodes in these layers. Figure 5(b) shows
the variation ratio of network connectivity. In all layers, layer
4 has the greatest impact on the network connectivity,
meaning the nodes in layer 4 are more important than the
other nodes in ensuring network connectivity.

7.3. Network Efficiency under Targeted Disruption. We
measure the network efficiency when the targeted

Table 1: Layers of supply chain network of transportation of freight and cargo.

Unmerged layer Average clustering coefficient Merged layer Number of nodes
1 0.08

1 1422 0.125
3 0.152
4 0.291 2 4165 0.312
6 0.62 3 507 0.57
8 0.82

4 189 0.81
10 0.89
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Initialization:
E⟵ all edges;
V⟵ all nodes;
On detecting the failure of vf:
begin
For each vr ∈ direct neighbors of vf do
begin

E � E − < vr, vf > ;

Identify Vc ∈V, such that ∀vj ∈ Vc, 0< distance(vr, vj)<dmax;

vnew �Random (vj ∈ the nodes with the smallest layer number in Vc);
If vnew ∉ direct neighbors of vr

begin
E � E + 〈vr, vnew〉;

ALGORITHM 1: Rewiring algorithm.
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Figure 5: Network connectivity under targeted disruption. (a) Network connectivity. (b) Variation ratio of network connectivity.
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disruptions happen in different layers. Figure 6(a) shows
that, with more failure nodes, the network efficiency is
reduced. *e targeted disruptions in layer 4 have the
greater impact on network efficiency than the other layers.
*e reason is that most junction nodes of the shortest
paths are in layer 4. When the targeted disruptions happen
in layer 4, the nodes have to reselect the paths other the
shortest ones, resulting in lower network efficiency. *is
result is also verified in Figure 6(b), in which the failure of
nodes in layer 4 has the largest variation ratio of network
efficiency. Compared with layer 4, the impact of other
layers on network efficiency is much smaller.

8. Evaluation on Disruption Recovery

In this section, to evaluate the effectiveness of rewiring algo-
rithm, we conduct the simulation test with a typical military
logistic network under random and targeted disruptions. Since
the fundamental target of a supply chain network is to deliver
supplies from the supplier to the consumer, we use supply
availability as a critical robustnessmetric to test if the consumer
can obtain its supplies from the supplier. Specifically, consider
a supply chain network with the supplier, consumer, and relay
nodes. *e two nonoverlapping subsets of the consumer and
supply nodes are sets VC and VS, respectively. We use V∗C to
denote the set of consumer nodes that can access to supply
nodes through paths in the supply chain network.

We define the supply availability SV as the ratio between
the cardinalities of sets V∗C and VC:

V
∗
C � vi ∈ VC

􏼌􏼌􏼌􏼌∃vj ∈ VS: ∃pij,

SV �
V∗C

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

VC
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(6)

We conduct the simulation test in a military logistic
network [7], which consists of 1000 nodes, including 150

supply, 550 demand, and 300 relay nodes. According to
impact of nodes on network resilience, the military lo-
gistic network is divided into 5 layers. *e maximum
rewiring radius dmax is set as 3 hops. To give a compre-
hensive performance evaluation, we set different proba-
bilities p to trigger the rewiring operation after
disruptions. In the test, we first construct the supply chain
network using the military logistic network configuration.
*en, we will simulate disruptions and measure network
performance using the aforementioned robustness
metrics.

Figure 7 shows the network performance under ran-
dom disruption, in which the nodes are randomly removed
from the network. If p is 0, there is no rewiring operation.
As shown in Figure 7(a), the larger supply availability is
achieved with the higher rewiring probabilities p.
Figure 7(b) shows that the rewiring approach obtains much
better connectivity compared to the case without rewiring.
When the ratio of failure nodes is 40%, the connectivity
improvement is up to about 19%. As shown in Figure 7(c),
however, the rewiring achieves better availability and
connectivity at the cost of delivery efficiency. With larger
rewiring probability p, the nodes have more chances to
select suboptimal paths, leading to lower network
efficiency.

To evaluate the network performance under targeted
disruption, we remove nodes in the order of decreasing
node layer. In Figure 8(a), the supply availability de-
creases faster with increasing ratio of failure nodes
compared with the case of random disruption.
Figure 8(b) shows the similar trend in network con-
nectivity. Nonetheless, the rewiring operation achieves
both higher supply availability and lager network con-
nectivity. Figure 8(c) shows the loss of network efficiency
due to rewiring. However, compared with the perfor-
mance gain in network resilience, the efficiency degra-
dation is acceptable.
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Figure 6: Network efficiency under targeted disruption. (a) Network efficiency. (b) Variation ratio of network efficiency.
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9. Conclusion

In this paper, we use the complex network theory to in-
vestigate how to improve the resilience of the multilayer
supply chain networks. *rough the topology analysis, we
analyze the connectedness in the supply chain network and
use the t-core algorithm to distinguish the network layers.
We also propose a new rewiring algorithm to recover the
network from the disruptions. *e test results of the real
supply chain network show that our design greatly improves
the network resilience on supply availability and network
connectivity in presence of both random and targeted
disruptions.

In future, we would like to address the following issues.
Firstly, though we use multiple metrics to analyze the
network performance, we will investigate how to combine
multiple metrics into a single objective function to evaluate
and improve the overall network performance. Secondly, the
rewiring operation improves the supply availability and
network connectivity, but decreases the network efficiency.
We will optimize the probability of rewiring operation to
achieve the good tradeoff between the network connectivity
and network efficiency.
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