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Travel route preferences can strongly interact with the events that happened in networked traveling, and this coevolving
phenomena are essential in providing theoretical foundations for travel route recommendation and predicting collective be-
haviour in social systems. While most literature puts the focus on route recommendation of individual scenic spots instead of city
travel, we propose a novel approach named City Travel Route Recommendation based on Sequential Events Similarity (CTRR-
SES) by applying the coevolving spreading dynamics of the city tour networks and mine the travel spatiotemporal patterns in the
networks. First, we present the Event Sequence Similarity Measurement Method based on modelling tourists’ travel sequences.
(e method can help measure similarities in various city travel routes, which combine different scenic types, time slots, and
relative locations. Second, by applying the user preference learning method based on scenic type, we learn from the user’s city
travel historical data and compute the personalized travel preference. Finally, we verify our algorithm by collecting data of 54 city
travellers of their historical spatiotemporal routes in the ten most popular cities from Mafeng.com. CTRR-SES shows better
performance in predicting the user’s new city travel sequence fitting the user’s individual preference.

1. Introduction

City tour has become popular in recent years as tourists may
experience various food, culture, customs, and city views in
this process while making use of commercial services like
nice accommodation and inner-city transportation [1].
Unlike those traditional scenic spots, which are geograph-
ically isolated, a city tour combines civil resources, various
facilities, and landscapes, and these form a city tour network
with spatiotemporal multiplexity. Factors such as urban
economy, society, and culture have an impact on the touring
experience.(ey are coevolving through high relevance, so a
city scenic spot has compound attributes of multiple labels.
Furthermore, many ways of transport connect these city
spots, which are geographically centered around the urban
area. (us, a city travel plan has the characteristics of
personalization, flexibility, and evolving [2, 3], and the
coevolving spreading dynamics of this network with mul-
tiscale structure is a great point of exploration that can apply

to the city tour recommendation system. So far, the travel
recommendations given by apps and OTAs are classical
routes with scenic spots ranked by the number of visitors or
preferences of most travellers. (us, the recommendations
are not suitable for every visitor because of a lack of per-
sonalization [4]. When modelling and solving the tour route
planning problem, most papers investigate user preference
and give travel route recommendations with a fixed start and
endpoints [5], not taking the spatiotemporal travel sequence,
length of stay, and ways of transport into consideration
[6, 7].

Because of these problems mentioned above, this paper
firstly defines the user travel sequence model and various
elements involved in city tour travel planning, then based on
this model, we present the travel sequence similarity mea-
surement method. (e method can help measure the sim-
ilarities of various city travel sequences, which combine
different scenic types, time slots, and relative locations.
Secondly, clustering analysis is conducted based on the
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historical travel database. By using the travel sequence
similarity measurement method, we compute the baseline
model of an individual visitor’s personalized travel prefer-
ence. Finally, we propose a novel approach named City
Travel Route Recommendation based on Sequential Events
Similarity (CTRR-SES). CTRR-SES helps recommend per-
sonal travel routes to a new destination for users. (e
recommendation routes are a better fit for the user’s pref-
erence as they are calculated by the travel preference baseline
model and from the historical travel sequence data of the
user.

2. Research Background

Travel route recommendation system gives the user city
travel routes that match user’s preferences, satisfying the
user’s real needs and expectations. Exploiting historical data
of users to make future prediction lives at the heart of
building effective recommender systems [8]. For e-com-
merce, some personalized recommendation strategies can be
designed to promote the diffusion of products [9]. However,
city tourism is a new product of modern social arrangements
as tourists spend time in pursuit of recreation, relaxation,
and pleasure in cities. City tourism is featured by social
media posts and marks of hot city attractions. Many types of
research investigate tour preference by studying traveller’s
social media posts and tag data. Based on Geo-tagged
photos, some research on the correlation of several Geo-
tagged images with an actual number of visitors [10], some
on traveller’s spatiotemporal behaviour [11], some on travel
route recommendation system algorithm [12], and some on
city impressions and big events and their combined impact
on travel decision [13]. However, those papers do not fully
consider the features of new city tourists and their touring
preference sequences. Hence, they are unable to explore the
unique traits of city travellers.

Big data about travel knowledge is generated each day on
the Internet and various platforms. Large amounts of
structured or semistructured datasets are produced by vis-
itors who share their travel experiences, skills, or feedback
through communication technology and mobile appliances.
Upon travel route recommendation algorithm studies, Sun
et al. use Knowledge Graph to build a travel database by
extracting traveling information from the content submitted
by the users, to represent personalized touring routes [14]. Li
et al. present a new approach for designing tourist routes for
tourists visiting Gulangyu island by applying the Stated
Preference method [15].

However, those papers only study the recommendations
of scenic spots, while they do not analyze the sequential
order of spots in visitors’ historical touring routes. We
believe the sequential order plays an important role in
measuring tourist preference. For example, Sequence 1
represents user A who visits urban Chongqing city, given as
Ciqikou-Hongyadong-Jiefangbei-Sichuan Fine Art Insti-
tute- Eling Park. (e sequence of user B is given as Sichuan
Fine Art Institute-Eling Park-Hongyadong-Jiefangbei-
Ciqikou. If we consider scenic spots as the plain factor to
impact the visitor’s preference, then it is obvious to give both

A and B the same recommendation of route sequence.
However, users A and B visit those scenic spots in a different
sequence, which indicates that user A prefers to spend
daytime in spots tagged as shopping or fine food and night
time for city sights, yet user B prefers to visit city sights in the
day time and shop at night. We believe that travel route
recommendations should include not only the user’s pref-
erence for the scenic type but also the visiting sequence and
time slot. (en the recommendation system may give users
their personal travel routes matching their individual
preferences.

(is paper constructs the attraction of tourist city
preference model based on the city attraction knowledge
base and user’s historical touring sequences. And a data
mining algorithm is proposed to discover the city attraction
label set. Traveller’s historical touring events are analyzed to
find clusters mostly reflecting traveller’s preferences. By
comparing the similarities of various travel event sequences,
we aim to provide highly personalized travel recommen-
dations that satisfy the traveller’s real needs.

3. Preliminaries

Before the problem statement, we give the definitions of
these concepts as follows.

Definition 1 (Attraction p). represents city places where
visitors previously visited or are interested in visiting, and it
could be a natural landscape, fork culture, historical land-
scape, civic landscape, or consuming place.

Definition 2 (Attraction labels Profile(p)). Given p as a city
attraction, we define the labels of p as a sequence of
Profile(p) � pid, pname, ptype, pposition, pscore .

Definition 3 (Travel history r). Given p as a city attraction,
the travel history in p is given as a set of r � (p, tsp, tep), in
which ts

p as the time arriving p and te
p as the leaving time.

Definition 4 (Touring sequence L). We define the touring
sequence as a time-ordered sequence of a user visiting
multiple city attractions, given as L � r1, r2, . . . , rn  �

(p1, ts
p1

, te
p1

), (p2, tp 2s, te
p2

), . . . , (pn, ts
pn

, te
pn

)}. where n
represents the total number of attractions that have been
visited. (e time interval of visiting two adjacent attractions
is no longer than a threshold value, denoted as ts

px+1
− te

px
< ε.

Considering the characteristics of city travel, we set a rea-
sonable time interval threshold ε as 1 hour.

Based on the definitions above, we define our city travel
route recommendation problem as follows. Given all users’
historical touring sequences in the set U � L1, L2, . . . , Ln ,
input the historical touring sequence set
UuserA � LA1, LA2, . . . , LAn  of user A, in which An denotes
his/her total number of touring sequences. (en input city
B. Our goal is to determine the best personalized city travel
route recommendation for the user A from the travel se-
quence set of city B. (e strategies are given as follows:
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(1) Learning from the user’s historical city tour se-
quences, identify the user’s city travel preference
model

(2) Based on all travel sequences in a given city and the
user’s city travel preference model, determine the
best personalized city tour route recommendation
for the user

4. Recommendation Algorithm

City tour recommendation is challenging to satisfy the
visitor’s preference and real needs when a tourist visits a new
city. To meet this challenge, we propose a novel approach
named City Travel Route Recommendation based on Se-
quential Events Similarity (CTRR-SES) by measuring the
similarities of various city travel routes in a given city and
learning from the user’s historical city touring sequences.

4.1. Travel Route Recommendation Framework. (ere are
three building blocks in our CTRR-SES, as indicated in
Figure 1, which are Travel History/Sequences Construction,
Scenic Type-based User Preferences Baseline Modelling, and
Route Recommendation System. Travel History/Sequences
Construction and User Preferences BaselineModel Learning
are processed offline. By analyzing the user’s open travel
posts, we can obtain the user’s historical city touring se-
quences. (en we may compute the baseline model from the
travel history using clustering analysis. Route Recommen-
dation is processed online. Firstly, CTRR-SES computes the
feature vectors which represent user’s travel characteristics
from the city travel historical sequences and the preferences
baseline model. (en it recommends the most similar
touring sequence, which matches the user’s personal pref-
erence from existing travel sequences.

4.2. Travel Knowledge Base and Touring Sequence
Construction. Using data mining technology, we construct
the travel knowledge base by obtaining big data from
platforms like Baidu, Mafengwo, TripAdvisor, and Booking.
Attraction information is comprised of attributes of Name,
Geographic Position, Type and Rating, etc. Each attraction is
also labelled with a category of one or many of the following,
i.e., city park, garden, arboretum, natural landscape, ar-
chitecture, church, temple, museum, college campus, his-
torical sites, food and beverage, shopping site, amusement,
art performance, etc. City tour transportation modes include
Taxi, Bus, Subway, and Walk. Learning from the user’s past
space-time trajectory, travel sequences are generated by
consecutively extracting data of geographic position, at-
traction label, visit duration, transportation mode, and time
spent in transportation.

4.3. User Travel Preference Baseline Model Learning

4.3.1. Travel Sequence Similarity Measure. (e travel se-
quence similarity measure is the measure by the proper
algorithm of how much like multiple sequences are, which

then derive similar clusters. In this paper, we present the
travel sequence similarity measurement method using the
Needleman–Wunsch (NW) algorithm. Moreover, we im-
prove the traditional NW algorithm by integrating time
information in the Score Function.

Definition 5 (Attraction touring history similarity W).
Given p as a city attraction, ri � (pi, ts

pi
, te

pi
)

and rj � (pj, ts
pj

, te
pj

) are two variables in the travel sequence
L. (en the similarity formula between ri and rj is given as
follows:

W ri, rj  �

u1Spoi + u2Stime pi andpj belong to a class ,

d1 pi andpj do not belong to a class ,

d2 pi orpj aligns to a gap .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Spoi indicates the similarity between two POIs, and Stime
indicates the similarity between the time visiting the two
spots. u1 and u2 are different weights put on Spoi and Stime,
which can adjust the sensitivity of Spoi and Stime. u1 + u2 � 1;
d1 and d2 are customized scores.

Definition 6 (Travel sequence similarity S). Given two travel
sequences L1 � r11, . . . , r1n  and L2 � r21, . . . , p2m , the
similarity score S(i, j) of Li � r11, . . . , r1i  and
Lj � r21, . . . , r2j (Li⊆L1, Lj⊆L2) is computed as follows:

S(i, j) � max
S(i − 1, j − 1) + W r1i, r2j ,

S(i − 1, j) + d2,

S(i, j − 1) + d2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(S(0, 0) � 0).

(2)

We can calculate the travel sequence similarity score
matrix M. Normalization of data in the last row and column
of the matrix generates the similarity scores of two travel
sequences L1 and L2. (e pseudocode of the algorithm is
given in Algorithm 1.

TSSA uses the method of iteration to calculate the
similarity of two sequences L1 and L2 by comparing each
item in the sequences. (en the value of similarity is stored
in the 2-dimensional matrix M. If the lengths of the two
sequences are not equal, then add a space gap to make them
equal. (e first to 6th lines in the TSSA initializes the
similarity matrix, and the 7th to 18th lines conduct similarity
calculation and fill in the matrix. M[i][j] represents the
similarity of two corresponding items in L1 and L2, the value
of which is determined by the values of M[i− 1][j], M[i]
[j− 1], and M[i− 1][j− 1]. Equation (2) is an iterative for-
mula and gives three paths to calculate the values ofM[i][j],
among which choosing the maximum value:

(1) Obtain from above in the vertical line of M[i][j].
Sequences L1 and L2 are compared, then suppose L1′
and L2′ are generated during the comparison.
Reaching the cell ofM[i][j] from above is equivalent
to adding the corresponding items in L2 to L2′ and
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adding a gap in L1′ . (erefore, the value of M[i][j] is
M[i− 1][j] + d2.

(2) Obtain from the left in the horizontal line ofM[i][j].
Same as (1), reaching the cell of M[i][j] from the left
is equivalent to adding the corresponding items in

L1to L1′ and adding a gap in L2′ . (us, the value of M
[i][j] is M[i][j− 1] + d2.

(3) Obtain from the diagonal line of M[i][j]. By adding
the corresponding items in L1 to L1′ and adding the
corresponding items in L2 to L2′ , we can calculate the

User A historical
travel sequences

New destination
city B

Travel websites
social media

Travel
knowledge base

Touring
sequence 

Historical travel
sequence clustering

Touring sequence 
similarity measure

City travel route
recommendation algorithm

Travel
recommendation

generation

Recommendation
output

User input

Travel route recommendation

Preference baseline study

Travel sequence construction

Figure 1: City travel route recommendation framework.

Input: Travel sequence L1 and L2
Output: Similarity of L1 and L2
Initialization: Set score matrix M to 0

(1) for i⟵ 0 to |L1| do
(2) M[i][0]⟵ i ∗ d2;
(3) end for
(4) for j⟵ 0 to |L2| do
(5) M[0][j]⟵ j ∗ d2;
(6) end for
(7) for i⟵ 1 to |L1| do
(8) for j⟵ 1 to |L2| do
(9) if Overlap (L1[i].p.type, L2[j].p.type) then, //Overlap (a, b) means the attraction type labels of POI a and POI b overlap
(10) Spoi⟵PSA (L1[i].p, L2[j].p);
(11) Stime⟵TSA (L1[i].t, L2[j].t);
(12) sim⟵ u ∗ Spoi + (1− u) ∗ Stime;
(13) M[i][j]⟵max(M[i− 1][j− 1] + sim, M[i− 1][j] + d2, M[i][j− 1] + d2);
(14) else
(15) M[i][j]⟵max(M[i− 1][j− 1] + d1, M[i− 1][j] + d2, M[i][j− 1] + d2);
(16) end if
(17) end for
(18) end for
(19) return M[|L1|− 1][|L2|− 1];

ALGORITHM 1: Travel sequence similarity algorithm (TSSA).
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similarity value of M[i− 1][j− 1] +W(L1[i], L2[j]).
When the ith POI label in L1 is overlapped with the
jth label in L2, the calculation of W(L1[i], L2[j]) is
written in the 10th to 12th line in the TSSA; oth-
erwise, the value of W(L1[i], L2[j]) equals d1.

(e pseudocode of PSA (point similarity algorithm) in
the 10th line and that of TSA (time similarity algorithm) in
the 11th line are given in Algorithm 2 and Algorithm 3,
respectively.

(e first line in the algorithm calculates the intersection
of scenic labels of two POIs. (e second line measures the
percent of an intersection of all labels added up and takes it
as the similarity value of two POIs.

In the first line of the algorithm, we set half an hour as a
single unit and then build the time axis based on it, and the
time range spent in two POIs is indicated by two numeric
sequences. In the second and third lines of the algorithm, the
Longest Common Subsequence (LCS) algorithm is applied
to find the longest subsequence present in both of the two
numeric sequences. LCS can be solved using Dynamic
Programming by dividing the original problem into some
subproblems. (e time similarity is the ratio of the length of
the longest common subsequence to the length of the
sequence.

4.3.2. Travel Sequences Clustering. (e K-means algorithm
is one of the most popular and widely used methods of
clustering due to its simplicity, robustness, and speed. It is an
iterative algorithm meaning that we repeat multiple steps
making progress each time. Among many clustering algo-
rithms, K-Means is also comparatively well known for its
robustness as it is nonsensitive to noise and isolated points.
K-means algorithm can deal with data sets of different types
and discover clusters that are irrelevant with the input order
of data. (us, this paper adopts the K-Means algorithm for
travel sequence clustering analysis.

(1) Clustering Algorithm Description. K-means algorithm
partitions the dataset, which includes the number n data,
into K number of clusters.(en the clusters are positioned as
points, and all observations or data points are associated
with the nearest cluster, computed, adjusted, and then the
process starts overusing the new adjustments until the de-
sired result is reached. (e Travel Sequence Clustering
Algorithm (TSCA) is given in Algorithm 4.

K clusters and a sequence containing K cluster centroids
can be obtained by Algorithm 4. As each travel sequence
reflects the traveller’s preference, the base number will be
great when adding those sequences altogether. Considering
the meaning of centroids has great explaining value, so we
set the sequence containing number K cluster centroids as
the travel preference baseline model.

(2) Performance Evaluation of Sequence Clustering. Updated
Sum of Squared Error (SSE) and Silhouette Coefficient (SC)
is used in this paper to evaluate the performance of
clustering.

Metric 1: SSE
SSE is a technique designed to find the sum of the
squared error of sample points to centroids. (eoret-
ically, the lower the SSE, then the better performance of
clustering. (is paper calculates the travel sequence
similarity measure instead of a distance measure as the
foundation of clustering. (erefore, the updated SSE is
designed to find the sum of the similarity of sample
points to centroids. Hence, the higher the updated SSE,
theoretically, the better the performance of clustering.
Metric 2: SC

(e Silhouette Coefficient is calculated using the mean
intracluster distance a(o) and the mean nearest cluster
distance b(o) for each sample o in D. To clarify, b(o) is the
distance between a sample and the nearest cluster that the
sample is not part of. (e calculation equation is given
below:

SC(o) �
b(o) − a(o)

max a(o), b(o){ }
. (3)

(e SC value ranges from −1 to 1, and 1 means the
clusters are well apart from each other and clearly distin-
guished. Just the other way round, when the updated SC
value is close to −1, the performance of clustering is better.

4.4. Travel Route Recommendation. Travel route recom-
mendation requires the user to input his or her city travel
historical sequences and a new destination city B. (e user’s
travel preference is measured according to the relative
distance between historical sequences and the preferences
baseline sequence. We calculate the similarity between the
city travel historical sequences and the preferences baseline
model, and in the end compute the K-dimensional feature
vectors which represent the user’s travel preference, in which
K represents the number of clustering. (erefore, we define
user travel preference as follows.

Definition 7 (User travel preferenceUserpre). Given a user’s
travel history or sequence L1, . . . , Ln (n is the number of
travel sequences) and the preference referring sequence
Lk1, . . . , Lkk, the travel preference is indicated by a K-di-
mensional vector as follows:

Userpre �


n
i�1 TSSA Li, Lk1( 

n
, . . . ,


n
i�1 TSSA Li, Lkk( 

n
 .

(4)

In the same way, every travel history or sequence in city
B can be indicated as a K-dimensional feature vector, in
which we can find the vector that matches user A’s travel
preference with the highest similarity degree. (is is to say,
that is the travel recommendation presented to user A be-
cause the travel sequence represented by the feature vector
satisfies the user’s travel preference. As Cosine Similarity
(equation (5)) is a commonly used approach, we use this
metric to measure the similarity of feature vectors:

Complexity 5



c(x, y) �


n
i�1 xiyi������


n
i�1 x

2
i

 ������


n
i�1 y

2
i

 . (5)

(e travel sequence recommendation algorithm is given
in Algorithm 5.

In the first line of the algorithm, we use the TSCA for
travel history clustering analysis of all users. (e array
newMedoids stores the sequence containing K cluster
centroids (K as the number of clusters). In the second line to
the seventh line in the algorithm, we calculate the user’s
travel preference, and the K-dimensional feature vector is
stored in the one-dimensional array userpre. From the
eighth to the twelfth line, every travel history or sequence in
the user’s destination city can be indicated as a K-dimen-
sional feature vector, which is stored in the size m ∗ k 2-
dimensional array cityseq (m as the total number of all
historical sequences in the destination city). In the four-
teenth to the nineteenth line, we use the Cosine Similarity
function CosSim to find the feature vector in cityseq that
match the user’s travel preference vector with the highest
similarity degree. (e result is the travel recommendation
presented to the user.

5. Experiment and Evaluation

(ere are various views on social network data based rec-
ommender systems by considering the usage of various
recommendation algorithms. In our experiment, there are
six steps to generate the dataset, as indicated in Figure 2.
Web crawler collects travel spatiotemporal data from social
media, travel agent websites, and navigation apps. We select
10 cities (Chongqing, Chengdu, Beijing, Shanghai, Xian,
Hangzhou, Nanjing, Tianjin, Guangzhou, and Wuhan) and
scenic spots in these cities to analyze the sample travellers’
touring history sequences, as indicated in Figure 3. We

further compare the scenic labels with those in the Tourist
Attraction Knowledge Base (denoted as TAKB) using
Natural Semantic Matching technology and manual filter-
ing. In every city, 20 attractions are selected to form the city
travel knowledge base. Finally, we split the travel sequence
dataset as 70% of the data for training and 30% for testing the
CTRR-SES algorithm. In the following experimental eval-
uation, we randomly select different users for testing.

To validate the CTRR-SES, the experiment was designed
based on the collected touring data.

5.1. Accuracy and Validation of Travel Route
Recommendation Algorithm

5.1.1. Impact of the Value of K on the Travel Preference
Baseline Model. (e value of K to perform the K-means
clustering algorithm has a great impact on the experimental
results.(us, we run the fixedK value multiple times and use
the updated SSE and the mean of SC to determine the
optimal value. As indicated in Figure 4, when the K value is
greater than 4, then the growth rate of SSE decreases. (e
increase of valueK leads to the increase of the value of SC(o).
Next, we set the degree of similarity as the recommendation
accuracy rate. Feature vectors of the recommended route
and that of the corresponding route in the testing dataset are
computed using the similarity function when K� 2, 3, 4, 5, 6
(experimental results are shown in Figure 4). As the bars
show, the recommendation accuracy rate is the highest when
K� 4. Hence, in the following experiments, we set the value
of K� 4 in this paper.

5.1.2. Length Comparison of Recommendation Sequence and
Original Sequence. (e sequence length of the original route
in the testing dataset and that of the recommendation route

Input: POI information p1 and p2 of travel item r1 and r2
Output: POI similarity Spoi of r1 and r2

(1) count⟵ Intersection (p1.type, p2.type);
//Intersection (a, b) means the number of intersections of label a and label b

(2) Spoi⟵ count/(p1.type.size + p2.type.size− count);
(3) return Spoi

ALGORITHM 2: Point similarity algorithm (PSA).

Input: Time information t1 and t2 of travel item r1 and r2;
Output: Time similarity Stime of r1 and r2;

(1) Divide the time axis by half an hour, and number from 1, then t1 and t2 can be represented by digital sequence l1 and l2
(2) l� LCS (l1, l2) //Calculate the longest common subsequence of sequence l1 and l2
(3) Stime⟵ |l|/(|l1| + |l2|− |l|)
(4) return Stime

ALGORITHM 3: Time similarity algorithm (TSA).
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are counted and compared, as shown in Figure 5. Compared
with the sequence length of the real route, the experimental
result of a small error proves that our algorithm is validated
in its accuracy.

5.1.3. Hit Rate. (e formula of hit rate is given:

Hit rate �
2∗ Pr ∩Po


/Pr ∗ Pr ∩Po


/Po  

Pr ∩Po


/Pr  + Pr ∩Po


/Po 

. (6)

Input: travel sequences set TS� {L1, L2, . . ., Ln} and the number of clusters k
Output: travel sequence cluster set TC� {TC1, TC2, . . ., TCk} and k center sequences set newMedoids� {L1, L2, . . ., LK}
Initialization: oldMedoids⟵ null, newMedoids⟵ null;

(1) Select k sequences L1, L2, . . ., Lk from TS randomly as initial center sequences to oldMedoids;
(2) TCi⟵ Li //Each center sequence corresponds to a cluster
(3) while (!isEqual (oldMedoids, newMedoids))
(4) Calculate the similarity of each sample sequence from TS to each center sequence from newMedoids and place the sample

sequence in the cluster with the highest similarity to the center sequence;
(5) oldMedoids⟵ newMedoids;
(6) Recalculate the center sequence of each cluster TCi, sequences with the highest similarity from each sample sequence in the

cluster, as newMedoids;
(7) return TC and newMedoids;

ALGORITHM 4: Travel sequence clustering algorithm (TSCA).

Input: Historical Travel sequences set HS� {L11, L12, . . ., L1n} of user A, city a, historical travel sequences HSA� {L21, L22, . . ., L2m}
of city a, historical travel sequences HSAU of all users
Output: Travel recommendation sequences of city a for user A

(1) newMedoids�TSCA (HSAU) //Cluster historical travel sequences of all users
(2) for i⟵ 1 to newMedoids.size do
(3) for j⟵ 1 to n do
(4) userpre[i]⟵ userpre[i] +TSCA (newMedoids[i], L1j);
(5) userpre[i]� userpre[i]/n;
(6) end for
(7) end for
(8) for t⟵ 1 to m do
(9) for r⟵ 1 to newMedoids.size do
(10) cityseq[t][r]�TSSA (newMedoids[r], L2t);
(11) end for
(12) end for
(13) sim⟵ 0;
(14) for t⟵ 1 to m do
(15) if sim<CosSim (userpre, cityseq[t]) then
(16) sim⟵CosSim (userpre, cityseq[t]);
(17) outputseq⟵ L2t;
(18) end if
(19) end for
(20) return outputseq;

ALGORITHM 5: Travel sequence recommendation algorithm (TSRA).

City tour population 
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travel platforms 
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Label matching and 
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City travel knowledge 
base construction 

Figure 2: City travel knowledge data generating process.
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In equation (6), Pr is the set of attractions in the recom-
mended route, and Po is the set of attractions in the user’s travel
historical sequence. (e higher Hit Rate indicates better perfor-
mance of recommendation by our algorithm. (en we calculate
the accuracy of the route recommendation. (e experimental hit
rate result is 0.70, which further validates the CTRR-SES, proving
that this algorithm will provide city travel route recommendation
that effectively matches the user’s preference.

5.2. Robustness of Travel Route Recommendation Algorithm.
To test the robustness of the CTRR-SES, we design the
following experiments, as shown in Table 1. Randomly
change one or multiple sequences in the user’s historical
city touring sequence, and the experimental results are
much like the original results detailed in Figure 6. (us our
algorithm has good performance in its robustness and
stability.

Figure 3: Example of city travel event sequence.
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Figure 4: Evaluation index of clustering quality and accuracy with different K values.
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Comparison of route sequence length
∗We set the degree of similarity as the recommendation accuracy rate. Feature vectors of
the reommended route and that of the corresponding route in the testing dataset are
computed. �en we calculate the length of recommended route and compare with original
route, to find out the effectiveness of CTRR-SES

Original route Experimental results
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Figure 5: (e length comparison of the original route with the recommendation route.

Table 1: Robustness tests.

Experiment
no. Result Experimental design Figure

1 (e recommendation route accuracy rate is 92.1% after
alteration and 99.8% of similarity degree with the original

Randomly change one item of one sequence in the
user’s historical city touring sequences Figure 6

2
(e recommendation route accuracy rate is 91.8% after

alteration and 99.5% of similarity degree with the original
recommendation route

Randomly change 50% items in one sequence in
the user’s historical city touring sequences Figure 6

3
(e recommendation route accuracy rate is 91.7% after

alteration and 99.1% of similarity degree with the original
recommendation route

Randomly change one item in each sequence of
50% sequences in the user’s historical city touring

sequences
Figure 6

4
(e recommendation route accuracy rate is 91.5% after

alteration and 98.8% of similarity degree with the original
recommendation route

Randomly change 50% items in each sequence of
50% sequences in the user’s historical city touring

sequences
Figure 6
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Figure 6: Comparative experiment of the original route with partial sequence alteration.
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6. Conclusion

Existing travel recommendation studies seldom analyze user
behavior with different granularities to calculate spatio-
temporal sequence similarity. As a lack of full understanding
of behavior events from multigranularity and multi-
perspective, those studies are not suitable for the growing
need for in-depth city travel route recommendations. We
adopt the coevolving spreading dynamics to the relevance of
the traveling preferences and the events in the city tour
networks and explore its application on the city tour rec-
ommendation system. Based on defining the user’s touring
sequence model, firstly, this paper presents the Event Se-
quence Similarity Measurement Method, which calculates
the weighted mean of time, space, and activity similarity in
certain granularity to measure spatiotemporal sequence
similarity. Next, we design the CTRR-SES by applying the
User Travel Preference Baseline Learning Model to study
user’s city travel historical data and compute personalized
travel preferences. Finally, our algorithm is validated by a
series of experiments of its effectiveness and feasibility, and
CTRR-SES shows better performance in predicting the
user’s new city travel sequence fitting the user’s individual
preference. Our work provides reference and guidance to
research the multigranularity spatiotemporal sequence
similarity problem for city travel route recommendation.
However, only 54 real cases are selected to evaluate the
performance of the CTRR-SES algorithm, and we will in-
clude more experiments and datasets to validate the work in
future research.
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