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*e gray predictionmodel, based on the GM(1,1) method, is an important branch of gray theory with the most active research and
the most fruitful results, and it is the most widely used because of its small sample size, simple modeling process, and easy to use.
Such advantages have been successfully applied in many fields such as transportation, agriculture, energy, medicine, and en-
vironment and have been gradually developed into a mainstream predictive modeling method. *is study combines the *ree-
parameter Whitenization Grey Model (TWGM(1,1)), which fits the inhomogeneous exponential law sequence, and the Particle
Swarm Algorithm (PSA) to optimize the order and background value coefficients under the condition of the minimum sum of
squares of simulation errors, and hence, to solve the problem that the cumulative order is fixed to “1” and the background value
coefficient value is fixed to “0.5.” As a result, a parameter-optimized gray system model with flexibility, adaptability, and dynamic
adjustment is designed to simulate and predict China’s higher education gross enrollment rate. *e application shows that the
model has better overall simulation and prediction performance than others. On the one hand, the parametric optimizationmodel
significantly improves its own performance, and on the other hand, its intelligent and adjustable adaptivity improves the accuracy
and further extends its application.

1. Introduction

Since Professor Ju-Long [1] established the gray system
theory in 1982, the gray prediction model based on the
GM(1,1) method is the most active, fruitful, and widely used
branch of gray theory. With feature of the small sample size,
simple modeling process, and low cost of learning, it has
been successfully applied to many fields, such as trans-
portation, agriculture, energy, medicine, and environment
[2–6]. *e model gradually developed into a mainstream
predictive modeling method. *e enrollment rate of higher
education is influenced by many factors such as social,
economic, cultural, and geographical factors, which are
characterized by partly known and partly unknown infor-
mation; thus, the GM(1,1) model, as a model to study the

uncertainty system problem of “partly known and partly
unknown,” has been used to predict the enrollment rate of
higher education. For example, Liu et al. [7] used the
GM(1, 1) prediction model to make a mathematical analysis
of the gross enrollment rate of higher education. It scien-
tifically predicted and eased the employment situation of
college students. It provided reference for promoting social
stability and economic development. Dong [8] used the
GM(1, 1) model to predict the fluctuation of China’s me-
dium- and long-term gross enrollment ratio in higher ed-
ucation, which provides a reference for government
assessment and citizens’ choice of higher education.

*e GM(1, 1), as the first gray prediction model pro-
posed to be applicable to univariate modeling, has shown
favorable simulation and prediction performance for the
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sequence of unity exponential growth characteristics.
However, according to the Statistical Yearbook, the gross
enrollment rate of higher education in China was 51.6% in
2019, which exceeded the 50% mark for the first time, in-
dicating that China’s higher education has moved from the
mass stage to the generalized stage.*e shift in development
scale has undoubtedly increased the complexity and un-
certainty of the higher education GER system, which makes
the system behavior series more similar to nonuniform
exponential growth characteristics, and the original system
behavior series with similar unity exponential growth
characteristics can no longer satisfy the existing system. How
to develop a high-performance gray prediction model that is
more flexible, adaptable, and suitable for modeling and
predicting the gross enrollment ratio in higher education
dynamically is the focus of this research.

In recent years, researchers have carried out a lot of
research on the modeling ability of approximate nonho-
mogeneous exponential sequences. *ese studies can be
divided into three categories according to different modeling
ideas. *e first is to optimize the structure of the GM(1,1)
model to ensure that the final reduction formula of the
model presents an approximate homogeneous exponential
form. *e NHGM(1, 1, k) [9] model extends the basic form
x(0)(k) + az(1)(k) � b of the GM(1,1) model to
x(0)(k) + az(1)(k) � 0.5(2k − 1)b + c. *e SIGM model [10]
expands the basic form x(0)(k) + az(1)(k) � b of the
GM(1,1) model to x(0)(k) + az(1)(k) � kb + c. *e KRNGM
model [11] introduces the nonlinear function f(t) into the
whitening differential equation of the GM(1,1) model. *e
second is to modify the adaptability of modeling objects.*e
conversion from a nonhomogeneous exponential sequence
to a homogeneous exponential sequence can be realized by
the difference between adjacent elements in the original
sequence. *e third is the direct modeling method. Wang
[12] proposed a direct modeling method of the GM(1,1)
model generated from the original data without accumu-
lation, and it had been gradually optimized [13, 14]. Ye and
Li [15] established a whitening weight gray prediction model
to measure the influence of the probability of interval gray
number in the prediction results. Zeng and Liu [16]
established a direct modelingmethod of DGM(1, 1) based on
the original sequence by omitting the accumulation and
subtraction processes. In addition, the models mentioned
above have been applied in variate fields. Xiao et al. [17–20]
studied parameter optimization of Grey Riccati model and
its application in the prediction on the energy consumption
and carbon. A new structure of the Gray Verhulst model is
proposed by Xiao et al. [21–24], which improves the ability
of the gray model to model saturated S-sequences, and it is
applied in China’s tight gas production forecasting.

*e above optimization models around approximate
nonaligned exponential sequences have better properties,
modeling capabilities, and a wider range of applications than
the GM(1,1) model. *e parameters (such as order, back-
ground value coefficients, and initial values.) of the gray
prediction model are crucial to the performance of the
model. However, these performance parameters are often
simplified to a specific value in the above optimization

model. *erefore, optimization of performance parameters
is a key means to improve the stability, applicability, and
flexibility of the model. A large number of studies have been
launched for the optimization of performance parameters
from many directions, such as initial value [25–27], order
[28, 29], and background value [30, 31].*e optimal value of
each performance parameter should meet the condition of
the minimum sum of squared simulation errors of the
model, and the optimization process requires a lot of cal-
culations. *e Particle Swarm Algorithm (PSA) provides an
optional solution for the optimization of those parameters,
which find the global optimum by following the currently
searched optimum. A distinctive feature compared to other
modern optimization methods is that the PSA requires few
parameters to be adjusted, is simple and easy to implement,
and converges quickly, which has become a research hotspot
in the field of modern optimization methods [32–35]. Zeng
and Liu [36] proposed the SAIGM_FO model and used the
PSA to optimize the order of the model. Wang and Li [37]
used the PSA to optimize the structural parameters (a, b) of
the model. It has been proved that the PSA in the gray
prediction model improves the modeling accuracy and
model flexibility.

In this study, it is firstly proposed that the PSA is applied
in the *ree-parameter Whitenization Grey Model
(TWGM(1,1)) [38] to optimize the order and background
value coefficients under the condition of minimum simu-
lation error squared.*e solution is not only capable to solve
the problem that the cumulative order is fixed to “1” and the
background value coefficient value is fixed to “0.5” but also
displays a feature of flexible, adaptable, and dynamically
adjustable in the application in modeling China’s higher
education gross enrollment ratio (GER). *e empirical
analysis shows that the model has better overall simulation
and prediction performance than others. On the one hand,
the parametric optimizationmodel significantly improves its
own performance, and on the other hand, its intelligent and
adjustable adaptivity improves the accuracy and further
extends its application. *e rest of the study is organized as
below. Section 2 describes the original *ree-parameter
Whitenization Grey Model. *en, the parameter optimi-
zation process of the *ree-parameter Whitenization Grey
Model is followed in Section 3, and Section 4 gives an ap-
plication of the optimization model on China’s higher ed-
ucation gross enrollment rate. *e conclusion of the study is
revealed in the last section.

2. Original TWGM(1,1) Model

According to the derivation process of the time-response
function of the classic GM(1,1) model, the whitenization
equation of the *ree-parameter Whitenization Grey Model
is established, and then the time-response function is de-
rived by solving the differential equation. *is model is
called the *ree-parameter Whitenization Grey Model, or
TWGM (1,1) model in short.

Definition 1. Suppose sequence X(0) � (x(0)(1), x(0)(2),

. . . , x(0)(n)) is the original data sequence, where x(0)(k)≥ 0,
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k � 1, 2, . . . n, and X(1) � (x(1)(1), x(1)(2), . . . , x(1)(n)) is
the 1-AGO sequence of X(0), where

x
(1)

(k) � 
k

i�1
x

(0)
(i), k � 1, 2, . . . n. (1)

Z(1) � (z(1)(2), z(1)(3), . . . , z(1)(n)) is the immediate
mean-generating sequence of X(1), where

z
(1)

(k) � 0.5 × x
(1)

(k) + x
(1)

(k − 1) , k � 2, 3 . . . , n.

(2)

Definition 2. Assuming that the sequences X(0) and X(1) are
as shown in Definition 1, then

dx
(1)

dt
+ ax

(1)
� bt + c. (3)

Equation (3) is the whitening differential equation of the
TWGM(1,1) model. *e equation

x
(0)

(k) + az
(1)

(k) � 0.5(2k − 1)b + c, (4)

is the basic form of the TWGM(1,1) model.
According to the modeling ideas of the GM(1,1), the

model parameters a, b, and c are estimated through the basic
form of the TWGM(1,1) model. *e time-response function
of the TWGM(1,1) model is obtained by solving the dif-
ferential equation.

Theorem 1. Suppose the sequence X(0), X(1), and Z(1) are as
shown in Definition 1, p � (a, b, c)T is the parameter list, and
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.

(5)

Then, the least-square estimation parameter list of the
TWGM(1,1) model is satisfied.

Theorem 2. 3e time-response function of the TWGM(1,1)
model is
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The inverse-accumulating reduction formula of the
TWGM(1,1) model is

x
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(t) � 1 − e
a

(  x
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+
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3. Parameter Optimization of the Three-
Parameter Whitenization Gray Model

3.1. Background Value Optimization. In the TWGM(1,1)
model modeling process, the sequence generated next to the
mean is used as the background value, which is a common
smoothing method to weaken the influence of extreme
values or outliers in the 1-AGO sequence on the magnitude
of the gray effect. Among them, the background value co-
efficient is the weight of adjacent elements in the process of
constructing the adjacent mean sequence. *e difference of
its value will affect the calculation result of the adjacent mean
value series and then affect the simulation and prediction
effects of the model. In the above modeling process, the
background value coefficient is set to 0.5. *is processing
method lacks flexibility and cannot guarantee that the model
achieves the best simulation effect. So, it is necessary to
optimize the background value of the original model. *e
optimization of the background value is mainly based on the
optimization of the background value coefficient. Optimize
the definition of the sequence immediately adjacent to the
mean.

Definition 3. Suppose that X(1) is as shown in Definition 1,
Z(1)

w � (z(1)
w (2), z(1)

w (3), . . . , z(1)
w (n)) is the optimized se-

quence generated by the immediate mean of X(1), and w is
the background value coefficient,w ∈ (0, 1), where

z
(1)
w (k) � wx

(1)
(k) +(1 − w)x

(1)
(k − 1), k � 2, 3, . . . , n.

(8)

*en,

x
(0)

(k) + a wx
(1)

(k) +(1 − w)x
(1)

(k − 1)  � kb + c, (9)

is the TWGM(1,1) model with the background value coef-
ficient w(0<w< 1).

Among them, the optimal value of the background value
coefficient w should satisfy the minimum sum of squared
simulation errors of the model, namely,

minf(w) �
1

n − 1


n

k�2
x

(0)
(k) − x

(0)
(k) 

2
, 0<w< 1.

(10)

In equation (10), x(0)(k) is the original modeling data
and x(0)(k) is the simulated data of the model.
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3.2. Order Optimization. In the original modeling process,
the cumulative order is fixed at “1,” which leads to poor
flexibility and adaptability of the model. *erefore, Wu
et al. [39, 40] introduced fractional order into gray
modeling based on the “in between” idea. *is realizes the
expansion of the cumulative order of the gray prediction
model from integer to fraction. Meng et al. [38, 41] used
the Gamma function to give the functional expression of
the fractional accumulation operator, which provided the
basis for constructing the fractional gray prediction
model. *is section optimizes the order of the
TWGM(1,1) model in order to improve model perfor-
mance and model adaptability.

Definition 4. Suppose X(0) is as shown in Definition 1 and
X(r)(r ∈ R+) is a new sequence; then, sequence
X(r) � (x(r)(1), x(r)(2), . . . , x(r)(n)) is called the r-order
cumulative generating sequence of X(0), where

x
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k

i�1

Γ(r + k − i)

Γ(k − i + 1)Γ(r)
x
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*en, the sequence Z(r) � (z(r)(2), z(r)(3), . . . , z(r)(n))

is called the adjacent mean-value generating sequence of
X(r), where

z
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x
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is the TWGM(1,1) model of r order.
Among them, the optimal value of the r order should

satisfy the minimum sum of squared simulation errors of the
model, namely,

minf(r) �
1
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n
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2
, r ∈ R

+
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3.3. Simultaneous Optimization of Background Value and
Order. Based on the above optimization analysis, this sec-
tion derives and constructs a new TWGM(1,1) model under
the condition of simultaneous optimization of background
value and order. *e new model is called the
TWGM(1, 1|w, r) model.

3.3.1. Definition

Definition 5. Suppose the sequences X(0) and X(r) are as
shown in Definitions 1 and 4; then,

dx
(r)

dt
+ ax

(r)
� bt + c, (15)

is called the whitening differential equation of the TWGM
(1, 1|w, r) model.

*e sequence Z(r)
w � (z(r)

w (2), z(r)
w (3), . . . , z(r)

w (n)) is
called the optimized sequence generated by the adjacent
mean value of X(r) under the condition of the background
value coefficient w, where

z
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Integrating both ends of formula (15) in interval
[k − 1, k], we can obtain


k

k− 1
dx

(r)
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k− 1
x
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k
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k
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cdt � c,

(18)

among them, the size of 
k

k− 1 x(r)(t)dt can be approximately
replaced by the area represented by z(r)

w (t), namely,


k

k− 1
x

(r)
(t)dt ≈ wx

(r)
(t) +(1 − w)x

(r)
(t − 1) � z

(r)
w (t).

(19)

So, equation (15) can be converted to

x
(r− 1)

(k) + z
(r)
w (k) � 0.5(2k − 1)b + c. (20)

Equation (20) is the basic form of the TWGM(1, 1|w, r)
model.

3.3.2. Parameter Estimation

Theorem 3. Suppose the sequencesX(0), X(r), andZ(r)
w are as

shown in Definitions 1, 4, and 5, p � (a, b, c)T is the pa-
rameter list, and
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1

⋮ ⋮ ⋮

− wx
(r)

(n) − (1 − w)x
(r)

(n − 1)
(2n − 1)

2
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

3en, the least-square estimation parameter list of the
TWGM(1, 1|w, r) model satisfies p � (a, b, c)T � (BTB)− 1

BTY.

3.3.3. Time-Response Derivation. According to the whit-
ening differential equation of the TWGM(1, 1|w, r) model to
derive its time-response function and according to formula
(15), the corresponding homogeneous equation is

dx
(r)

(t)

dt
+ ax

(r)
(t) � 0⇒

dx
(r)

(t)

dt
� − ax

(r)
(t). (22)

*en,

ln x
(r)



 � − at + ln C1


. (23)

*e general solution of homogeneous equation (22) is

x
(r)

(t) � C1e
− at

. (24)

Using the constant variation method, replace formula
(24) C1 with u(t), and let

x
(r)

(t) � u(t)e
− at

. (25)

Derivation from both ends of equation (25) with respect
to t:

dx
(r)

(t)

dt
� u′(t)e

− at
− au(t)e

− at
. (26)

Substituting equation (26) into formula (15), we obtain

u′(t)e
− at

− au(t)e
− at

� bt + c − ax
(r)

. (27)

According to equation (27), there is u′(t) � (bt + c)eat,
so

u(t) � (bt + c)e
atdt � b  te

atdt + c  e
atdt �

b

a
te

at
−

b

a
2e

at

+
c

a
e
at

+ C.

(28)

Substituting equation (28) into (25), we obtain

x
(r)

(t) �
b

a
te

at
−

b

a
2e

at
+

c

a
e
at

+ C e
− at

. (29)

Calculating the above equation,

x
(r)

(t) �
b

a
t −

b

a
2 +

c

a
+ Ce

− at
. (30)

Among them, x(r)(1) � x(0)(1) is a known item. At that
time t � 1, equation (30) can be obtained:

Complexity 5



x
(r)

(1) � Ce
− a

+
b

a
−

b

a
2 +

c

a
. (31)

We obtain

C �
x

(r)
(1) − (b/a) + b/a2

  − (c/a)

e
− a . (32)

Substituting equation (32) into (30), we obtain

x
(r)

(t) � x
(r)

(1) −
b

a
+

b

a
2 −

c

a
 e

− a(t− 1)
+

b

a
t −

b

a
2 +

c

a
.

(33)

Among them, t � 2, 3, . . . , n and equation (33) is the
time-response formula. At this point, the time-response
derivation is over.

3.3.4. Derivation of Accumulative Reduction

Definition 6. Suppose sequence X(0) is as shown in Defi-
nition 1 and if r ∈ R+, then sequence
X(− r) � (x(− r)(1), x(− r)(2), . . . , x(− r)(n)) is called the r-
order accumulative generating sequence of X(0), where

x
(− r)

(k) � 
k− 1

i�0
(− 1)

i Γ(r + 1)

Γ(i + 1)Γ(r − i + 1)
x

(0)
(k − i), k � 1, 2, . . . , n. (34)

Theorem 4. Suppose sequenceX(0) is as defined in Definition
1, p ∈ R+，q ∈ R+, X(p) is the qth order cumulative gener-
ation sequence of X(0), X(q) is the pth order cumulative
generation sequence of X(0), X(p+q) is the p + q-order cu-
mulative generation sequence of X(0), (X(p))(q) is the q-order
cumulative generation sequence of X(p), and (X(q))(p) is the
p-order cumulative generating sequence of X(q); then, the
multiple cumulative generating operator satisfies the com-
mutative law and exponential rate, namely,

X
(p)

 
(q)

� X
(q)

 
(p)

� X
(p+q)

. (35)

Corollary 1. According to 3eorem 1, it can be derived as

X
(0)

� X
(r)

 
(− r)

� X
(− r)

 
(r)

. (36)

According to Corollary 1, which is equation (36), the
final reduction formula of the TWGM(1, 1|w, r) model can
be derived as

x
(0)

(k) � x
(r)

(k) 
(− r)

(k) � 

k− 1

i�0
(− 1)

i Γ(r + 1)

Γ(i + 1)Γ(r − i + 1)
x

(r)
(k − i). (37)

In equation (37), when k � 2, 3, . . . , n, x(0)(k) is called
the simulated value and when k � n + 1, n + 2, . . ., x(0)(k) is
called the predicted value.

3.4. TWGM(1,1) Model Parameter Optimization Based on
PSO Algorithm. In the TWGM(1, 1|w, r) model, there are
two undetermined parameters (the background value co-
efficient and order). In order to obtain the best performance
of the TWGM(1, 1|w, r) model, the optimal values of these
two undetermined parameters are required. *e combined
solution of the two parameters is easy to cause errors due to
mutual influence and mutual interference of the parameters,
and at the same time, it weakens the optimization effect of
the independent parameter on the model. *erefore, in the
process of solving the optimal value of the parameter, a step-
by-step method is adopted. Specifically, first, in 0<w< 1,
assuming that the order does not change, that is, r� 1, the
optimal background value coefficient is solved. Secondly, on
the basis of w � w∗ , in r ∈ R+, the optimal order is solved.
According to Definitions 3 and 4, the optimal background
value coefficient w and the optimal order r are found within
their respective value ranges and should be obtained under

the condition that the sum of squared simulation errors of
the model is minimized, that is, to satisfy equations (10) and
(14).

Obviously, the optimization process of each parameter
to be determined takes a lot of time and takes up limited
computer resources. Various group optimization algorithms
(such as Particle Swarm Optimization and ant colony al-
gorithm.) provide good solutions to complex distributed
optimization problems. *e Particle Swarm Optimization
(PSO) is a swarm-intelligent global optimization algorithm
that simulates the predation behavior of birds. Its basic
concept comes from the study of the foraging behavior of
birds. *e algorithm has the advantages of simple structure,
few parameters, and easy programming. At the same time,
the Particle Swarm Optimization algorithm based on
adaptive mutation of the population fitness variance effec-
tively solves the phenomenon of premature convergence and
can significantly improve the global convergence perfor-
mance. It has been used in function optimization and neural
network. It is widely used in training, engineering, and other
fields [28–31].*erefore, this paper uses PSO to optimize the
background value coefficient and order step by step. *e
PSO algorithm solving steps are as follows:
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Step 1. Initialize randomly the position and velocity of
the particles in the particle swarm.
Step 2. Set the particle in the current position to the
position of the best particle in the initial population.
Step 3. Calculate the average relative simulation error of
the TWGM(1, 1|w, r) model when w � pBest(or
r � pBest):

Step 3.1. Calculate the cumulative sequence X(r) of
order r.
Step 3.2. Calculate the sequence Z(r)

w immediately
adjacent to the background value coefficient w.
Step 3.3. Construct matrix B and Y, and solve model
parameter p � (a, b, c)T.
Step 3.4. Calculate the simulation value X

(0).
Step 3.5. Calculate the average relative simulation
error f(pBest) of X

(0).
Step 3.6. Judge whether |f(pBest) − f(gBest)| is less
than the given convergence value δ; if it is satisfied, go
to Step 9. Otherwise, execute Step 4.

Step 4. Perform the following operations for all particles
in the particle swarm:

Step 4.1. Update particle position and velocity:

V � ω × V + c1 × rand ×(pBest − Present)

+ c2 × rand ×(gBest − Present),

Present � Present + V,

ω � ωmax − run ×
ωmax − ωmin( 

runMax
.

(38)

Step 4.2. If the particle fitness is better than the fitness,
set it to the new position.
Step 4.3. If the particle fitness is better than the fitness,
set it to the new position.
Step 5. Calculate the variance of the group fitness σ2,
and calculate f(pBest):

σ2 � 
n

i�1

fi − favg

f
 

2

,

f �
max fi − favg



 , max fi − favg



 > 1,

1, others.

⎧⎪⎪⎨

⎪⎪⎩

(39)

Step 6. Calculate the probability of mutation pm.
Step 7. Generate random number ε ∈ [0, 1]; if ε<pm,
press to execute mutation operation. Otherwise, go to
Step 8.
Step 8. Determine whether the algorithm convergence
criterion is satisfied; if it is satisfied, execute Step 9.
Otherwise, turn to Step 3.
Step 9. Output the optimal value gBest of the back-
ground value coefficient w(or order r) and the

simulation and prediction data of the TWGM(1, 1|w, r)
model at this time, and the algorithm operation ends.

4. Model Application: Forecast of China’s
Higher Education Gross Enrollment Rate

To identify the optimized performance on each parameter,
the variables (the background value coefficient w and order
r) are simulated with four different groups. *e original
TWGM(1,1) model means that the model is not optimized
for order and background value coefficients at all. *e first
group is the model with, w � 0.5 and r� 1, that is, the
TWGM(1,1|0.5,1)model. *e second one is the model with
w � 0.5 and r� r∗, that is, the TWGM(1,1|0.5,r∗) model,
which indicates that the model only optimizes the order.*e
third one is the model with, w � w∗ and r� 1, that is, the
TWGM(1, 1|w∗, 1) model, which means that the model only
optimizes the background value coefficient. *e last group is
w � w∗ and r� r∗, that is, the TWGM(1, 1|w∗, r∗) model,
which suggests that the model optimizes the order and
background value coefficients at the same time. *e simu-
lation results with Matlab for four parameter groups are
shown in Table 1, where x(0)(k) is China’s high education
enrollment data from 1991 to 2019.

In order to intuitively reflect the simulation effects of
different models, a comparison chart of the simulation
curves of different models is drawn, as shown in Figure 1,
where models with different parameter values show dif-
ferent simulation effects. *e curve of the TWGM(1,1| 0.5,
1) and TWGM(1, 1|w∗, 1) models overlap and show a same
trend. *e TWGM(1, 1|w∗, r∗) model initially displays
better simulating and predicting effects for the gross
enrollment ratio in higher education in China since it
produces the most close result with raw data.

In order to measure the optimization performance of
different parameters, the average relative simulation per-
centage error ΔS, average relative prediction percentage
error ΔF, and comprehensive percentage error Δ of the gray
model of each model are calculated according to the results
in Table 1. *e results are shown in Table 2. *e relevant
calculation equation is as follows:

ΔS �
1

t − 1


t

k�2
Δk,

ΔF �
1

n − t


n

k�t+1
Δk,

Δ �
1

n − 1


n

k�2
Δk.

(40)

Among them, Δk represents the simulation/prediction
error of x(0)(k), n represents the number of experimental
data, and t represents the number of experimental data used
for simulation.

Based on the results of the calculations in Table 2, the
relative percentage error comparison figure with different
parameter values is plotted, as shown in Figure 2 in
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supplementary materials. From Table 2 and Figure 2 in
supplementary materials, the following conclusions are
drawn:

(1) *e background value optimization effect: com-
paring the TWGM(1,1|0.5,1) model and
TWGM(1, 1|w∗, 1) model with a w∗ � 0.4538, the
graph shows that the integrated percent error of the
gray model after the background value optimization
is slightly lower than the original model, but the
difference is not remarkable, which suggests that the
background value optimization has an optimization
effect on the comprehensive performance of China’s

higher education gross enrollment rate, but the effect
is not significant.

(2) *e order optimization effect: compare the
TWGM(1,1|0.5,1) model with the TWGM(1,1|0.5,r∗)
model with a r∗� 1.1127 in Figure 2 in supplementary
materials, the average relative percentage prediction
error and the comprehensive percentage error after the
order optimization are significantly lower than the
original model, which shows that the order optimi-
zation has a remarkable improvement on the model
performance in simulating China’s higher education
gross enrollment rate.

Table 1: Simulation and prediction results of different models on China’s higher education gross enrollment rate.

Serial number x(0)(k)
TWGM(1,1|0.5,1) TWGM(1,1|0.5,r∗) TWGM(1, 1|w∗, 1) TWGM(1, 1|w∗, r∗)

x(0)(k) Δ(k) x(0)(k) Δ(k) x(0)(k) Δ(k) x(0)(k) Δ(k)

Simulation data
k� 2 3.5 3.14 10.2188 3.13 10.6725 3.15 10.1019 3.10 11.5502
k� 3 3.9 4.04 3.5078 4.06 4.1620 4.04 3.6783 4.05 3.7288
k� 4 5 4.97 0.6278 5.00 0.0311 4.98 0.4414 4.98 0.4818
k� 5 6 5.94 1.0113 5.96 0.6118 5.95 0.8097 5.93 1.1729
k� 6 7.2 6.95 3.4645 6.96 3.2806 6.97 3.2561 6.92 3.9439
k� 7 8.3 8.00 3.5661 8.00 3.5641 8.02 3.3488 7.94 4.3312
k� 8 9.1 9.10 0.0159 9.09 0.1324 9.12 0.2488 9.01 1.0183
k� 9 9.8 10.24 4.5378 10.22 4.2692 10.27 4.7877 10.12 3.2693
k� 10 10.5 11.44 8.9113 11.40 8.5588 11.46 9.1774 11.28 7.4608
k� 11 12.5 12.68 1.4111 12.63 1.0562 12.71 1.6634 12.50 0.0000
k� 12 13.3 13.97 5.0293 13.92 4.6743 14.00 5.2945 13.77 3.5632
k� 13 15 15.32 2.1024 15.27 1.8063 15.35 2.3637 15.11 0.7258
k� 14 17 16.72 1.6586 16.68 1.8634 16.76 1.4040 16.51 2.8898
k� 15 19 18.18 4.3196 18.16 4.4102 18.23 4.0694 17.98 5.3818
k� 16 21 19.70 6.1832 19.71 6.1376 19.75 5.9357 19.52 7.0515
k� 17 22 21.29 3.2394 21.33 3.0264 21.34 2.9821 21.14 3.9173
k� 18 23 22.94 0.2639 23.04 0.1533 23.00 0.0032 22.84 0.7002
k� 19 23.3 24.66 5.8381 24.82 6.5170 24.73 6.1234 24.63 5.6917

Forecast data
k� 20 24.2 26.45 9.3103 26.69 10.2816 26.52 9.6068 26.50 9.5236
k� 21 26.5 28.32 6.8708 28.65 8.1088 28.40 7.1623 28.48 7.4706
k� 22 26.9 30.27 12.5146 30.71 14.1460 30.35 12.8231 30.56 13.5932
k� 23 30 32.29 7.6443 32.86 9.5415 32.38 7.9409 32.74 9.1365
k� 24 34.5 34.40 0.2759 35.13 1.8131 34.50 0.0000 35.04 1.5616
k� 25 37.5 36.60 2.3881 37.50 0.0000 36.71 2.1169 37.46 0.1167
k� 26 40 38.90 2.7601 39.99 0.0210 39.00 2.4889 40.00 0.0000
k� 27 42.7 41.28 3.3183 42.61 0.2195 41.40 3.0476 42.68 0.0541
k� 28 45.7 43.77 4.2234 45.35 0.7650 43.89 3.9543 45.49 0.4502
k� 29 48.1 46.36 3.6163 48.23 0.2714 46.49 3.3446 48.46 0.7477
k� 30 51.6 49.06 4.9237 51.25 0.6712 49.20 4.6548 51.58 0.0365

Table 2: Error comparison of different models.

Error type TWGM(1,1|0.5,1)
(%)

TWGM(1,1|0.5,r∗)
(%)

TWGM(1, 1|w∗, 1)
(%)

TWGM(1, 1|w∗, r∗)
(%)

Average relative simulation percentage
error Δs

3.6615 3.6071 3.6494 3.7155

Average relative prediction percentage
error ΔF

5.2587 4.1672 5.1946 3.8810

Grey model comprehensive percentage
error Δ 4.2673 3.8195 4.2355 3.7782
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(3) *e TWGM(1, 1|w∗, r∗) model possesses the lowest
error of 3.7782%, which indicates that the optimi-
zation of both the background value and the order is
of the best option for improvement on the model
performance. *us, the TWGM(1, 1|w∗, r∗) model
provides the best fitting effect and is preferred for
simulation and prediction.

5. Conclusions

*e study proposed a new optimizationmodel by combining
the *ree-parameter Whitenization Grey Model with the
PSA. To demonstrate the performance of this new model, an
application analysis is carried out in the predication of
China’s high education enrollment ratio with Matlab sim-
ulation. *e findings suggest that the new optimization
model proposed in this study improves the performance of
the original gray model remarkably. Specifically, compared
with the original gray model, the average relative percentage
prediction error and comprehensive percentage error after
the optimization are significantly reduced, which indicates
that the simultaneous optimization of the background value
and order has a notable improvement on the overall per-
formance in simulating and predicting China’s higher ed-
ucation gross enrollment ratio. Besides, it is indicated that
the intelligent and adjustable adaptivity improves the ac-
curacy of optimization and, furthermore, extends its ap-
plication in the empirical study in the future.
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*e data (High Education Gross Enrollment Ratio of China)
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