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As the medium of human-computer interaction, it is crucial to correctly and quickly interpret the motion information of surface
electromyography (sEMG). Deep learning can recognize a variety of sEMG actions by end-to-end training. However, most of the
existing deep learning approaches have complex structures and numerous parameters, which make the network optimization
problem difficult to realize. In this paper, a novel PSO-based optimized lightweight convolution neural network (PLCNN) is
designed to improve the accuracy and optimize the model with applications in sEMG signal movement recognition. With the
purpose of reducing the structural complexity of the deep neural network, the designed convolution neural network model is
mainly composed of three convolution layers and two full connection layers. Meanwhile, the particle swarm optimization (PSO) is
used to optimize hyperparameters and improve the autoadaptive ability of the designed sEMG pattern recognition model. To
further indicate the potential application, three experiments are designed according to the progressive process of bodymovements
with respect to the Ninapro standard data set. Experiment results demonstrate that the proposed PLCNN recognition method is
superior to the four other popular classification methods.

1. Introduction

Human-computer interaction is one of the most popular
topics in the field of signal processing. Detecting and judging
the behavior intention leads to information communication
between human and computer. Generally, physiological
signals and RGB images are two mainstream pieces of in-
formation to capture human activities [1–5].)e recognition
of physiological-signals-based body movements is the key to
human-computer interaction [6–8], due to the problems of
the image, such as occlusion by the environment, inability to
be distinguished accurately, and difficulty in being seg-
mented. In particular, as a physiological signal of the human
body, sEMG is a complex electrical signal produced by
muscle contraction and relaxation, which carries the

movement information of corresponding parts. Decoding
sEMG to recognize human behavior characteristics is called
sEMG pattern recognition [9, 10]. )erefore, the machine is
capable of representing the human movement intention;
moreover, it is the popular research frontier in the field of
human-computer interaction.

sEMG pattern recognition consists of the following three
parts: signal preprocessing, feature extraction, and feature
classification. Signal preprocessing involves filtering,
denoising, and detecting active segments, etc. [11]. Feature
extraction includes the following four aspects: time domain,
frequency domain, time-frequency domain, and nonlinear
dynamics; see [12, 13]. )e papers [14–17] adopt different
improved methods combining time domain and time-fre-
quency domain to extract representative features of EMG.
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After the sEMG feature is extracted, it is sent to the classifier
for training. Generally, traditional machine learning algo-
rithms such as support vector machine (SVM), random
forest (RF), and k-nearest neighbour (KNN) are used in
previous research. Particularly, sEMG is identified by
changing the rejudgment condition of SVM’s misclassifi-
cation data in [18, 19]. It has been proven that traditional
algorithms have achieved better results. However, since the
voltage of sEMG is relatively weak (mV level), the voltage is
susceptible to noise interference. It is difficult for the features
extracted by traditional methods to achieve accurate results
for actual requirements. Moreover, traditional methods need
to select features and classifiers manually.

Compared with the traditional sEMG classification
method, the neural network can avoid describing and
extracting the features of weak sEMG data. It can learn the
features independently and combine the extracted features
with classification to improve recognition accuracy [20–24].
In recent years, EMG pattern recognition has been com-
bined with deep learning and neural networks, such as
artificial neural network (ANN), convolutional neural net-
work (CNN), and recurrent neural network (RNN), which
have been used to recognize sEMG. In the process of sEMG
acquisition, the electrodes have different spatial positions.
CNN is effective in sEMG acquisition because it can extract
the local and global features of sEMG. Fifty-two kinds of
sEMG gestures have been recognized for the first time by a
simple CNN model that achieves the accuracy of general
classical algorithms in [25]. A CNN network model, com-
posed of four convolution layers, four pooling layers, and
two fully connected layers, has been used to improve the
variability of different testers in hand movements in [26].
Moreover, some improved algorithms based on CNN
technique have been investigated to recognize the sEMG
gesture during the past few years; see [27, 28].

Till now, sEMG research based on CNN has also faced
some problems. Firstly, the complexity computation of CNN
network with many layers is expensive, which leads to the
delay in the interaction between humans and computers. For
example, the recognition process speed in [29] is slow even
eleven convolution layers are used to extract features. Sec-
ondly, it is difficult to manually set hyperparameters and
conduct experiments to verify this setting. Most researchers
set the network hyperparameters, which affect the accuracy
of the model, based on previous experience or just pick them
randomly [30]. )ese artificial settings accumulate the un-
certainty of sEMG recognition. Finally, the accuracy of EMG
pattern recognition can reach more than 90% when clas-
sifying less than ten gestures. On the contrary, the accuracy
will be significantly reduced whenmore than ten gestures are
required to be classified. )is limits the ability of the model
to interpret human motion intention. )e result shows that
the more the actions of dual-flow network based on CNN
[30] are recognized, the less the accuracy of the network is.

Following the above discussions, the purpose of this
paper is to propose a new hand movement recognition
method with applications to the analysis of multichannel
sEMG signals. PSO is used to adjust the network hyper-
parameters, eliminate interference, classify more gesture

actions, and improve the accuracy of EMG pattern recog-
nition. )e proposed method can even recognize three
groups of hand movements in terms of sensitivity, flexibility,
and dynamics, which is superior to most of the state-of-the-
art methods on the Ninapro standard data set. )e main
contributions are summarized as follows:

(1) A novel deep learning framework is constructed
based on lightweight convolutional neural network
(LWCNN). )e proposed LWCNN, which just
contains 10952 parameters and three convolution
layers, is an end-to-end sEMG feature extraction
network. It solves the problem of computational
complexity and improves the efficiency of human-
computer interaction.

(2) )e PSO algorithm is exploited to optimize the
hyperparameters of LWCNN, which leads to a novel
PLCNN classification model. A linear decline
strategy is used to redefine the inertia weight to avoid
the situation in which PSO falls into local optimum.
Meanwhile, the cross-entropy loss function of the
network is set as the fitness function to make pre-
dicted results close to the real results.

(3) )e proposed PLCNN deep learning algorithm is
successfully employed to analyze the multichannel
sEMG signals in order to verify hand movement
recognition. With an appropriate recognition
method, the speed and accuracy of hand movement
recognition could be much increased. )us, the ef-
ficiency of human-computer interaction can be
improved.

)e remainder of this paper is organized as follows. )e
proposed framework for sEMG pattern recognition and the
designed algorithms are introduced in Section 2. Descrip-
tions of data and experimental configuration are introduced
in Section 3. )e PLCNN method for sEMG pattern rec-
ognition is discussed and the experiments results, demon-
strating the effectiveness of the developed framework, are
provided in Section 4. Finally, conclusions are given in
Section 5.

2. System Framework and Method

As shown in Figure 1, we propose a novel deep learning
network for sEMG pattern recognition. )e network is
suitable for a simple one-dimensional signal, which has low
complexity and few parameters. Moreover, the PSO algo-
rithm is used to automatically select the network’s hyper-
parameters to avoid expensive computation in gesture
recognition.

2.1. Lightweight Convolution Neural Network (LWCNN)
Model. Researchers have found that CNN has important
spatial significance for sEMG, because CNN has excellent
performance on image and speech processing. In respect of
EMG pattern recognition, CNN can extract the spatial
correlation features of sEMG signal according to the position
of electrodes in space. Feature extraction is integrated into
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feature classification by local connection and weight sharing,
which removes the complexity of traditional recognition
methods where feature extraction and data reconstruction
are needed. )e main network structure of CNN includes
four parts: convolution layer, pooling layer, full connection
layer, and activation function.

)e general CNN network structure is too complex,
which often leads directly to a slow convergence rate of
training. Furthermore, complex structures can cause net-
work overfitting and even reduce the accuracy of EMG
pattern recognition. Moreover, due to the structural com-
plexity increased in network structure, it is difficult to op-
timize the hyperparameters of the model. )erefore, we
design a lightweight CNN structure network called
LWCNN, which not only includes fewer parameters but also
could accelerate training speed. As shown in Table 1, the
convolution layers’ parameters of LWCNN are significantly
less than those of the state-of-the-art methods, which is
more conducive to subsequent optimization.

It can be seen from Figure 2 that the designed LWCNN
consists of four parts for sEMG pattern recognition, mainly
inputting sEMG data, extracting sEMG features, classifying
sEMG features, and outputting classification results, where
a, b, c are the numbers of filters and d, e, f are filter sizes.

(i) Part 1: the first part is the input module. )e
preprocessed sEMG signal is inputted with the size
of 1 × insize, which is convenient for feature ex-
traction in subsequent convolutional layers.

(ii) Part 2: the second part consists of six layers: three
convolution layers, two pooling layers, and an ac-
tivation function. Convolution layers are the most

important layers in the whole structure: conv-1,
conv-2, and conv-3. Pooling layers are pool-1 and
pool-2.)e first layer is conv-1, which has a filters of
size 1 × d. )e sEMG is convoluted by multiple
filters to obtain the spatial features of the signal. )e
second layer is the ReLU activation function, which
preserves and maps the activated features to in-
crease the nonlinear representation of the network.
)e third layer is pool-1, which performs an average
pooling for the features. It not only reduces the size
of features to simplify the complexity of the net-
work, but also extracts the representative features to
the corresponding feature map. )e fourth layer is
conv-2 with b filters of size 1 × e. Afterwards, there
is a pool-2 layer for the local average.)e last layer is
conv-3, which contains c filters with the size of
1 × f.

(iii) Part 3: the third part consists of a flatten layer,
two dropout layers, and two full connection
layers called dense-1 and dense-2. )is part
mainly synthesizes all the extracted sEMG fea-
tures from the second part and expands them to
obtain global information. Moreover, part fea-
tures are discarded to prevent network over-
fitting. Finally, the processed features are
mapped to the simple label space to prepare for
gesture recognition.

(iv) Part 4: the fourth part is the output module, in
which the softmax function is used to classify the
features of the network. )en, we obtain the pre-
dicted results of hand movements as output.

sEMG signal collecting

Signal acquisition and processing

LWCNN classification model

sEMG preprocessing

PSO hyperparameters optimization

Gesture recognition

…
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Data
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accelerometers
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Figure 1:)e proposed network architecture for sEMG recognition.)e original sEMG is sequentially fed to LWCNN for feature extraction
to obtain corresponding feature maps, which has been preprocessed by filtering and denoising.)e feature map is then flattened into feature
vectors to the fully connected layer for preliminary identification. To better represent different gesture feature, the PSO model is adopted
finally.
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Algorithm 1 gives the process of LWCNN model
training for sEMG signal, where a, b, c, d, e, f, batch size, and
learning rate are the network hyperparameters which PSO
needs for optimization as shown in Table 2.

2.2.+ePSOOptimizedLWCNNModel. LWCNNmodel has
a significant effect on the spatial processing of the sEMG
signal, but the settings of hyperparameters can directly affect
the performance of the model. Manually set hyper-
parameters not only complicate the work, but also slow
down the EMG recognition process. Moreover, when the
hyperparameters of LWCNN are optimized manually, the
generalization ability of the model is weak.

PSO is an iterative optimization algorithm [31, 32]. Its
idea comes from the observation of the foraging behavior of
birds.)e basic idea is that each individual in the population
iteratively updates itself according to the initial value. To
obtain the optimal result, individuals share information with
each other to adjust the population. Due to the advantages of
search speed, wide search range, simple structure, and easy
implementation, PSO stands out among many optimization
algorithms. In this paper, we utilize PSO to adjust the
network hyperparameters and automatically find the most
suitable deep learning structure for sEMG pattern
recognition.

PLCNN takes 10 hyperparameters in LWCNN structure
as 10 dimensions of each particle in PSO. )ese hyper-
parameters include the number of convolution kernels, the
size of convolution kernels, activation function, batch size,

and learning rate. According to the classic networks such as
VGG and ResNet [33, 34], the initial value range of PLCNN
is shown in Table 2.

Suppose that, in a ten-dimensional space, m particles
constitute a population without mass and volume. Each
particle is represented by the velocity vector and position
vector in space. In the k-th iteration, the l-th particle velocity
vector vk

l � (vk
l1, vk

l2, . . . , vk
l10), and the position vector

xk
l � (xk

l1, xk
l2, . . . , xk

l10). )en the l-th particle performs the
next update according to its best position in all iterations,
where the best position is found by m particles in the
population. )e best position of it is
xlp � (xlp(1), xlp(2), . . . , xlp(10)) and the best solution to
the population is xg � (xg(1), xg(2), . . . , xg(10)). )e ve-
locity and position updating formulas of the l-th particle in
the (k + 1)-th iteration are

v
k+1
l � wv

k
l + c1r1 x

k
lp − x

k
l  + c2r2 x

k
g − x

k
l , (1)

x
k+1
l � x

k
l + v

k+1
l , (2)

where k is the number of iterations; xk
lp is the best position of

particle l after the k-th iteration; xk
g is the best position of the

population of particles l after the k-th iteration; w is the inertial
weight; c1,c2 are the learning factors; and r1,r2 are the random
numbers over the interval (0, 1).

In order to enhance the performance of PSO algorithm
and balance the global with the local search of the pop-
ulation, linear decreasing weight (LDW) strategy is adopted
to make the inertia weight w change dynamically [35].

Table 1: Various model parameters based on EMG pattern recognition.

Authors Methods Number of convolution layers Convolution layer parameters
Manfredo et al. [25] CNN 5 —
Runze et al. [30] Dual-flow net 4 —
Ulysse et al. [29] ConvNet 5 67179

Lin et al. [28] EMGNet 4 34311
LCNN 2 154353

Ours LWCNN 3 10952

Part 1
input Part 2

Conv

ReLu

Pooling

Flatten

Dropout

Dense

Part 3

Part 4
output

…

Figure 2: Network structure of the LWCNN.
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When w is large, the global optimization ability is strong,
while the local optimization ability is weak; when w is
small, the situation is just the opposite. It can effectively
prevent the PSO algorithm from falling into the local
optimal solution situation. )e formula is

w � wini − wend( 
Gk − g

Gk

  + wend, (3)

where wini is the initial inertia weight, wend is the final inertia
weight, g is the current number of iterations, and Gk is the
maximum number of iterations.

In this paper, the cross-entropy loss function obtained by
PLCNN is used as the fitness function, and the formula is

Loss � −  M
j�1yijlog pij , (4)

where M is the number of categories classified; yij is the
variable 0 or 1 (if the j category is the same as the obser-
vation sample i, it is 1; otherwise, it is 0); and pij is the
prediction probability that the observation sample i belongs
to j category.

)e pseudocode of PLCNN is given in Algorithm 2.
)e specific implementation of the PLCNN model is

shown in Figure 3. In step 1, we initialize the basic pa-
rameters of PSO and set the hyperparameters in Table 1 as
the position vector of each particle. In step 2, each particle is
passed to LWCNN for iterative training, and the cross-
entropy loss function value is used as the fitness function
value. In step 3, the individual optimal value xk

lp and the

population optimal value xk
g are updated according to the

fitness function value. Step 4 is to judge whether iterations
have reached the maximum number. If it meets the re-
quirements, step 6 is executed; otherwise, step 5 is executed.
Step 5 is to update the velocity vector, position vector, and
inertia weight according to (1)–(3). )en, it returns to step 2.
Step 6 is to output the optimization results.

3. Data and Experimental

3.1. Data Acquisition. Our approach is evaluated on the
Ninapro Database 1 (DB1), which is an open standard data
set of multichannel gesture sEMG signals in Sweden. )e
data is similar to that acquired in real-life conditions, so it is
widely used in sEMG pattern recognition [36, 37]. In DB1,
the sEMG data from twenty-seven healthy subjects who
performed fifty-two hand movements are recorded.

)e fifty-two movements are composed of Exercise A,
Exercise B, and Exercise C, which are twelve finger move-
ments, seventeen wrist movements, and twenty-three hand
grabbing movements, respectively. )is motion involves
robotics and rehabilitation medicine, covering most of the
hand movements encountered in daily life. It represents the
sensitivity, flexibility, and dynamics of the hand. Figure 4
shows some example fingers, wrists, and grabbing
movements.

During the process of data collection, the subjects are
asked to repeat the action of their right hand every three
seconds, while each gesture action is repeated ten times with

Input: One dimensional sEMG signal X with the size of 1 × insize
Output: y

Initialize learning rate and Loss
for Epoch � 1 to 300 do

for k � 1 to (smaple number of X/batch size) do
Feature extract: X′←Convolution(X)

Training: y←train LWCNN(X′)
Min (loss): ←Loss � − 

M
j�1 yijlog(pij) (according to equation (4))

Update the variables by gradient: Adam (learning rate, loss)
end for k

end for Epoch
Obtain the prediction probability y

ALGORITHM 1: )e proposed lightweight convolution neural network.

Table 2: Hyperparameters setting to be optimized.

Dimensions of each particle Hyperparameter Initialization range
1 a (30, 60)
2 b (40, 80)
3 c (80, 120)
4 d (2, 7)
5 e (2, 7)
6 f (2, 7)
7 Activation function of dense-1 ReLU, sigmoid, tanh
8 Activation function of dense-2 ReLU, sigmoid, tanh
9 Batch size (32, 50)
10 Learning rate 0.1, 0.001
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five seconds. Ten Ottobock electrodes are used to collect the
data of radial brachial joint, flexor digitorum superficialis,
and extensor digitorum superficialis of each subject’s fore-
arm at a sampling frequency of 100Hz. )en the collected
data will go through Hampel filter to eliminate 50Hz power
line interference. More details of the data can be found in the
official literature [38].

3.2. Preprocessing and Experimental Configuration. We cut
out the active sEMG action according to the labels. For each
action, the sEMG data of each channel is taken as a sample.
We randomly take 90% of the samples as the training set and
10% as the test set. Since the action will not be completely
synchronized with the stimulus from the acquisition soft-
ware with different reaction time and experimental

Start

Initialize particle swarm 
optimization and set 

position vector

Train LWCNN and 
calculate fitness value

Update individual optimal value xlp
k

and population optimal value xkg

Judge whether 
the conditions 

are met

LWCNN with optimized
hyperparameters

End

Yes

Update inertia 
weight, particle 

velocity vector and 
position vector

No

Figure 3: )e flowchart of PLCNN model.

Input: One dimensional sEMG signal X with size of 1 × insize

Output: Optimal hyperparameter (particle position xk
g under minimum fitness value)

Initialize xk
g according to Table 2

for k � 1 to maximum iterations Gk do
for l � 1 to particle number m do
Calculate the fitness value according to equation (4), save particle current position parameter xk

l

end for l

According to equation (4): update the best position of each particle xk
lp and the best position of population xk

g

According to equations (1) and (2): update the particle velocity vk+1
l and position xk+1

l

According to equation (3): update inertia weight w

end for k

Obtain the optimal hyperparameters xk
g

ALGORITHM 2: Pseudocode of EMG pattern recognition based on PLCNN.
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conditions, the generalized likelihood ratio algorithm [39] is
used to relabel the data.)e relabeled data is added with zero
to make up the uniform length and then normalized. )e
processed signal length insize corresponding to Exercise A,
B, and C is 597, 594, and 556, respectively.

We set the number of particles m to 10, the maximum
iteration Gk is 30, the learning factor c1 � c2 � 2 in (1), and
initial inertia weight wini � 1 in (3). As shown in Figure 5, the
population has converged after continuous iteration. Ac-
cordingly, the optimal hyperparameters found by the
PLCNN are shown in Table 3.

In addition, as shown in Table 4, we compare CNN,
LWCNN, and PLCNN to verify the high recognition ability
of PLCNN. )e network structure of PLCNN is simple, and
the hyperparameters are obtained by PSO, while the
hyperparameters of LWCNN network are set manually.
Compared with these network structures, CNN is more
complex, and its hyperparameters are also set manually.

4. Analysis of Results

Four evaluation indexes, accuracy (5), Kappa coefficient (6),
Hamming loss (8), and Jaccard similarity coefficient (9), are
used to comprehensively evaluate the performance of dif-
ferent recognition algorithms on DB1 training set.

4.1. Accuracy

acc �
tp + tn

tp + tn + fp + fn
, (5)

where tp is the number of samples correctly classified into
the current gesture type, fp is the number of samples that do
not belong to the current gesture type but are misclassified
into it, tn is the number of samples that belong to the current

gesture type but are misclassified into other types, and fn is
the number of samples that do not belong to the current
gesture type and are misclassified into other types.

4.2. Kappa Coefficient

K �
acc − pe
1 − pe

, (6)

where standard pe is usually expressed as follows:

pe �


M
i�1 ai · bi

N
2 , (7)

where M is the number of categories classified, ai is the
actual number of class i samples, bi is the predicted number
of class i samples, and N is the total number of samples. As
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Figure 4: Partial action diagram.
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shown in Table 5, if the parameter K (K ∈ [0, 1]) is larger,
the classification accuracy of the model is higher.

4.3. Hamming Loss

H �
1
N



M

i�1

XOR Yi, Pi( 

n
, (8)

where Yi is the true value of type i sample, Pi is the predicted
value of the class i sample, XOR(0, 1) � XOR(1, 0) � 1, and
XOR(0, 0) � XOR(1, 1) � 0. Obviously, when the Ham-
ming loss H (H ∈ [0, 1]) is smaller, the difference between
predicted and actual is smaller, and the classification ability
of the used algorithm is stronger.

4.4. Jaccard Similarity Coefficient

J �
1
N



M

i�1

Yi ∩Pi




Yi ∪Pi



. (9)

For EMG pattern recognition problem, if the Jaccard
similarity coefficient J is larger, the prediction results are
more consistent with the actual results, and the performance
of model action classification is better.

For the traditional machine learning algorithm, the
recognition task is generally divided into feature extraction
and feature classification. In the experiment, we extract four
common EMG signal features: integrated EMG [40], root
mean square [41], mean absolute value [42], and waveform
length [43]. )en, they are sent to three kinds of feature
classifiers: SVM [44], RF [45], and KNN [46]. Moreover,
ordinary CNN, LWCNN with manually set hyper-
parameters, and optimized PLCNN based on deep learning
algorithm can directly extract and classify the original EMG
signals end-to-end.

)e performance test for the proposed PLCNN and
other five popular recognition algorithms are described by

radar chart based on the four evaluation indexes. Figures 6–8
show the comparison results on the three exercise sets A, B,
and C, respectively. It is obvious that the closer the point to
the center, the lower the index value.

As can be seen from Figures 6–8, the accuracy of the
PLCNN model in Exercise A, B, and C reaches 86.67%,
90.06%, and 89.57%, respectively. )is means that our
model outperforms the other five algorithms by 19%–38%,
12%–17%, and 4%–7%. Among the three traditional ma-
chine learning classifiers, RF has the highest accuracy due
to its strong resistance to overfitting and excellent stability.
It is difficult for SVM to adapt to the multiclassification
problem, and KNN has poor fault tolerance for training
data. Compared with the traditional algorithms, deep
learning models are more representative and recognizable
to extract sEMG features.

In terms of Kappa coefficient, Jaccard similarity co-
efficient, and Hamming loss, the performance of the three
traditional machine learning algorithms is significantly
worse than the neural network algorithms. In particular,
the Kappa coefficients of PLCNN on Exercise A, B, and C
are 0.8545, 0.8938, and 0.8909, respectively. )e Jaccard
similarity coefficients are 0.7511, 0.8182, and 0.7869, re-
spectively. Compared with the other five algorithms, these
two evaluation indicators of PLCNN are the highest. )e
Hamming loss of PLCNN is 0.1333, 0.1, and 0.1043, re-
spectively, which is the lowest among all the six algo-
rithms. )e results illustrate that the prediction results of
PLCNN model are accurate, and its classification is
precise.

In conclusion, LWCNN and PLCNN can recognize
sEMG signals effectively. However, the PLCNN involves

Table 3: Optimal hyperparameters setting.

Dimensions of each particle Hyperparameter x30
g

1 a 31
2 b 64
3 c 119
4 d 5
5 e 5
6 f 3
7 Activation function of dense-1 ReLU
8 Activation function of dense-2 ReLU
9 Batch size 42
10 Learning rate 0.001

Table 4: settings of CNN, LWCNN, and PLCNN.

Methods Number of convolution layers Number of pooling layers Hyperparameter
CNN 5 1 Manual setting
LWCNN 3 2 Manual setting
PLCNN 3 2 PSO (see Table 3)

Table 5: Classification of Kappa coefficient.

K 0∼0.2 0.2∼0.4 0.4∼0.6 0.6∼0.8 0.8∼1.0
Consistency
level Low Common Secondary High Almost

the same
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PSO to determine the optimal hyperparameters auto-
matically and achieves better performance than LWCNN
which adjusts hyperparameters manually.

)e running time represents the complexity of the al-
gorithm and reflects the speed of sEMG pattern recognition.
Table 6 shows the average test time of the six algorithms in
three exercises and all fifty-two actions. PLCNN takes 5ms,
7ms, 9ms, and 19ms to recognize twelve, seventeen,
twenty-three, and fifty-two actions, respectively. It is faster
than the traditional machine learning algorithms, CNN, and
LWCNN by 20–400ms, 3–9ms, and 1–3ms. At the same
time, the average test time of PLCNN is significantly shorter
than that of the paper [25].

As one of the effective indexes in evaluating and iden-
tifying tasks, the confusion matrix map is widely used in
various classification networks. As shown in Figures 9–11, in
order to further compare the performance of three networks
based on deep learning, we take Exercise A as the visual
experimental data set and give the corresponding confusion
matrix diagram.

As shown in Figures 9–11, the ordinary CNN model can
achieve high accuracy for the classification of the fifth type of
action (ring flexion) since the action amplitude is large and
easy to be recognized when the ring finger is bent. LWCNN
and PLCNN also have good performance in this kind of
action recognition. However, the accuracy of CNN for the
remaining eleven movements are not very high, especially in
the ninth movement classification; it can only reach 50%,
which is 30% lower than LWCNN. LWCNN network
structure is simpler than CNN, for which it is not easy to
saturate and classify sEMG signals accurately. PLCNN has
precise recognition ability that divides five actions correctly
in 12 movements, and the accuracy rate of PLCNN is higher
than that of LWCNN in the ninth category by 10%.

In order to verify the robustness and convergence of the
model, the loss value and accuracy of LWCNN and PLCNN
are visualized in the process of training and testing.
Figures 12(a), 13(a), and 14(a) represent the loss change
graph of LWCNN and PLCNN on Exercise A, B, and C,
respectively. )e corresponding loss values are smoothed by
the log function. Figures 12(b), 13(b), and 14(b) show the
accuracy variation diagram of LWCNN and PLCNN on
Exercise A, B, and C, respectively.

In the training process, the loss values of LWCNN and
PLCNN decrease with iteration increasing and effectively
converge, as shown in Figures 12(a), 13(a), and 14(a).
However, the convergence speed of PLCNN is obviously
faster than that of LWCNN, and the global loss value is lower
than that of LWCNN. )is shows that the optimized
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Figure 6: Performance test for Exercise A.
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Figure 7: Performance test for Exercise B.
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Figure 8: Performance test for Exercise C.
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Table 6: Average test time of six algorithms.

Average test time (ms) SVM RF KNN CNN LWCNN PLCNN
Exercise A 26.0057 20.0042 31.0068 8.0020 5.0017 5.0013
Exercise B 69.0145 28.0063 61.0132 10.0023 7.0042 7.0013
Exercise C 154.0343 41.0096 93.0204 14.0037 12.0027 9.9928
All 954.2138 99.0221 255.0597 28.0072 21.0042 19.0043

Category First 
action

Second 
action

Third
action

Fourth
action

Fifth
action

Sixth
action

Seventh 
action

Eighth
action

Ninth 
action

Tenth
action

Eleventh
action

Twelfth 
action

First 
action 0.6 0 0.1 0.1 0 0.1 0 0.1 0 0 0 0

Second 
action 0 0.9 0 0 0.1 0 0 0 0 0 0 0

Third
action 0 0 0.6 0.1 0 0 0.1 0 0 0 0.1 0.1

Fourth
action 0.1 0 0.1 0.6 0 0 0 0 0.1 0 0.1 0

Fifth
action 0 0 0 0 1 0 0 0 0 0 0 0

Sixth
action 0 0 0 0 0 0.9 0 0 0.1 0 0 0

Seventh 
action 0.1 0 0 0 0 0 0.8 0.1 0 0 0 0

Eighth
action 0 0 0 0 0.1 0 0 0.8 0 0 0.1 0

Ninth 
action 0.2 0 0 0 0 0 0.1 0 0.5 0.1 0.1 0

Tenth
action 0 0 0 0 0 0 0 0 0.1 0.9 0 0

Eleventh
action 0.2 0 0 0.1 0 0 0 0 0 0 0.6 0.1

Twelfth 
action 0.1 0 0 0 0 0.1 0 0 0 0 0 0.8

Figure 9: Confusion matrix of CNN in Exercise A.

Category
First 
action

Second 
action

Third
action

Fourth
action

Fifth
action

Sixth
action

Seventh 
action

Eighth
action

Ninth 
action

Tenth
action

Eleventh
action

Twelfth 
action

First 
action 0.6 0 0.1 0.1 0 0.1 0 0.1 0 0 0 0

Second 
action 0 0.7 0 0.1 0.1 0 0 0 0 0 0.1 0

Third
action 0 0 0.6 0.1 0 0 0.1 0 0 0 0.1 0.1

Fourth
action 0 0 0 1 0 0 0 0 0 0 0 0

Fifth
action 0 0 0 0 1 0 0 0 0 0 0 0

Sixth
action 0 0 0 0 0 0.9 0 0 0.1 0 0 0

Seventh 
action 0.1 0 0 0 0 0 0.8 0.1 0 0 0 0

Eighth
action 0 0 0 0.1 0 0 0.1 0.8 0 0 0 0

Ninth 
action 0.2 0 0 0 0 0 0.1 0 0.5 0.1 0.1 0

Tenth
action 0 0.1 0 0 0.1 0 0 0 0.1 0.6 0.1 0

Eleventh
action 0.2 0 0 0.1 0 0 0 0 0 0 0.6 0.1

Twelfth 
action 0.1 0.1 0 0 0 0 0 0 0.1 0 0 0.7

Figure 10: Confusion matrix of LWCNN in Exercise A.
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Category First 
action

Second 
action

Third
action

Fourth
action

Fifth
action

Sixth
action

Seventh 
action

Eighth
action

Ninth 
action

Tenth
action

Eleventh
action

Twelfth 
action

First 
action 1 0 0 0 0 0 0 0 0 0 0 0

Second 
action 0 0.7 0 0.1 0.2 0 0 0 0 0 0 0

Third
action 0 0 1 0 0 0 0 0 0 0 0 0

Fourth
action 0 0 0.2 0.7 0 0 0.1 0 0 0 0 0

Fifth
action 0 0 0 0 1 0 0 0 0 0 0 0

Sixth
action 0 0 0 0 0 1 0 0 0 0 0 0

Seventh 
action 0 0 0 0 0 0 1 0 0 0 0 0

Eighth
action 0 0 0 0 0 0.2 0.1 0.7 0 0 0 0

Ninth 
action 0.1 0 0 0 0 0 0 0 0.9 0 0 0

Tenth
action 0 0 0 0 0 0 0 0 0 0.9 0.1 0

Eleventh
action 0.1 0 0 0.1 0 0.1 0 0 0 0 0.7 0

Twelfth 
action 0.1 0 0 0 0 0 0 0 0 0 0 0.9

Figure 11: Confusion matrix of PLCNN in Exercise A.
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Figure 12: Loss function trend chart and precision change trend chart for Exercise A: (a) loss tend; (b) accuracy trend.
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Figure 14: Loss function trend chart and precision change trend chart for Exercise C: (a) loss tend; (b) accuracy trend.
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Figure 13: Loss function trend chart and precision change trend chart for Exercise B: (a) loss tend; (b) accuracy trend.
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hyperparameters of PLCNNmodel improve the performance
of the model and accuracy of the predicted category.
Moreover, the loss on the verification set satisfies the same
distribution, and the overall loss value is slightly higher than
the training process. )ese effectively prove the good con-
vergence and stability of the model. Figures 12(b), 13(b), and
14(b) illustrate that the accuracy of training and testing in-
creases with a larger number of iterations.)erefore, the trend
of accuracy accords with the corresponding loss distribution,
which further demonstrates the robustness of PLCNN model
and highlights its high recognition ability in sEMG signals.

5. Conclusion

In this paper, a novel PLCNNmethod is proposed to recognize
EMG signals quickly and accurately. )e whole network is
compact and simple, including three convolution layers and
two full connection layers to extract and classify sEMG features.
)e PSO algorithm is exploited to search the autoadaptive
hyperparameters, which significantly improve the efficiency of
the traditional manual debugging hyperparameters. Moreover,
the experiments illustrate that the proposed model reduces
manual uncertainty and improves recognition performance.
Notice that the proposed method obtains recognition accuracy
of 86.67%, 90.06%, and 89.57% for Exercise A, B, and C. It is
worth mentioning that the experiments in this paper cover
almost all human handmovements under Ninapro Database 1,
and the proposed method outperforms the five other state-of-
the-art methods in terms of speed and accuracy. In the future,
we will investigate other evolutionary algorithms [47–49] and
machine learning techniques [50] to further improve the
recognition rate and recognition speed, and will take the
hardware system design into account to research the EMG
pattern recognition problems.
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