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As a generalization of Zhan’s method (i.e., to increase the lower approximation and decrease the upper approximation), the
present paper aims to define the family of complementary fuzzy β-neighborhoods and thus three kinds of covering-based
multigranulation (I,T)-fuzzy rough sets models are established. )eir axiomatic properties are investigated. Also, six kinds of
covering-based variable precision multigranulation (I,T)-fuzzy rough sets are defined and some of their properties are studied.
Furthermore, the relationships among our given types are discussed. Finally, a decision-making algorithm is presented based on
the proposed operations and illustrates with a numerical example to describe its performance.

1. Introduction

Group decision-making aims at aggregating individual
judgments to construct a composite group decision, which
must be a true representative of individual preferences. )e
MAGDM methods choose among a discrete set of alter-
natives evaluated on multiple attributes and overall utility of
the decision makers. MAGDM have some of the popular
methods such as the weighted sum and the weighted product
method (see, e.g., [1–7]). )e theory of rough set was
founded by Pawlak [8, 9] for dealing with the vagueness and
granularity in information systems and data analysis. )is
theory has been applied to many different fields (see, e.g.,
[10–20]). Furthermore, we have noticed a wide range of
generalized rough set models (see, e.g., [21–23]). Covering-
based rough sets (CRSs) are considered to be one of the most
studied generalized models. Pomykala [24, 25] obtained two
pairs of dual approximation operators. Yao [26] studied
these approximation operators by the concepts of neigh-
borhood and granularity. Couso and Dubois [27] examined
the two pairs within the context of incomplete information.
Bonikowski et al. [28] established a CRS model based on the
notion of minimal description. Zhu and Wang [29–32]
presented several CRS models and discussed their

relationships. Tsang et al. [33] and Xu and Zhang [34]
proposed additional CRS models. Liu and Sai [35] compared
Zhu′s CRS models and Xu and Zhang′s CRS models. Ma
[36] constructed some types of neighborhood-related cov-
ering rough sets by using the definitions of the neighbor-
hood and complementary neighborhood. In 2016, Ma [37]
introduced the definition of fuzzy β-neighborhood. In 2017,
Yang and Hu [38] constructed the definition of the fuzzy
β-complementary neighborhood to establish some types of
fuzzy covering-based rough sets. Zhang et al. [39], in 2019,
established the fuzzy covering-based (I,T)-fuzzy rough set
models and applications to multiattribute decision-making.
Also, in 2019, Zhan et al. [40] proposed covering-based
multigranulation (I,T)-fuzzy rough set models and ap-
plications in multiattribute group decision-making.

)e concept of a family fuzzy β-neighborhoods was
defined and their properties were studied by Zhan et al. [40].
Hence, to increase the lower approximation and decrease the
upper approximation of Zhan’s model, this article’s con-
tribution is to introduce three kinds of covering-based
multigranulation (I,T)-fuzzy rough sets models and ex-
plore the properties of these models with their relationships.
Also, six kinds of covering-based variable precision multi-
granulation (I,T)-fuzzy rough sets are demonstrated. An
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application to a practical problem illustrates their ability to
help practitioners to make decisions. )e outline of this
paper is as follows. Section 2 gives technical preliminaries.
Section 3 describes our three new types of covering-based
multigranulation (I,T)-fuzzy rough sets and also we in-
troduce variable precision in order to produce the six types
of covering-based variable precision multigranulation
(I,T)-fuzzy rough sets. Section 4 establishes relationships
among our models. Section 5 puts forward a decision-
making procedure that takes advantage of our theoretical
framework. )e conclusion is written in Section 6.

2. Preliminaries

In this section, we provide a brief survey of some notions
used throughout the paper.

Definition 1 (see [1]). Suppose that the mappingT: [0, 1] ×

[0, 1]⟶ [0, 1] is commutative, associative, and satisfies the
increasing laws plus the boundary conditionT(1, x) � x for
each x ∈ [0, 1]. We say that such a T is a t-norm (for tri-
angular norm) of [0, 1].

Among the most important continuous t-norms, we can
cite

(1) )e minimum operator TM(x, y) � x∧y

(2) )e algebraic product TP(x, y) � x∗y

(3) )e Lukasiewicz t-norm TL(x, y) � 0∨(x + y − 1)

Definition 2 (see [1]). Suppose that the mapping S: [0, 1] ×

[0, 1]⟶ [0, 1] is commutative, associative, and satisfies the
increasing laws plus the boundary condition S(0, x) � x for
each x ∈ [0, 1]. We say that such an S is an s-norm or a t-
conorm of [0, 1].

Continuous s-norms are

(1) )e maximum operator SM(x, y) � x∨y
(2) )e algebraic summation SS(x, y) � x + y

(3) )e bounded summation SL(x, y) � 1∧ (x + y)

(4) )e probabilistic summation Bp(x, y) � x+

y − x∗y

Definition 3 (see [1]). A negator operator is
N: [0, 1]⟶ [0, 1], an order-reversing mapping with the
properties N(0) � 1 and N(1) � 0.

We say that N is involutive when N(N(x)) � x for
every x ∈ [0, 1].

)e standard negator operator is defined as
N(x) � 1 − x, for any x ∈ [0, 1].

Involutive negators are continuous.
Negators produce fuzzy complements. Involutive ne-

gators assure that when X ∈F(Ω) and x ∈ Ω, we always
obtain N(N( X(x))) � X(x).

We say that T, a t-norm, and S, a t-conorm, are dual
with respect to negator N, when for each x, y ∈ [0, 1], it
must be the case that S(N(x),N(y)) � N(T(x, y)) and
T(N(x),N(y)) � N(S(x, y)).

Definition 4 (see [1]). A fuzzy implicator operator is
I: [0, 1] × [0, 1]⟶ [0, 1], and a mapping with the
properties I(0, 0) � I(0, 1) � I(1, 1) � 1 and
I(1, 0) � 0.

If, in addition,I is such that x≤y⇒I(x, z)≥I(y, z),
respectively, y≤ z⇒I(x, y)≤I(x, z), for every
x, y, z ∈ [0, 1], then I is left monotonic decreasing, re-
spectively, increasing.

We say that I is hybrid monotonic when it is both left
and right monotonic.

An implicator I is a border implicator when I(1, x) �

x for each x ∈ [0, 1].
Next, we recall three relevant classes of implicator op-

erators [1].

Definition 5

(1) )e S-implicator defined by S and N is given: for
each x, y ∈ [0, 1], IS(x, y) � S(N(x), y)

(2) )eR-implicator defined by a continuous t-normT

is given: for each x, y ∈ [0, 1], IR(x, y) � ∨ u ∈{

[0, 1]: T(x, u)≤y}

(3) If T and S are dual with respect to N, the
QL-implicator defined from T, S, and N is given:
for all x, y ∈ [0, 1], IQL(u, v) � S(N(u),T(u, v))

Well-known S-implicators are
(1) IL(x, y) � 1∧ (1 − x + y), according to SL and

NS

(2) IKD(x, y) � (1 − x)∨y, according to SM and NS

(3) IP(x, y) � 1 − x + x∗y, according to SM andNS

Definition 6 (see [42, 43]). Let Ω be an arbitrary universal
set, and F(Ω) be the fuzzy power set of Ω. We call
Γ � C1,

C2, . . . , Cm , with Ci ∈ F(Ω)(i � 1, 2, . . . , m), a
fuzzy covering of Ω, if (∪m

i�1
Ci)(x) � 1 for each x ∈ Ω.

As a generalization of fuzzy covering, Ma [37] defined a
fuzzy β-covering by replacing 1 with a parameter
β(0< β≤ 1), that is, we call Γ � C1,

C2, . . . , Cm , with
Ci ∈F(Ω)(i � 1, 2, . . . , m), a fuzzy β-covering of Ω, if
(∪m

i�1
Ci)(x)≥ β for each x ∈ Ω. Moreover, (Ω, Γ) is called a

fuzzy β-covering approximation space (briefly, FβCAS).

Definition 7 (see [37]). Let (Ω, Γ) be a FβCAS with Γ �
C1,

C2, . . . , Cm  for some β ∈ (0, 1]. )en, for each x ∈ Ω,
define the fuzzy β-neighborhood of x as follows:


N

β
x � ∩ Ci ∈ Γ: Ci ≥ β . (1)

Definition 8 (see [38]). Let (Ω, Γ) be a FβCAS for some
β ∈ (0, 1]. )en, for each x, y ∈ Ω, define the fuzzy com-
plementary β-neighborhood of x as follows:


M

β
x(y) �


N

β
y(x). (2)
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Definition 9. (see [39]). Let (Ω, Γ) be a FβCAS for some
β ∈ (0, 1]. For each x ∈ Ω and X ∈F(Ω), define the fuzzy
set C

−

1( X) (resp., C
+

1( X), C
−

2( X), C
+

2( X), C
−

3( X), C
+

3( X),
C

−

4( X), and C
+

4( X)) which is called the first type fuzzy lower
approximation (resp., the first type of the fuzzy upper ap-
proximation, the second type of the fuzzy lower approxi-
mation, the second type of the fuzzy upper approximation,
the third type of the fuzzy lower approximation, the third
type of the fuzzy upper approximation, the fourth type of the
fuzzy lower approximation, and the fourth type of the fuzzy
upper approximation), briefly, 1-FCITFLA (resp., 1-FCIT-
FUA, 2-FCITFLA, 2-FCITFUA, 3-FCITFLA, 3-FCITFUA,
4-FCITFLA, and 4-FCITFUA), where

C
−

1( X)(x) � ∧
y∈Ω

I

N

β
x(y)t, n Xq(y) ,

C
+

1( X)(x) � ∨
y∈Ω

T

N

β
x(y)t, n Xq(y)  (∀x ∈ Ω),

C
−

2( X)(x) � ∧
y∈Ω

I

M

β
x(y)t, n Xq(y) ,

C
+

2( X)(x) � ∨
y∈Ω

T

M

β
x(y)t, n Xq(y)  (∀x ∈ Ω),

C
−

3( X)(x) � ∧
y∈Ω

I

N

β
x(y)t∧ n


M

β
xq(y)h,Xx

(y) ,

C
+

3( X)(x) � ∨
y∈Ω

T

N

β
x(y)t∧ n


M

β
xq(y)h,Xx

(y)  (∀x ∈ Ω),

C
−

4( X)(x) � ∧
y∈Ω

I

N

β
x(y)t∨n 

M
β
xq(y)h,Xx

(y) ,

C
+

4( X)(x) � ∨
y∈Ω

T

N

β
x(y)t∨n 

M
β
xq(y)h,Xx

(y)  (∀x ∈ Ω).

(3)

If C
−

1( X) (resp., C
−

2( X), C
−

3( X), C
−

4( X))≠C+

1( X) (resp.,
C

+

2( X), C
+

3( X), C
+

4( X)), then X is called the first type of a

fuzzy β-covering-based (I,T)-fuzzy rough set (resp., the
second type of a fuzzy β-covering-based (I,T)-fuzzy rough
set, the third type of a fuzzy β-covering-based (I,T)-fuzzy
rough set, and the fourth type of a fuzzy β-covering-based
(I,T)-fuzzy rough set), briefly, 1-FCITFRS (resp., 2-
FCITFRS, 3-FCITFRS, and 4-FCITFRS).

Zhan et al. [40] defined the covering-based multi-
granulation (I,T)-fuzzy rough set models (briefly,
CMGITFRSs). So, in the following, some basic notions
related to CMGITFRSs are given.

Suppose that Γ � C1,
C2, . . . , Cm  be m fuzzy β-cov-

erings of Ω for some β ∈ (0, 1], where Ci � Ci1,
Ci2, . . . ,

Cimi
}, for all i � 1, 2, . . . , n. )en, for each x ∈ Ω, define the

family of fuzzy β-neighborhoods as follows:

N
β

Ci(x)

� Cij ∈ Ci: x ∈ Cij, j � 1, . . . , m . (4)

Definition 10 (see [40]). Let (Ω, Γ) be an FβCAS and Γ �
C1,

C2, . . . , Cm  be m fuzzy β-coverings of Ω for some
β ∈ (0, 1], where Ci � Ci1,

Ci2, . . . , Cimi
 , for all i � 1, 2, . . . ,

n. For each X ∈F(Ω), the set 0L
I(o)


n

i�1
Ci

( X) (resp.,

0U
T(o)


n

i�1
Ci

( X), 0L
I(p)


n

i�1
Ci

( X), and 0U
T(p)


n

i�1
Ci

( X)) is called the

optimistic multigranulation (I,T)-fuzzy rough lower ap-
proximation (resp., the optimistic multigranulation
(I,T)-fuzzy rough upper approximation, the pessimistic
multigranulation (I,T)-fuzzy rough lower approximation,
and the pessimistic multigranulation (I,T)-fuzzy rough
upper approximation), briefly, 0-OMGITFRLA (resp., 0-
OMGITFRUA, 0-PMGITFRLA, and 0-PMGITFRUA),
where

0L
I(o)


n

i�1

Ci

( X)(x) � ∨ni�1 ∧
y∈Ω

I N
β

Ci(x)

(y), X(y) ,

0U
T(o)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∨

y∈Ω
T N

β

Ci(x)

(y), X(y) , (∀x ∈ Ω),

0L
i � 1n Ci

I(p)
( X)(x) � ∧ n

i�1 ∧
y∈Ω

I N
β

Ci(x)

(y), X(y) ,

0U
T(p)


n

i�1

Ci

( X)(x) � ∨ni�1 ∨
y∈Ω

T N
β

Ci(x)

(y), X(y)  (∀x ∈ Ω).

(5)

If 0L
I(o)


n

i�1

Ci

( X) (resp., 0L
I(p)


n

i�1

Ci

( X))≠0U
T(o)


n

i�1

Ci

( X)

(resp., 0U
T(p)


n

i�1

Ci

( X)), then X is called a covering-based

optimistic multigranulation (I,T)-fuzzy rough set (resp., a
covering-based pessimistic multigranulation (I,T)-fuzzy
rough set), briefly, 0-COMGITFRS (resp., 0-CPMGITFRS).

Definition 11 (see [40]). Let (Ω, Γ) be an FβCAS and Γ �

C1,
C2, . . . , Cn  be n fuzzy β-coverings of Ω for some

β ∈ (0, 1], where Ci � Ci1,
Ci2, . . . , Cimi

 , for all i �

1, 2, . . . , n. For any X ∈ F(Ω) and a variable precision
parameter c ∈ [0, 1]. )en, the set ILI(vp)


n

i�1

Ci

( X) (resp.,
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IUT(vp)


n

i�1

Ci

( X), IILI(vp)


n

i�1

Ci

( X), and IIUT(vp)


n

i�1

Ci

( X)) is called the

first type of the variable precision multigranulation
(I,T)-fuzzy lower approximation (resp., the first type of
the variable precision multigranulation (I,T)-fuzzy upper
approximation, the second type of the variable precision

multigranulation (I,T)-fuzzy lower approximation, and
the second type of the variable precision multigranulation
(I,T)-fuzzy upper approximation), briefly, I-VPMGIT-
FLA (resp., I-VPMGITFUA, II-VPMGITFLA, and II-
VPMGITFUA), where

ILI(vp)


n

i�1

Ci

( X)(x) � ∨ni�1 ∧
X(y)≤ c

I N
β

Ci(x)

(y), c ⎛⎝ ⎞⎠∧ ∧
X(y)>c

I N
β

Ci(x)

(y), X(y) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (∀x, y ∈ Ω),

IUT(vp)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∨

X(y)≥ 1−c

T N
β

Ci(x)

(y), 1 − c ⎛⎝ ⎞⎠∨ ∨
X(y)< 1−c

T N
β

Ci(x)

(y), X(y) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (∀x, y ∈ Ω),

IILI(vp)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∧

X(y)≤ c

I N
β

Ci(x)

(y), c ⎛⎝ ⎞⎠∧ ∧
X(y)> c

I N
β

Ci(x)

(y), X(y) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (∀x, y ∈ Ω),

IIUT(vp)


n

i�1

Ci

( X)(x) � ∨ni�1 ∨
X(y)≥ 1−c

T N
β

Ci(x)

(y), 1 − c ⎛⎝ ⎞⎠∨ ∨
X(y)< 1−c

T N
β

Ci(x)

(y), X(y) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (∀x, y ∈ Ω).

(6)

If ILI(vp)


n

i�1

Ci

( X) (resp., IILI(vp)


n

i�1

Ci

( X))≠IUT(vp)


n

i�1

Ci

( X)

(resp., IIUT(vp)


n

i�1

Ci

( X)), then X is called a covering-based

I-variable precision multigranulation (I,T)-fuzzy rough
set (resp., a covering-based II-variable precision multi-
granulation (I,T)-fuzzy rough set), briefly,
I-VPMGITFRS (resp., II-VPMGITFRS); otherwise, it is
I-variable precision multigranulation fuzzy definable (resp.,
II-variable precision multigranulation fuzzy definable).

3. Three Types of Covering-Based
Multigranulation (I,T)-Fuzzy Rough Sets

Here, three new kinds of covering-based multigranulation
(I,T)-fuzzy rough sets models (briefly, CMGITFRS) are
introduced. Also, some of their properties are investigated.

Assume that Γ � C1,
C2, . . . , Cm  bem fuzzy β-coverings

of Ω for some β ∈ (0, 1], where Ci � Ci1,
Ci2, . . . , Cimi

 , for
all i � 1, 2, . . . , n. )en, for each x ∈ Ω, define the family of
fuzzy β-neighborhoods as follows:

M
β

Ci(x)

(y) � N
β

Ci(y)

(x). (7)

Example 1. Let (Ω, Γ) be a FβCAS and Γ � C1, tC2} be 2
fuzzy β-coverings of Ω, where Ω � x1, x2, x3, x4, x5, x6 ,
β � 0.6, and C1 � C11,

C12, . . . , C14  and C2 � C21,
C22,

. . . , C25} as in Tables 1 and 2.
)en, we introduce the family of a fuzzy β-neighborhood

and fuzzy complementary β-neighborhood for Γ � C1, tC2}

as follows in Tables 3–6.

3.1. -ree Types of the Optimistic Multigranulation
(I,T)-Fuzzy Rough Sets. In the following, three kinds of
COMGITFRS models are given and some of their properties
are presented.

Definition 12. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2, . . . ,

Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1], for each
X ∈ F(Ω). )en, the first type of the optimistic multi-
granulation (I,T)-fuzzy lower approximation (briefly, 1-
OMGITFLA) 1L

I(o)


n

i�1
Ci

( X) and the first type of the opti-

mistic multigranulation (I,T)-fuzzy upper approximation
(briefly, 1-OMGITFUA) 1U

T(o)


n

i�1
Ci

( X) are, respectively, de-

fined as follows:

1L
I(o)


n

i�1
Ci

( X)(x) � ∨ni�1 ∧
y∈Ω

I M
β

Ci(x)

(y), X(y) ,

1U
T(o)


n

i�1
Ci

( X)(x) � ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y), X(y) , (∀x ∈ Ω).

(8)

If 1L
I(o)


n

i�1
Ci

( X)≠ 1U
T(o)


n

i�1
Ci

( X), then X is called a cov-

ering-based optimistic multigranulation (I,T)-fuzzy
rough set (briefly, 1-COMGITFRS); otherwise, it is opti-
mistic multigranulation fuzzy definable.

Example 2. Let us consider Example 1. If X � (0.6/x1) +

(0.1/x2) + (0.7/x3) + (0.2/x4)+ (0.5/x5) + (0.4/x6), then we
have the following.

Case 1 Let us fix I � I∗ based on SP and NS, and
T � TP:
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1L
I(o)


n

i�1

Ci

( X) �
0.72
x1

+
0.55
x2

+
0.73
x3

+
0.52
x4

+
0.68
x5

+
0.58
x6

,

1U
T(o)


n

i�1

Ci

( X) �
0.3
x1

+
0.18
x2

+
0.42
x3

+
0.24
x4

+
0.25
x5

+
0.28
x6

.

(9)

Case 2 Let us fix I � IKD based on SM and NS, and
T � TM. )en, we have the following results:

1L
I(o)


n

i�1

Ci

( X) �
0.6
x1

+
0.5
x2

+
0.7
x3

+
0.4
x4

+
0.5
x5

+
0.4
x6

,

1U
T(o)


n

i�1

Ci

( X) �
0.5
x1

+
0.3
x2

+
0.6
x3

+
0.4
x4

+
0.5
x5

+
0.4
x6

.

(10)

Theorem 1. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2, . . . , Cn}

be n fuzzy β-coverings of Ω for some β ∈ (0, 1], for each
X ∈ F(Ω). -en, we have the following properties:

(1) If I is an S-implicator based on S, a continuous
t-conorm, and N, an involutive negator,

(i) 1L
I(o)


n

i�1

Ci

( X ) � (1U
T(o)


n

i�1

Ci

( X
cN ))cN

(ii) 1U
T(o)


n

i�1

Ci

( X ) � (1L
I(o)


n

i�1

Ci

( X
cN ))cN

(2) If either I is an R-implicator based on T, a con-
tinuous t-norm, andN, a negator induced byI, orI
is aQL-implicator based onT, a continuous t-norm,
and N, an involutive negator,

(i) 1L
I(o)


n

i�1

Ci

( X )⊆(1U
T(o)


n

i�1

Ci

( X
cN ) )cN

(ii) 1U
T(o)


n

i�1

Ci

( X )⊆(1L
I(o)


n

i�1

Ci

( X
cN ))cN

(3) If I satisfies left monotonicity, then

(i) 1L
I(o)


n

i�1

Ci

(Ω) � Ω

(ii) 1U
T(o)


n

i�1

Ci

(∅) � ∅

(4) If I satisfies right monotonicity and X⊆Y, then

(i) 1L
I(o)


n

i�1

Ci

( X)⊆1L
I(o)


n

i�1

Ci

(Y)

Table 1: Table for C1.

C11
C12

C13
C14

x1 0.7 0.8 0.3 0.4
x2 0.3 0.6 0.5 0.2
x3 0.4 0.1 0.9 0.7
x4 0.8 0.4 0.6 0.3
x5 0.2 0.7 0.4 0.8
x6 0.5 0.9 0.6 0.1

Table 2: Table for C2.

C21
C22

C23
C24

C25

x1 0.6 0.3 0.5 0.4 0.7
x2 0.9 0.7 0.1 0.3 0.4
x3 0.3 0.6 0.4 0.8 0.3
x4 0.4 0.2 0.9 0.7 0.6
x5 0.2 0.8 0.4 0.6 0.5
x6 0.7 0.4 0.3 0.9 0.2

Table 3: Table for N
β
x of C1.

x1 x2 x3 x4 x5 x6

N
0.5
x1

0.7 0.3 0.1 0.4 0.2 0.5

N
0.5
x2

0.3 0.5 0.1 0.4 0.4 0.6

N
0.5
x3

0.3 0.2 0.7 0.3 0.4 0.1

N
0.5
x4

0.3 0.3 0.4 0.6 0.2 0.5

N
0.5
x5

0.4 0.2 0.1 0.3 0.7 0.1

N
0.5
x6

0.3 0.3 0.1 0.4 0.2 0.5

Table 4: Table for N
β
x of C2.

x1 x2 x3 x4 x5 x6

N
0.5
x1

0.5 0.1 0.3 0.4 0.2 0.2

N
0.5
x2

0.3 0.7 0.3 0.2 0.2 0.4

N
0.5
x3

0.3 0.3 0.6 0.2 0.2 0.4

N
0.5
x4

0.4 0.1 0.3 0.6 0.4 0.2

N
0.5
x5

0.4 0.3 0.3 0.2 0.5 0.2

N
0.5
x6

0.4 0.3 0.3 0.4 0.2 0.7

Table 5: Table for M
β
x of C1.

x1 x2 x3 x4 x5 x6

M
0.5
x1

0.7 0.3 0.3 0.3 0.4 0.3

M
0.5
x2

0.3 0.5 0.2 0.3 0.2 0.3

M
0.5
x3

0.1 0.1 0.7 0.4 0.1 0.1

M
0.5
x4

0.4 0.4 0.3 0.6 0.3 0.4

M
0.5
x5

0.2 0.4 0.4 0.2 0.7 0.2

M
0.5
x6

0.5 0.6 0.1 0.5 0.1 0.5

Table 6: Table for M
β
x of C2.

x1 x2 x3 x4 x5 x6

M
0.5
x1

0.5 0.3 0.3 0.4 0.4 0.4
M

0.5
x2

0.1 0.7 0.3 0.1 0.3 0.3
M

0.5
x3

0.3 0.3 0.6 0.3 0.3 0.3
M

0.5
x4

0.4 0.2 0.2 0.6 0.2 0.4
M

0.5
x5

0.2 0.2 0.2 0.4 0.5 0.2

M
0.5
x6

0.2 0.4 0.4 0.2 0.2 0.7
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(ii) 1U
T(o)


n

i�1

Ci

( X)⊆1U
T(o)


n

i�1

Ci

(Y)

(5) If I satisfies right monotonicity, then 1L
I(o)


n

i�1

Ci

( X∩ tY) � 1L
I(o)


n

i�1

Ci

( X)∩ 1L
I(o)


n

i�1

Ci

(Y). Further-

more, ifI andT satisfyI(u,T(v,w))≥T(I(u,v),

I(u,w)), for all u,v,w∈[0,1], then 1L
I(o)


n

i�1

Ci

( X∩ Y)⊇

1L
I(o)


n

i�1

Ci

( X)∩1L
I(o)


n

i�1

Ci

(Y). Also, if (T,T∗) satisfies

T(u,T∗(v,w))≤T∗(T(u,v),T(u,w)) for all u,v,

w∈[0,1], then 1U
T(o)


n

i�1

Ci

( X∩tY)⊆1U
T(o)


n

i�1

Ci

( X)∩

1U
T(o)


n

i�1

Ci

(Y).

(6) IfI andS satisfyI(u,S(v, w))≥ S(I(u, v), I(u,

w)) for every u, v, w ∈ [0, 1], then 1L
I(o)


n

i�1

Ci

( X∪ tY)⊇1L
I(o)


n

i�1

Ci

( X)∪ 1L
I(o)


n

i�1

Ci

(Y). Also, if T

and S satisfy the weakened distributivity laws, then

1U
T(o)


n

i�1

Ci

( X∪ tY)⊆1U
T(o)


n

i�1

Ci

( X)∪ 1U
T(o)


n

i�1

Ci

(Y).

Specially, 1U
T(o)


n

i�1

Ci

( X∪tY)�1U
T(o)


n

i�1

Ci

( X)∪1U
T(o)


n

i�1

Ci

(Y).

Proof. We only need to prove (1)–(4) (i), (5), and (6), since
the other proofs are similar:

(1) (1U
T(o)


n

i�1

Ci

( X
cN))cN �N(∧i� 1n∨y∈ΩT M

β

Ci(x)

 (y), N

( X(y))})�N(∧n
i�1∨y∈ΩN (I M

β

Ci(x)

(y), X(y) ))

�N(N(∨ni�1∧y∈Ω(I M
Ci

 (x)β(y), X(y)})))�∨ni�1

∧y∈ΩI M
β

Ci(x)

(y), X(y) �1L
I(o)


n

i�1

Ci

( X).

(2) (1UT(o)


n

i�1

Ci

( X
cN))cN�N (∧ni�1∨y∈ΩT M

β

Ci(x)

(y),N

( X(y))})�N(∧ni�1∨y∈ΩN(I M
β

Ci(x)

(y), X(y) ))�

N(N(∨ni�1∧y∈Ω(I M
β

Ci(x)

(y), X(y) )))≥∨ni�1∧y∈Ω

I M
β

Ci(x)

(y), X(y) �1L
I(o)


n

i�1

Ci

( X).

(3) Since I is left monotonic, we have 1L
I(o)


n

i�1

Ci

(Ω) �

∨ni�1∧y∈ΩI M
β

Ci(x)

(y),Ω  � ∨ni�1∧y∈ΩI M
β

Ci(x)



(y),1 � 1�Ω. Also, we have 1U
T(o)


n

i�1

Ci

(∅)�∧ni�1

∨y∈ΩT M
β

Ci(x)

(y),∅ �∧ni�1∨y∈ΩT M
β

Ci(x)

(y),0 

�0�∅.
(4) Since I is right monotonic, we have 1L

I(o)


n

i�1

Ci

( X)�

∨ni�1∧y∈ΩI M
β

Ci(x)

(y), X ⊆∨ni�1∧y∈ΩI M
β

Ci(x)

 (y),

Y}�1L
I(o)


n

i�1

Ci

(Y). )us, 1L
I(o)


n

i�1

Ci

( X)⊆ 1L
I(o)


n

i�1

Ci

(Y)

holds.

(5) Since I is right monotonic, we have 1L
I(o)


n

i�1

Ci

( X∩t

Y)�∨ni�1∧y∈ΩI M
β

Ci(x)

(y), X∧Y ∨ni�1∧y∈ΩI M
Ci



(x)β(y), X}∧∨ni�1∧y∈ΩI M
β

Ci(x)

(y),Y � 1L
I(o)


n

i�1

Ci

( X)∩1L
I(o)


n

i�1

Ci

(Y). Since I and T satisfy I(u,T

(v,w))≥T(I(u,v),I(u,w)), for all u,v,w∈[0,1].

)en, we have 1L
I(o)


n

i�1

Ci

( X∩tY)�∨ni�1∧y∈ΩI

M
β

Ci(x)

(y), X∧ Y  ≥∨ni�1 ∧y∈ΩI M
β

Ci(x)

(y), X ∧

∨ni�1∧y∈ΩI M
β

Ci(x)

(y), Y �1L
I(o)


n

i�1

Ci

( X)∩1L
I(o)


n

i�1

Ci

(Y). )us, 1L
I(o)


n

i�1

Ci

( X∩tY)⊇1L
I(o)


n

i�1

Ci

( X)∩

1L
I(o)


n

i�1

Ci

(Y). Also, since X∩ Y⊆ X and X∩ Y⊆Y, from

(3) above, we have 1U
T(o)


n

i�1

Ci

( X∩tY)⊆1U
T(o)


n

i�1

Ci

( X)

and 1U
T(o)


n

i�1

Ci

( X∩tY)⊆1U
T(o)


n

i�1

Ci

(Y). )erefore,

1U
T(o)


n

i�1

Ci

( X∩t Y)⊆1U
T(o)


n

i�1

Ci

( X)∩1U
T(o)


n

i�1

Ci

(Y).

(6) Since I and S satisfy I(u,T (v, w))≥T(I(u,

v),I(u, w)), for all u, v, w ∈ [0, 1]. We conclude that

1L
I(o)


n

i�1

Ci

( X∪tY)� ∨ni�1∧y∈ΩI M
β

Ci(x)

(y), X∨Y ≥

∨ni�1∧y∈ΩI M
β

Ci(x)

(y), X ∨∨ni�1∧y∈ΩI M
β

Ci(x)



(y), Y}�1L
I(o)


n

i�1

Ci

( X)∪1L
I(o)


n

i�1

Ci

(Y).
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Hence, 1Li�

1n Ci

I(o)
( X∪ tY)⊇1L

I(o)


n

i�1

Ci

( X)∪

1L
I(o)


n

i�1

Ci

(Y). Also, ∀x ∈ Ω, we have 1U
T(o)


n

i�1

Ci

( X∪ t

Y)(x) � ∧ n
i�1∨y∈ΩT M

Ci

 (x)β(y),S( X∪ tY) (y)}

≤ ∧ n
i�1∨ y∈ΩS T( M

β

Ci(x)

(y), X (y)),T( M
β

Ci(x)

(y), Y(y))}.
Since the weakened distributivity laws are satisfied,

≤S ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y), X(y) , ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y), Y(y)  

� S 1U
T(o)


n

i�1

Ci

( X)(x), 1U
T(o)


n

i�1

Ci

(Y)(x)  � 1U
T(o)


n

i�1

Ci

( X)(x)∨1U
T(o)


n

i�1

Ci

(Y)(x) � 1U
T(o)


n

i�1

Ci

( X)∪ 1U
T(o)


n

i�1

Ci

( X) (x).

(11)

In particular, if x ∈ Ω, we have

1U
T(o)


n

i�1

Ci

( X∪ tY)(x) � ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y), ( X∪ tY)(y)  � ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y), X(y) ∨ ∧
y∈Ω

T M
β

Ci(x)

(y), Y(y) 

� 1U
T(o)


n

i�1

Ci

( X)(x)∨1U
T

(Y)(x) � 1U
T(o)


n

i�1

Ci

( X)∪ 1U
T(o)


n

i�1

Ci

(Y) (x).

(12)

□
Definition 13. Let (Ω, Γ) be a FβCAS and
Γ � C1, tC2n, q . . . h, 

Cn}
 be n fuzzy β-coverings of Ω for

some β ∈ (0, 1]. )en, for each X ∈F(Ω), the second type
of the optimistic multigranulation (I,T)-fuzzy lower ap-
proximation (briefly, 2-OMGITFLA) 2L

I(o)


n

i�1

Ci

( X) and the

second type of the optimistic multigranulation
(I,T)-fuzzy upper approximation (briefly, 2-OMGIT-
FUA) 2U

T(o)


n

i�1

Ci

( X) are, respectively, defined as follows:

2L
I(o)


n

i�1

Ci

( X)(x) � ∨ni�1 ∧
y∈Ω

I M
β

Ci(x)

(y)∧ N
β

Ci(x)

(y), X(y) ,

2U
T(o)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y)∧ N
β

Ci(x)

(y), X(y) ,

(∀x ∈ Ω).

(13)

If 2L
I(o)


n

i�1

Ci

( X)≠ 2U
T(o)


n

i�1

Ci

( X), then X is called a cov-

ering-based optimistic multigranulation (I,T)-fuzzy
rough set (briefly, 2-COMGITFRS); otherwise, it is opti-
mistic multigranulation fuzzy definable.

Example 3. (continued from Example 2). We compute
( N

β
xi
∧ M

β
xi

) for all xi ∈ Ω, where i � 1, 2, . . . , 6 for some
β � 0.5, as shown in Tables 7 and 8 as follows.

Now, we calculate the 2-OMGITFLA and 2-OMGIT-
FUA as explored in the following two cases.

Case 1 Let us fix I � I∗ based on SP and NS and
T � TP. So,

2L
I(o)


n

i�1

Ci

( X) �
0.72
x1

+
0.55
x2

+
0.76
x3

+
0.52
x4

+
0.73
x5

+
0.68
x6

,

2U
T(o)


n

i�1

Ci

( X) �
0.3
x1

+
0.18
x2

+
0.42
x3

+
0.21
x4

+
0.25
x5

+
0.2
x6

.

(14)

Case 2 Let us fix I � IKD based on SM and NS and
T � TM. )us,

2L
I(o)


n

i�1

Ci

( X) �
0.6
x1

+
0.5
x2

+
0.7
x3

+
0.4
x4

+
0.5
x5

+
0.5
x6

,

2U
T(o)


n

i�1

Ci

( X) �
0.5
x1

+
0.3
x2

+
0.6
x3

+
0.4
x4

+
0.5
x5

+
0.4
x6

.

(15)

Remark 1. Definition 13 satisfies )eorem 1.

Definition 14. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2, . . . ,

Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1]. For each
X ∈ F(Ω), the third type of the optimistic multigranulation
(I,T)-fuzzy lower approximation (briefly, 3-OMGITFLA)

3L
I(o)


n

i�1

Ci

( X) and the third type of the optimistic multi-

granulation (I,T)-fuzzy upper approximation (briefly, 3-
OMGITFUA) 3U

T(o)


n

i�1

Ci

( X) are, respectively, defined as

follows:
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3L
I(o)


n

i�1

Ci

( X)(x) � ∨ni�1 ∧
y∈Ω

I M
β

Ci(x)

(y)∨ N
β

Ci(x)

(y), X(y) ,

3U
T(o)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∨

y∈Ω
T M

β

Ci(x)

(y)∨ N
β

Ci(x)

(y), X(y) ,

(∀x ∈ Ω).

(16)

If 3L
I(o)


n

i�1

Ci

( X)≠ 3U
T(o)


n

i�1

Ci

( X), then X is called a cov-

ering-based optimistic multigranulation (I,T)-fuzzy
rough set (briefly, 3-COMGITFRS); otherwise, it is opti-
mistic multigranulation fuzzy definable.

Example 4 (continued from Example 2). We compute
( N

β
xi
∨ M

β
xi

) for all xi ∈ Ω, where i � 1, 2, . . . , 6 for some
β � 0.5, as shown in Tables 9 and 10.

)e following two cases calculate the 3-OMGITFLA and
3-OMGITFUA, respectively.

Case 1 Let us fix I � I∗ based on SP and NS and
T � TP. So,

3L
I(o)


n

i�1

Ci

( X) �
0.68
x1

+
0.64
x2

+
0.73
x3

+
0.52
x4

+
0.68
x5

+
0.58
x6

,

3U
T(o)


n

i�1

Ci

( X) �
0.3
x1

+
0.21
x2

+
0.42
x3

+
0.24
x4

+
0.25
x5

+
0.28
x6

.

(17)

Case 2 Let us fix I � IKD based on SM and NS and
T � TM. )us,

3L
I(o)


n

i�1

Ci

( X) �
0.6
x1

+
0.4
x2

+
0.6
x3

+
0.4
x4

+
0.5
x5

+
0.4
x6

,

3U
T(o)


n

i�1

Ci

( X) �
0.5
x1

+
0.4
x2

+
0.6
x3

+
0.4
x4

+
0.5
x5

+
0.4
x6

.

(18)

Remark 2. Definition 14 satisfies )eorem 1.

3.2. -ree Types of the Pessimistic Multigranulation
(I,T)-Fuzzy Rough Sets. In the following, we introduce
three kinds of CPMGITFRS models and study some of their
properties.

Let (Ω, Γ) be a FβCAS and Γ � C1,
C2, . . . , Cn  be n

fuzzy β-coverings of Ω for some β ∈ (0, 1]. For each
X ∈ F(Ω). We have three models of the pessimistic multi-
granulation (I,T)-fuzzy lower approximation (briefly, 1-
PMGITFLA, 2-PMGITFLA, and 3-PMGITFLA) and three
model of the pessimistic multigranulation (I,T)-fuzzy
upper approximation (briefly, 1-PMGITFUA, 2-PMGITFUA,
and 3-PMGITFUA) are, respectively, defined as follows.

Model 1:

1L
I(p)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∧

y∈Ω
I M

β

Ci(x)

(y), X(y) ,

1U
T(p)


n

i�1

Ci

( X)(x) � ∨ni�1 ∨
y∈Ω

T M
β

Ci(x)

(y), X(y) , (∀x ∈ Ω).

(19)

Model 2:

2L
I(p)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∧

y∈Ω
I M

β

Ci(x)

(y)∧ N
β

Ci(x)

(y), X(y) ,

2U
T(p)


n

i�1

Ci

( X)(x) � ∨ni�1 ∨
y∈Ω

T M
β

Ci(x)

(y)∧ N
β

Ci(x)

(y), X(y) , (∀x ∈ Ω).

(20)

Table 7: Table for N
0.5
xi
∧ M

0.5
xi

of C1.

x1 x2 x3 x4 x5 x6

N
0.5
x1
∧ M

0.5
x1

0.7 0.3 0.1 0.3 0.2 0.3

N
0.5
x2
∧ M

0.5
x2

0.3 0.5 0.1 0.3 0.2 0.3

N
0.5
x3
∧ M

0.5
x3

0.1 0.1 0.7 0.3 0.1 0.1

N
0.5
x4
∧ M

0.5
x4

0.3 0.3 0.3 0.6 0.2 0.4

N
0.5
x5
∧ M

0.5
x5

0.2 0.2 0.1 0.2 0.7 0.1

N
0.5
x6
∧ M

0.5
x6

0.3 0.3 0.1 0.4 0.1 0.5

Table 8: Table for N
0.5
xi
∧ M

0.5
xi

of C2.

x1 x2 x3 x4 x5 x6

N
0.5
x1
∧ M

0.5
x1

0.5 0.1 0.3 0.4 0.2 0.2

N
0.5
x2
∧ M

0.5
x2

0.1 0.7 0.3 0.1 0.2 0.3

N
0.5
x3
∧ M

0.5
x3

0.3 0.3 0.6 0.2 0.2 0.3

N
0.5
x4
∧ M

0.5
x4

0.4 0.1 0.2 0.6 0.2 0.2

N
0.5
x5
∧ M

0.5
x5

0.2 0.2 0.2 0.2 0.5 0.2

N
0.5
x6
∧ M

0.5
x6

0.2 0.3 0.3 0.2 0.2 0.7
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Model 3:

3L
I(p)


n

i�1

Ci

( X)(x) � ∧ n
i�1 ∧

y∈Ω
I M

β

Ci(x)

(y)∨ N
β

Ci(x)

(y), X(y) ,

3U
T(p)


n

i�1

Ci

( X)(x) � ∨ni�1 ∨
y∈Ω

T M
β

Ci(x)

(y)∨ N
β

Ci(x)

(y), X(y) , (∀x ∈ Ω).

(21)

If 1L
I(p)


n

i�1

Ci

( X) (resp., 2L
I(p)


n

i�1

Ci

( X), 3L
I(p)


n

i�1

Ci

( X))

≠1U
T(p)


n

i�1

Ci

( X) (resp., 2U
T(p)


n

i�1

Ci

( X), 3U
T(p)


n

i�1

Ci

( X)), then X is

called a covering-based pessimistic multigranulation
(I,T)-fuzzy rough set (briefly, 1-CPMGITFRS, 2-
CPMGITFRS, and 3-CPMGITFRS); otherwise, it is pessi-
mistic multigranulation fuzzy definable.

It is obvious that the properties of these mentioned
models satisfy )eorem 1.

Example 5. (continued from Examples 2 and 3 and Remark
2). We have the following results.

Case 1 Let us fix I � I∗ based on SP and NS and
T � TP. So,

(i) 1L
I(p)


n

i�1

Ci

( X)�(0.68/x1)+(0.37/x2)+(0.68/

x3)+(0.52/x4)+(0.64/x5)+(0.46/x6) and

1U
T(p)


n

i�1

Ci

( X) � (0.42/x1)+(0.21/x2)+(0.49/

x3)+(0.24/x4)+(0.28/x5)+(0.3/x6)

(ii) 2L
I(p)


n

i�1

Ci

( X)�(0.68/x1)+(0.37/x2)+(0.73/

x3)+(0.52/x4)+(0.58/x5)+(0.58/x6) and

1U
T(p)


n

i�1

Ci

( X)�(0.42/x1)+(0.21/x2)+(0.49/

x3)+(0.24/x4)+(0.35/x5)+(0.28/x6)

(iii) 3L
I(p)


n

i�1

Ci

( X)�(0.68/x1)+(0.37/x2)+(0.68/

x3)+(0.52/x4)+(0.64/x5)+(0.46/x6) and

3U
T(o)


n

i�1

Ci

( X)�(0.42/x1)+(0.24/x2)+(0.49/

x3)+(0.28/x4)+(0.35/x5)+(0.3/x6)

Case 2 Let us fix I � IKD based on SM and NS and
T � TM. )us,

(i) 1L
I(p)


n

i�1

Ci

( X) � (0.6/x1) + (0.3/x2) + (0.6/

x3) + (0.4/x4) + (0.5/x5) + (0.4/x6) and

1U
T(p)


n

i�1

Ci

( X) � (0.6/x1) + (0.3/x2) + (0.7/

x3) + (0.4/x4) + (0.5/x5) + (0.5/x6)

(ii) 2L
I(p)


n

i�1

Ci

( X) � (0.6/x1) + (0.3/x2) + (0.7/

x3) + (0.4/x4) + (0.5/x5) + (0.4/x6) and

2U
T(p)


n

i�1

Ci

( X) � (0.6/x1) + (0.3/x2) + (0.7/

x3) + (0.4/x4) + (0.5/x5) + (0.4/x6)

Table 9: Table for N
β
xi
∨ M

β
xi
of C1.

x1 x2 x3 x4 x5 x6

N
0.5
x1
∨ M

0.5
x1

0.7 0.3 0.3 0.4 0.4 0.5

N
0.5
x2
∨ M

0.5
x2

0.3 0.5 0.2 0.4 0.4 0.6

N
0.5
x3
∨ M

0.5
x3

0.3 0.2 0.7 0.4 0.4 0.1

N
0.5
x4
∨ M

0.5
x4

0.4 0.4 0.4 0.6 0.3 0.5

N
0.5
x5
∨ M

0.5
x5

0.4 0.4 0.4 0.3 0.7 0.2

N
0.5
x6
∨ M

0.5
x6

0.5 0.6 0.1 0.5 0.2 0.5

Table 10: Table for N
β
xi
∨ M

β
xi
of C2.

x1 x2 x3 x4 x5 x6

N
0.5
x1
∨ M

0.5
x1

0.5 0.3 0.3 0.4 0.4 0.4

N
0.5
x2
∨ M

0.5
x2

0.3 0.7 0.3 0.2 0.3 0.4

N
0.5
x3
∨ M

0.5
x3

0.3 0.3 0.6 0.3 0.3 0.4

N
0.5
x4
∨ M

0.5
x4

0.4 0.2 0.3 0.6 0.4 0.4

N
0.5
x5
∨ M

0.5
x5

0.4 0.3 0.3 0.4 0.5 0.2

N
0.5
x6
∨ M

0.5
x6

0.4 0.4 0.4 0.4 0.2 0.7

Complexity 9



(iii) 3L
I(p)


n

i�1

Ci

( X)�(0.5/x1)+(0.3/x2)+(0.6/ x3)

+(0.4/x4)+(0.5/x5)+(0.4/x6) and

3U
T(o)


n

i�1

Ci

( X) � (0.6/x1)+(0.4/x2)+(0.7/x3)

+(0.4/x4)+(0.5/x5)+(0.5/x6)

3.3. Some Types of Covering-Based Variable Precision Mul-
tigranulation(I,T)-FuzzyRough Sets. In the following, six
new kinds of CVPMITFRS are defined and their properties
are investigated. It is clear that the properties of these
mentionedmodels satisfy)eorem 1. So, we only present the
concepts and omit the properties.

Definition 15. Let (Ω, Γ) be a FβCAS and
Γ � C1,

C2, . . . , Cn  be n fuzzy β-coverings of Ω for some
β ∈ (0, 1]. For each X ∈F(Ω) and a variable precision
parameter c ∈ [0, 1]. Define the i-variable precision multi-
granulation (I,T)-fuzzy lower approximation (briefly,
i-VPMGITFLA) and the i-variable precision multi-
granulation (I,T)-fuzzy upper approximation (briefly,
i-VPMGITFUA), ∀i ∈ I, II, III, IV,V,VI{ } are, respectively,
defined as follows:

(1) IL
I(vp)


n

i�1

Ci

( X)(x) � ∨ni�1(∧ X(y)≤c
I( M

β

Ci(x)

(y), c)∧

∧ X(y)≤c
I( M

β

Ci(x)

(y), X(y))) and IU
T(vp)


n

i�1

Ci

( X) (x)

� ∧ n
i�1(∨X(y)≥1−c

T( M
β

Ci(x)

(y), 1 − c)∨∨X(y)<1−c
T

( M
β

Ci(x)

(y), X(y))), (∀x ∈ Ω)

(2) IIL
I(vp)


n

i�1

Ci

( X)(x) � ∧ n
i�1(∧ X(y)≤c

I( M
β

Ci(x)

(y), c)

∧ ∧ X(y)>c
I( M

β

Ci(x)

(y), X(y))) and

IIU
T(vp)


n

i�1

Ci

( X)(x) � ∨ni�1(∨X(y)≥1−c
T( M

β

Ci(x)

(y), 1 −

c)∨∨X(y)<1−c
T( M

β

Ci(x)

(y), X(y))), (∀x ∈ Ω)

(3) IIIL
I(vp)


n

i�1

Ci

( X)(x) � ∨ni�1(∧ X(y)≤c
I( M

β

Ci(x)

(y)∨ N

β

Ci(x)

(y), c)∧ ∧ X
(y)>cI( M

β

Ci(x)

(y)∨ N
β

Ci(x)

(y), X

(y))) and IIIU
T(vp)


n

i�1

Ci

( X)(x) � ∧ n
i�1(∨X(y)≥1−c

T

( M
β

Ci(x)

(y)∨ N
β

Ci(x)

(y), 1− c)∨∨X(y)<1−c
T( M

β

Ci(x)

(y)∨ N
β

Ci(x)

(y), X(y))), (∀x ∈ Ω)

(4) IVL
I(vp)


n

i�1

Ci

( X)(x) � ∧ n
i�1 (∧ X(y)≤c

I( M
β

Ci(x)

(y)∨

N
β

Ci(x)

(y), c)∧ ∧ X(y)>c
I( M

β

Ci(x)

(y)∨ N
β

Ci(x)

(y),

X(y))) and IVU
T(vp)


n

i�1

Ci

( X)(x) � ∨ni�1(∨X(y)≥1−c

T( M
β

Ci(x)

(y)∨ N
β

Ci(x)

(y), 1− c)∨ ∨X(y)<1−c
T( M

Ci

(x)β(y)∨ N
β

Ci(x)

(y), X(y))), (∀x ∈ Ω)

(5) VL
n

i�1

Ci

I(vp)
( X)(x) � ∨ni�1(∧ X(y)≤c

I( M
Ci

(x)β(y)∧ N
β

Ci(x)

(y), c)∧ ∧ X(y)>c
I( M

β

Ci(x)

(y)∧

N
β

Ci(x)

(y), X(y))) and VU
T(vp)


n

i�1

Ci

( X)(x) �

∧ n
i�1(∨X(y)≥1−c

T( M
β

Ci(x)

(y)∧ N
β

Ci(x)

(y), 1 − c)∨

∨X(y)<1−c
T( M

Ci

(x)β(y)∧ N
β

Ci(x)

(y), X(y))), (∀x ∈ Ω)

(6) VIL
I(vp)


n

i�1

Ci

( X)(x) � ∧ n
i�1(∧ X(y)≤c

I( M
β

Ci(x)

(y)∧

N
β

Ci(x)

(y), c)∧ ∧ X
(y)>cI( M

β

Ci(x)

(y)∧ N
β

Ci(x)

(y), X(y))) and VIU
T(vp)


n

i�1

Ci

( X)(x) � ∨ni�1(∨X(y)≥1−c

T( M
β

Ci(x)

(y)∧ N
β

Ci(x)

(y), 1− c)∨∨X(y)<1−c
T( M

Ci

(x)β(y)∧ N
β

Ci(x)

(y), X(y))), (∀x ∈ Ω)

If iL
I(vp)


n

i�1

Ci

( X)≠ iU
T(vp)


n

i�1

Ci

( X), then X is called a cov-

ering-based i-variable precision multigranulation
(I,T)-fuzzy rough set (briefly, i-VPMGITFRS); otherwise,
it is i-variable precision multigranulation fuzzy definable.

)e best way to explain the above definition is to give the
following example.

Example 6 (continued from Example 2). Assume that
c � 0.5. )en, we have the following results:

(1) IL
I(vp)


n

i�1

Ci

( X)�(0.8/x1)+(0.75/x2)+(0.82/x3)+(0.7/

x4) + (0.75/x5) + (0.7/x6) and IU
T(vp)


n

i�1

Ci

( X)�(0.25/

x1) + (0.15/x2) + (0.3/x3) + (0.2/x4) + (0.25/x5) +

(0.25 / x6)

(2) IIL
I(vp)


n

i�1

Ci

( X) � (0.72/x1) + (0.65/x2) + (0.79/x3) +

(0.7/x4)+ (0.65/x5) + (0.65/x6) and IIU
T(vp)


n

i�1

Ci

( X) �

(0.35/x1) + (0.15/x2) + (0.35/x3)+ (0.2/x4)+ (0.35/

x5) + (0.28/x6)

(3) IIIL
I(vp)


n

i�1

Ci

( X) � 0.8/x1 + 0.75/x2 + 0.82/x3 + 0.7/x4+

0.75/x5 + 0.7/x6 and IIIU
T(vp)


n

i�1

Ci

( X) � 0.25/x1+ 0.15/

x2 + 0.3/x3 + 0.2/x4 + 0.25/x5+ 0.25/x6

(4) IVL
I(vp)


n

i�1

Ci

( X)�0.72/ x1+0.65/x2+0.79/x3+0.7/x4+

0.65/x5+0.65/x6andIVU
T(vp)


n

i�1

Ci

( X)�0.35/x1+0.15/

x2+0.35/x3+0.16/x4+0.35/x5+0.28/x6

(5) VL
I(vp)


n

i�1

Ci

( X) � (0.8/x1) + (0.7/x2) + (0.8/x3)+ (0.7/

x4) + (0.75/x5) + (0.7/x6)andVU
T(vp)


n

i�1

Ci

( X) � (0.25/
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x1) + (0.16/x2) + (0.3/x3) + (0.2/x4) + (0.25/

x5) + (0.25/x6)

(6) VIL
I(vp)


n

i�1

Ci

( X) � (0.72/x1) + (0.65/x2) + (0.79/x3)+

(0.7/x4) + (0.65/x5) + (0.65/x6) and VIU
T(vp)


n

i�1

Ci

( X) �

(0.35/x1) + (0.24/x2) + (0.35/x3) + (0.2/x4) + (0.35

/x5) + (0.28/x6)

4. The Relationships between COMGITFRS
Models and CPMGITFRS Models

In this section, we explain relationships among our
models. )rough the proposed study, we have the fol-
lowing results.

From Definitions 10 and 12, we conclude the following
results.

Proposition 1. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2,

. . . , Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1]. -en,
for each X ∈ F(Ω), we have the following properties: (i)

1L
I(o)


n

i�1

Ci

( X) � ∪ n
i�1

C
−

2( X) and 1L
I(p)


n

i�1

Ci

( X) � ∩ n
i�1

C
−

2

( X). (ii) 1U
T(o)


n

i�1

Ci

( X) � ∩ n
i�1

C
+

2( X) and 1U
T(p)


n

i�1

Ci

( X) �

∪ n
i�1

C
+

2( X).

By Definitions 11 and 13, we have the following results.

Proposition 2. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2,

. . . , Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1]. -en,
for each X ∈F(Ω), we have the following properties:

(i) 2L
I(o)


n

i�1

Ci

( X) � ∪ n
i�1

C
−

3( X) and 2L
I(p)


n

i�1

Ci

( X) � ∩

n
i�1

C
−

3 ( X)

(ii) 2U
T(o)


n

i�1

Ci

( X) � ∩ n
i�1

C
+

3( X) and 2U
T(p)


n

i�1

Ci

( X) �

∪ n
i�1

C
+

3( X)

From Definitions 11 and 14, we have the following results.

Proposition 3. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2,

. . . , Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1]. -en,
for each X ∈F(Ω), we have the following properties.

(i) 3L
I(o)


n

i�1

Ci

( X) � ∪ n
i�1

C
−

4( X) and 3L
I(p)


n

i�1

Ci

( X) �

∩ n
i�1

C
−

4( X)

(ii) 3U
T(o)


n

i�1

Ci

( X) � ∩ n
i�1

C
+

4( X) and 3U
T(p)


n

i�1

Ci

( X) �

∪ n
i�1

C
+

4( X)

Proposition 4. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2,

. . . , Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1]. -en,
for each X ∈F(Ω), we have the following properties:

(i) 3L
I(o)


n

i�1

Ci

( X)⊆0L
I(o)


n

i�1

Ci

( X)⊆2L
I(o)


n

i�1

Ci

( X)

(ii) 3L
I(o)


n

i�1

Ci

( X)⊆1L
I(o)


n

i�1

Ci

( X)⊆2L
I(o)


n

i�1

Ci

( X)

(iii) 2U
T(o)


n

i�1

Ci

( X)⊆0U
T(o)


n

i�1

Ci

( X)⊆3U
T(o)


n

i�1

Ci

( X)

(iv) 2U
T(o)


n

i�1

Ci

( X)⊆1U
T(o)


n

i�1

Ci

( X)⊆3U
T(o)


n

i�1

Ci

( X)

Proposition 5. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2,

. . . , Cn} be n fuzzy β-coverings ofΩ for some β ∈ (0, 1]. -en,
for each X ∈ F(Ω), we have the following properties:

(i) 2L
I(o)


n

i�1

Ci

( X) � 0L
I(o)


n

i�1

Ci

( X)∨1L
I(o)


n

i�1

Ci

( X)

(ii) 2U
T(o)


n

i�1

Ci

( X) � 0U
T(o)


n

i�1

Ci

( X)∧ 1U
T(o)


n

i�1

Ci

( X)

(iii) 3L
I(o)


n

i�1

Ci

( X) � 0L
I(o)


n

i�1

Ci

( X)∧ 1L
I(o)


n

i�1

Ci

( X)

(iv) 3U
T(o)


n

i�1

Ci

( X) � 0U
T(o)


n

i�1

Ci

( X)∨1U
T(o)


n

i�1

Ci

( X)

Remark 3. Let (Ω, Γ) be a FβCAS and Γ � C1,
C2, . . . , Cn 

be n fuzzy β-coverings of Ω for some β ∈ (0, 1]. )en, for
each X ∈F(Ω), we have the following properties:

(1) 1L
I(p)


n

i�1

Ci

( X)⊆1L
I(o)


n

i�1

Ci

( X) and 1U
T(o)


n

i�1

Ci

( X)⊆

1U
T(p)


n

i�1

Ci

( X)

(2) 2L
I(p)


n

i�1

Ci

( X)⊆2L
I(o)


n

i�1

Ci

( X) and 2U
T(o)


n

i�1

Ci

( X)⊆

2U
T(p)


n

i�1

Ci

( X)

(3) 3L
I(p)


n

i�1

Ci

( X)⊆3L
I(o)


n

i�1

Ci

( X) and 3U
T(o)


n

i�1

Ci

( X)⊆

3U
T(p)


n

i�1

Ci

( X)

(4) IIL
I(vp)


n

i�1

Ci

( X)⊆IL
I(vp)


n

i�1

Ci

( X) and IU
T(vp)


n

i�1

Ci

( X)⊆

IIU
T(vp)


n

i�1

Ci

( X)

(5) IVL
I(vp)


n

i�1

Ci

( X)⊆IIIL
I(vp)


n

i�1

Ci

( X) and IIIU
T(vp)


n

i�1 Ci

( X)⊆

IVU
T(vp)


n

i�1 Ci

( X)

(6) VIL
I(vp)


n

i�1
( X)⊆VL

I(vp)
i�1 ( X) and VU

T(vp)


n

i�1

Ci

( X)⊆

VIU
T(vp)


n

i�1

Ci

( X)

5. An Application to Decision-Making

In this section, we apply the proposed method to make a
decision on a real-life problem.

5.1. Description and Process. Let Ω � u1, u2, . . . , un  be n

alternatives and E � e1, e2, . . . , el  be l decision makers.
Suppose for each ]i is a weighted vector correspondingly to ei,
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where ]i ≥ 0 for i � 1, . . . , l and 
l
i�1 ]i � 1. Hence,

Ci � Ci1,
Ci2, . . . , Cimi

 , for all i � 1, 2, . . . , n is a set of at-
tributes. A family of mappings G � gl , where
gl: Ω × Ci⟶ [0, 1]. So, we construct the MAGDM with
fuzzy information system (Ω, C,E,G). Based on the proposed

covering methods, we present a decision-making algorithm to
find the best alternative through the following steps:

Step 1: Construct the decision-making object with fuzzy
information of the universe of discourse.)rough
the rule of fuzzy TOPSIS method, we have

Pl � Clj, ∨1≤ i≤ n
gl ui,

Clj  : (j � 1, . . . , m)(l � 1, . . . , t)  � Cl1,∨ gl1(  , . . . , Clm,∨ glm(   ,

Pl � Clj, ∧1≤ i≤ n
gl ui,

Clj  : (j � 1, . . . , m)(l � 1, . . . , t)  � Cl1, ∧ gl1(  , . . . , Clm, ∧ glm(   

(22)

where ∧ and ∧ denote “max” and “min,”
respectively.

Step 2: Compute the respective distances D and D as
follows:

Dl � S Clj ui( , Clj P(   �

���������������������

1
m



m

j�1

Clj ui(  − ∨ glj  
2




,

Dl � S Clj ui( , Clj(P)  �

���������������������

1
m



m

j�1

Clj ui(  − ∧ glj  
2




,

(23)

where
S(Y, tZ) �

��������������������������
(1/m) 

m
j�1 (Y(ui)t − nZq(ui))

2


and m is the cardinality of Ω.
Step 3: Calculate the lower and upper approximations of

the best and worst decision-making objects with
fuzzy information by Definition 13 (2-
OMGITFLA and 2-OMGITFUA).

Step 4: Calculate the closeness coefficient degree by
Rl(ui) � Wl (ui)/Wl (ui) + Wl(ui), where

Wl ui(  � Bp 3L
I(o)


k

r�1

Cr

Dl(  ui( , 3U
T(o)


k

r�1

Cr

Dl(  ui( ⎛⎝ ⎞⎠,

Wl ui(  � Bp 3L
I(o)


k

r�1

Cr

Dl  ui( , 3U
T(o)


k

r�1

Cr

Dl  ui( ⎛⎝ ⎞⎠,

(24)

be the worst and the best decision-making objects
for individual ranking function of expert l for the
candidates ui, and 0≤ Wl (ui),Wl(ui)≤ 1.

Step 5: Calculate the group ranking function by the
following equation R(ui) � 

t
l�1 ]lRl(ui), and

hence rank the alternatives.

According to these steps, we give an algorithm to solve
the decision-making problems based on the 2-COMGITFRS
model. )e steps corresponding to it are summarized in
Algorithm 1.

5.2. Applied Example. )e abovementioned steps have been
illustrated with a numerical example as shown next.

Example 7 (see [40]). Let Ω � u1, u2, . . . , u6  be six system
analysis engineers and Γ � { emotional steadiness (C1), oral
communication skill (C2), personality (C3), past experience
(C4), self-confidence (C5) } be the attribute set of the basic
description of the candidates. Suppose that three experts
e1, e2, and e3 are invited to evaluate the system analysis en-
gineers according to their specialized knowledge. )e weights
of every expert are ]1 � 0.4, ]2 � 0.1, and ]3 � 0.5. )e fol-
lowing steps of the stated algorithm are implemented here.

Step 1: Experts evaluate each candidate under the set of
the attribute and present their judgments with
the real values. )ese values are summarized in
Tables 11–13.

Step 2: According to the importance of these five attri-
butes, we give the following results for each expert:

P1 � C11, t0.82 , C12, t0.76 , C13, t0.74 , C14, t0.78 , C15, t0.91  ,

P1 � C11, t0.28 , C12, t0.32 , C13, t0.36 , C14, t0.45 , C15, t0.43  ,

P2 � C21, t0.85 , C22, t0.77 , C23, t0.79 , C24, t0.81 , C25, t0.71  ,

P2 � C21, t0.35 , C22, t0.34 , C23, t0.46 , C24, t0.26 , C25, t0.43  ,

P3 � C31, t0.84 , C32, t0.75 , C33, t0.74 , C34, t0.69 , C35, t0.78  ,

P3 � C31, t0.37 , C32, t0.36 , C33, t0.35 , C34, t0.42 , C35, t0.48  .

(25)
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Step 3: If the threshold β � 0.6, it produces N
β

Ci

, M
β

Ci

and N
0.6

Ci

∧ M
0.6

Ci

as displayed in Tables 14–22.

Step 4: Calculate the distances Dl and Dl as follows:

D1 �
0.248

u1
+
0.269

u2
+
0.315

u3
+
0.189

u4
+
0.261

u5
+
0.306

u6
,

D1 �
0.307

u1
+
0.307

u2
+
0.241

u3
+
0.317

u4
+
0.247

u5
+
0.259

u6
,

D2 �
0.276

u1
+
0.276

u2
+
0.293

u3
+
0.146

u4
+
0.261

u5
+
0.228

u6
,

D2 �
0.246

u1
+
0.278

u2
+
0.209

u3
+
0.352

u4
+
0.293

u5
+
0.278

u6
,

D3 �
0.243

u1
+
0.233

u2
+
0.21
u3

+
0.219

u4
+
0.184

u5
+
0.259

u6
,

D3 �
0.225

u1
+
0.231

u2
+
0.25
u3

+
0.237

u4
+
0.232

u5
+
0.212

u6
.

(26)

Step 5: Calculate the lower and upper approximations of
the best and worst decision-making objects as
follows.
Take e � e1, and we have

3L
I(o)


k

r�1

Cr

D1  �
0.49616

u1
+
0.52485

u2
+
0.55475

u3
+
0.48907

u4
+
0.51965

u5
+
0.54196

u6
,

3U
I(o)


k

r�1

Cr

D1  �
0.16616

u1
+
0.17485

u2
+
0.20475

u3
+
0.11907

u4
+
0.16965

u5
+
0.20196

u6
,

3L
I(o)


k

r�1

Cr

D1(  �
0.53569

u1
+
0.54955

u2
+
0.50665

u3
+
0.56971

u4
+
0.51055

u5
+
0.51094

u6
,

3U
I(o)


k

r�1

Cr

D1(  �
0.20569

u1
+
0.19955

u2
+
0.15665

u3
+
0.19971

u4
+
0.16055

u5
+
0.17094

u6
.

(27)

Input: Fuzzy information systems (Ω, C,E,G).
Output: Decision-Making.

(1) Enter X, β, Γ � Ci: tin � q1h,... x, 7n  and Ω � xj: j � 1, . . . , m .
(2) From Definition 7, calculate fuzzy β-neighborhood.
(3) From Step 2 and by Definition 8, calculate complementary fuzzy β-neighborhood
(4) From Steps 2 and 3, calculate N

β

C1(u1)
∧ M

β

C1(ui)

.
(5) Enter Pl and Pl.
(6) Calculate the distances Dl and Dl.
(7) From Definition 13, calculate the lower approximation 3L

I(o)


k

r�1

Cr

(Dl) and the upper approximation 3U
I(o)


k

r�1

Cr

(Dl).

(8) Calculate the worst and the best decision-making objects Wl and Wl for each individual decision-maker.
(9) Calculate the individual ranking function Rl.
(10) Calculate the group ranking function R.
(11) Obtain the decision.

ALGORITHM 1: Algorithm for MAGDM with the TOPSIS method.
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Take e � e2, and we have

3L
I(o)


k

r�1

Cr

D2  �
0.51492

u1
+
0.5294

u2
+
0.54045

u3
+
0.46198

u4
+
0.51965

u5
+
0.49048

u6
,

3U
I(o)


k

r�1

Cr

D2  �
0.18492

u1
+
0.1794

u2
+
0.19045

u3
+
0.09198

u4
+
0.16965

u5
+
0.15048

u6
,

3L
I(o)


k

r�1

Cr

D2(  �
0.49482

u1
+
0.5307

u2
+
0.48585

u3
+
0.59176

u4
+
0.54045

u5
+
0.52348

u6
,

3U
I(o)


k

r�1

Cr

D2(  �
0.16482

u1
+
0.1807

u2
+
0.13585

u3
+
0.22176

u4
+
0.19045

u5
+
0.18348

u6
.

(28)

Take e � e3, and we have

3L
I(o)


k

r�1

Cr

D3  �
0.49281

u1
+
0.50145

u2
+
0.4865

u3
+
0.50797

u4
+
0.4696

u5
+
0.51094

u6
,

3U
I(o)


k

r�1

Cr

D3  �
0.16281

u1
+
0.15145

u2
+
0.1365

u3
+
0.13797

u4
+
0.1196

u5
+
0.17094

u6
,

3L
I(o)


k

r�1

Cr

D3(  �
0.48075

u1
+
0.50015

u2
+
0.5125

u3
+
0.51931

u4
+
0.5008

u5
+
0.47992

u6
,

3U
I(o)


k

r�1

Cr

D3(  �
0.15085

u1
+
0.15015

u2
+
0.1625

u3
+
0.14931

u4
+
0.1508

u5
+
0.13992

u6
.

(29)

Step 6 Based on the importance of these five attributes,
we give the worst and the best decision-making
objects as follows:

W1 �
0.57988

u1
+
0.60793

u2
+
0.645915

u3
+
0.549904

u4
+
0.60114

u5
+
0.63447

u6
,

W1 �
0.631194

u1
+
0.63944

u2
+
0.58393

u3
+
0.65564

u4
+
0.58913

u5
+
0.59848

u6
,

W2 �
0.604621

u1
+
0.61383

u2
+
0.62797

u3
+
0.52247

u4
+
0.60114

u5
+
0.57115

u6
,

W2 �
0.578084

u1
+
0.615503

u2
+
0.5557

u3
+
0.68229

u4
+
0.62797

u5
+
0.61091

u6
,

W3 �
0.57539

u1
+
0.57696

u2
+
0.55659

u3
+
0.57586

u4
+
0.53304

u5
+
0.59454

u6
,

W3 �
0.55908

u1
+
0.57520

u2
+
0.58667

u3
+
0.591082

u4
+
0.57608

u5
+
0.55269

u6
.

(30)
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)us, we evaluate a closeness coefficient as follows:

R1 �
0.521185

u1
+
0.51263

u2
+
0.45625

u3
+
0.54385

u4
+
0.49495

u5
+
0.48540

u6
,

R2 �
0.48878

u1
+
0.50068

u2
+
0.46947

u3
+
0.57155

u4
+
0.51091

u5
+
0.51682

u6
,

R3 �
0.49281

u1
+
0.49924

u2
+
0.51316

u3
+
0.50652

u4
+
0.51940

u5
+
0.48176

u6
.

(31)

Step 7 Based on these results, we calculate the group
optimal index as follows. R � (0.503757/u1) +

(0.50474/u2) + (0.486027/ u3) + (0.527955/u4) +

(0.508771/u5) + (0.486722/ u6), and hence get
the ranking order as u4 ≥ u5 ≥ u2 ≥ u1 ≥ u6 ≥ u3.
From the calculations, we conclude that the 4th
system analysis engineer is the best alternative
among the others.
Furthermore, we get the solution for Case 2 by
the same analysis in Case 1. )erefore, we have
the group optimal index as follows:

R �
0.50055

u1
+
0.500528

u2
+
0.500528

u3
+
0.500636

u4

+
0.500528

u5
+
0.500539

u6
,

(32)

and hence get the ranking order as
u4 ≥ u1 ≥ u6 ≥ u2 ≥ u3 ≥ u5. )rough the previous com-
putation, we obtain the 4th system analysis engineer is
the best alternative among the others.

5.3. Comparative Analysis. )e main aim of the current
work is to present a method that increases the lower ap-
proximation and decreases the upper approximation of
Zhan’s methods in [40]. )is can be seen easily from Ex-
amples 2– 4. Moreover and by looking at Tables 23 and 24,
we can see that the ranking results of the two decision-
making models. It is obvious that the optimal selected al-
ternative is the same, although there exist some differences
in the ranking results because we choose different decision-
making methods.

An easy way to see the effectiveness of our method and
the differences between the four models (i.e., our three
proposed models and Zhan’s model) are shown in Figures 1
and 2.

Figure 1 explained the comparisons between the lower
approximations for the four models (i.e., 0-OMGITFLA, 1-
OMGITFLA, 2-OMGITFLA, and 3-OMGITFLA) for the
two cases (i.e., Case 1 (resp., Case 2) is in the left (resp., right)
figure). )is figure justifies that the 2-OMGITFLA is better
than the others.

Figure 2 clarified the differences between the upper
approximations for the four models (i.e., 0-OMGITFUA, 1-
OMGITFUA, 2-OMGITFUA, and 3-OMGITFUA) for the

Table 11: Table for C1.

Ω C11
C12

C13
C14

C15

u1 0.82 0.71 0.46 0.55 0.52
u2 0.73 0.32 0.65 0.58 0.84
u3 0.56 0.68 0.36 0.78 0.44
u4 0.53 0.48 0.74 0.65 0.91
u5 0.66 0.53 0.57 0.72 0.43
u6 0.28 0.76 0.52 0.45 0.77

Table 12: Table for C2.

Ω C21
C22

C23
C24

C25

u1 0.78 0.56 0.67 0.26 0.59
u2 0.35 0.77 0.49 0.69 0.55
u3 0.51 0.37 0.79 0.42 0.67
u4 0.85 0.68 0.57 0.75 0.48
u5 0.58 0.34 0.73 0.81 0.43
u6 0.53 0.75 0.46 0.59 0.71
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Table 13: Table for C3.

Ω C31
C32

C33
C34

C35

u1 0.56 0.75 0.39 0.67 0.48
u2 0.76 0.36 0.68 0.45 0.55
u3 0.84 0.55 0.35 0.58 0.65
u4 0.43 0.53 0.74 0.69 0.63
u5 0.59 0.71 0.65 0.48 0.55
u6 0.37 0.66 0.56 0.42 0.78

Table 17: Table for M
0.6

C1(ui)

.

u1 u2 u3 u4 u5 u6

M
0.6

C1(u1)

0.71 0.46 0.55 0.46 0.55 0.52
M

0.6

C1(u2)

0.32 0.65 0.32 0.58 0.58 0.32
M

0.6

C1(u3)

0.56 0.36 0.68 0.36 0.56 0.44
M

0.6

C1(u4)

0.48 0.53 0.48 0.65 0.53 0.48
M

0.6

C1(u5)

0.53 0.43 0.53 0.43 0.66 0.43
M

0.6

C1(u6)

0.28 0.28 0.45 0.45 0.28 0.76

Table 14: Table for N
0.6

C1(ui)

.

u1 u2 u3 u4 u5 u6

N
0.6

C1(u1)

0.71 0.32 0.56 0.48 0.53 0.28
N
0.6

C1(u2)

0.46 0.65 0.36 0.53 0.43 0.28
N
0.6

C1(u3)

0.55 0.32 0.68 0.48 0.53 0.45
N
0.6

C1(u4)

0.46 0.58 0.36 0.65 0.43 0.45
N
0.6

C1(u5)

0.55 0.58 0.56 0.53 0.66 0.28
N
0.6

C1(u6)

0.52 0.32 0.44 0.48 0.43 0.76

Table 15: Table for N
0.6

C2(ui)

.

u1 u2 u3 u4 u5 u6

N
0.6

C2(u1)

0.67 0.35 0.51 0.57 0.58 0.46
N
0.6

C2(u2)

0.26 0.69 0.37 0.68 0.34 0.59
N
0.6

C2(u3)

0.59 0.49 0.67 0.48 0.43 0.46
N
0.6

C2(u4)

0.26 0.35 0.37 0.68 0.34 0.53
N
0.6

C2(u5)

0.26 0.49 0.42 0.57 0.73 0.46
N
0.6

C2(u6)

0.56 0.55 0.37 0.48 0.34 0.71

Table 16: Table for N
0.6

C3(ui)

.

u1 u2 u3 u4 u5 u6

N
0.6

C3(u1)

0.67 0.36 0.55 0.53 0.48 0.42
N
0.6

C3(u2)

0.39 0.68 0.35 0.43 0.59 0.37
N
0.6

C3(u3)

0.48 0.55 0.65 0.43 0.55 0.37
N
0.6

C3(u4)

0.39 0.45 0.35 0.63 0.48 0.42
N
0.6

C3(u5)

0.39 0.36 0.35 0.53 0.65 0.56
N
0.6

C3(u6)

0.48 0.36 0.55 0.53 0.55 0.66

16 Complexity



Table 18: Table for M
0.6

C2(ui)

.

u1 u2 u3 u4 u5 u6

M
0.6

C2(u1)

0.67 0.26 0.59 0.26 0.26 0.56
M

0.6

C2(u2)

0.35 0.69 0.49 0.35 0.49 0.55
M

0.6

C2(u3)

0.51 0.37 0.67 0.37 0.42 0.37
M

0.6

C2(u4)

0.57 0.68 0.48 0.68 0.57 0.48
M

0.6

C2(u5)

0.58 0.34 0.43 0.34 0.73 0.34
M

0.6

C2(u6)

0.46 0.59 0.46 0.53 0.46 0.71

Table 22: Table for N
0.6

C3(ui)
∧ M

0.6

C3(ui)

.

u1 u2 u3 u4 u5 u6

N
0.6

C3(u1)
∧ M

0.6

C3(u1)

0.67 0.36 0.48 0.39 0.39 0.42
N
0.6

C3(u2)
∧ M

0.6

C3(u2)

0.36 0.68 0.35 0.43 0.36 0.36
N
0.6

C3(u3)
∧ M

0.6

C3(u3)

0.48 0.35 0.65 0.35 0.35 0.37
N
0.6

C3(u4)
∧ M

0.6

C3(u4)

0.39 0.43 0.35 0.63 0.48 0.42
N
0.6

C3(u5)
∧ M

0.6

C3(u5)

0.39 0.36 0.35 0.48 0.65 0.55
N
0.6

C3(u6)
∧ M

0.6

C3(u6)

0.42 0.36 0.37 0.42 0.55 0.66

Table 19: Table for M
0.6

C3(ui)

.

u1 u2 u3 u4 u5 u6

M
0.6

C3(u1)

0.67 0.39 0.48 0.39 0.39 0.48
M

0.6

C3(u2)

0.36 0.68 0.55 0.45 0.36 0.36
M

0.6

C3(u3)

0.55 0.35 0.65 0.35 0.35 0.55
M

0.6

C3(u4)

0.53 0.43 0.43 0.63 0.53 0.53
M

0.6

C3(u5)

0.48 0.59 0.55 0.48 0.65 0.55
M

0.6

C3(u6)

0.42 0.37 0.37 0.42 0.56 0.66

Table 20: Table for N
0.6

C1(ui)
∧ M

0.6

C1(ui)

.

u1 u2 u3 u4 u5 u6

N
0.6

C1(u1)
∧ M

0.6

C1(u1)

0.71 0.32 0.55 0.46 0.53 0.28
N
0.6

C1(u2)
∧ M

0.6

C1(u2)

0.32 0.65 0.32 0.53 0.43 0.28
N
0.6

C1(u3)
∧ M

0.6

C1(u3)

0.55 0.32 0.68 0.36 0.53 0.44
N
0.6

C1(u4)
∧ M

0.6

C1(u4)

0.46 0.53 0.36 0.65 0.43 0.45
N
0.6

C1(u5)
∧ M

0.6

C1(u5)

0.53 0.43 0.53 0.43 0.66 0.28
N
0.6

C1(u6)
∧ M

0.6

C1(u6)

0.28 0.28 0.44 0.45 0.28 0.76

Table 21: Table for N
0.6

C2(ui)
∧ M

0.6

C2(ui)

u1 u2 u3 u4 u5 u6

N
0.6

C2(u1)
∧ M

0.6

C2(u1)

0.67 0.26 0.51 0.26 0.26 0.46
N
0.6

C2(u2)
∧ M

0.6

C2(u2)

0.26 0.69 0.37 0.35 0.34 0.55
N
0.6

C2(u3)
∧ M

0.6

C2(u3)

0.51 0.37 0.67 0.37 0.42 0.37
N
0.6

C2(u4)
∧ M

0.6

C2(u4)

0.26 0.35 0.37 0.68 0.34 0.48
N
0.6

C2(u5)
∧ M

0.6

C2(u5)

0.26 0.34 0.42 0.34 0.73 0.34
N
0.6

C2(u6)
∧ M

0.6

C2(u6)

0.46 0.55 0.37 0.48 0.34 0.71
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two cases (i.e., Case 1 (resp., Case 2) is in the left (resp., right)
figure). )is figure illustrates that the 2-OMGITFUA is
lower than the others.

6. Conclusion and Future Work

)e main aim of the present work is to increase the effec-
tiveness of Zhan’s method by increasing the lower

approximation and decreasing the upper approximation. So,
based on the concepts of a family of fuzzy β-neighborhood
(and a family of fuzzy complementaryI,T-neighborhood),
we introduced new three types of covering-based multi-
granulation (I,T)-fuzzy rough sets models and their
properties. Furthermore, we give six kinds of covering-based
variable precision multigranulation ([[1008]])-fuzzy rough
sets. )e relationships among these models are investigated.

x1 x2 x3 x4 x5 x6
0.5

0.6

0.7

0.8

0-OMGIT...
1-OMGIT...

2-OMGIT...
3-OMGIT...

(a)

x1 x2 x3 x4 x5 x6
0.2

0.4

0.6

0.8

0-OMGIT...
1-OMGIT...

2-OMGIT...
3-OMGIT...

(b)

Figure 1: )e representations of the lower approximations by using our model and Zhan model in two cases.

x1 x2 x3 x4 x5 x6
0.0

0.1

0.2

0.3

0.4

0.5

0-OMGIT...
1-OMGIT...

2-OMGIT...
3-OMGIT...

(a)

x1 x2 x3 x4 x5 x6
0.0

0.2

0.4

0.6

0.8

0-OMGIT...
1-OMGIT...

2-OMGIT...
3-OMGIT...

(b)

Figure 2: )e representations of the upper approximations by using our model and Zhan model in two cases.

Table 24: Table for the ranking results for Case 2.

Two models Obtain a decision
Zhan model x4 ≥ x1 ≥x5 ≥ x2 ≥x3 ≥x6
Our model x4 ≥ x5 ≥x2 ≥ x1 ≥x6 ≥x3

Table 23: Table for the ranking results for Case 1.

Two models Obtain a decision
Zhan model x4 ≥ x1 ≥x6 ≥x2 � x3 � x5
Our model x4 ≥ x1 ≥x6 ≥x2 � x3 � x5
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Also, an illustrative example with algorithm is given.
)erefore, it is clear to see that 2-COMGITFRS is better than
the other models (i.e., 0-COMGITFRS, 1-COMGITFRS, and
3-COMGITFRS).

In future research, we plan to further investigate along
with the following: (1) topological properties of the pre-
sented methods [44, 45], (2) combination with the soft set
and the proposed methods [46, 47], and (3) combination
with the neutrosophic set and the current methods [48].
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