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As a generalization of Zhan’s method (i.e., to increase the lower approximation and decrease the upper approximation), the
present paper aims to define the family of complementary fuzzy f-neighborhoods and thus three kinds of covering-based
multigranulation (%, 7)-fuzzy rough sets models are established. Their axiomatic properties are investigated. Also, six kinds of
covering-based variable precision multigranulation (.7, 7)-fuzzy rough sets are defined and some of their properties are studied.
Furthermore, the relationships among our given types are discussed. Finally, a decision-making algorithm is presented based on

the proposed operations and illustrates with a numerical example to describe its performance.

1. Introduction

Group decision-making aims at aggregating individual
judgments to construct a composite group decision, which
must be a true representative of individual preferences. The
MAGDM methods choose among a discrete set of alter-
natives evaluated on multiple attributes and overall utility of
the decision makers. MAGDM have some of the popular
methods such as the weighted sum and the weighted product
method (see, e.g., [1-7]). The theory of rough set was
founded by Pawlak [8, 9] for dealing with the vagueness and
granularity in information systems and data analysis. This
theory has been applied to many different fields (see, e.g.,
[10-20]). Furthermore, we have noticed a wide range of
generalized rough set models (see, e.g., [21-23]). Covering-
based rough sets (CRSs) are considered to be one of the most
studied generalized models. Pomykala [24, 25] obtained two
pairs of dual approximation operators. Yao [26] studied
these approximation operators by the concepts of neigh-
borhood and granularity. Couso and Dubois [27] examined
the two pairs within the context of incomplete information.
Bonikowski et al. [28] established a CRS model based on the
notion of minimal description. Zhu and Wang [29-32]
presented several CRS models and discussed their

relationships. Tsang et al. [33] and Xu and Zhang [34]
proposed additional CRS models. Liu and Sai [35] compared
Zhu's CRS models and Xu and Zhang/s CRS models. Ma
[36] constructed some types of neighborhood-related cov-
ering rough sets by using the definitions of the neighbor-
hood and complementary neighborhood. In 2016, Ma [37]
introduced the definition of fuzzy S-neighborhood. In 2017,
Yang and Hu [38] constructed the definition of the fuzzy
B-complementary neighborhood to establish some types of
fuzzy covering-based rough sets. Zhang et al. [39], in 2019,
established the fuzzy covering-based (.7, J)-fuzzy rough set
models and applications to multiattribute decision-making.
Also, in 2019, Zhan et al. [40] proposed covering-based
multigranulation (.7, 7)-fuzzy rough set models and ap-
plications in multiattribute group decision-making.

The concept of a family fuzzy f-neighborhoods was
defined and their properties were studied by Zhan et al. [40].
Hence, to increase the lower approximation and decrease the
upper approximation of Zhan’s model, this article’s con-
tribution is to introduce three kinds of covering-based
multigranulation (%, )-fuzzy rough sets models and ex-
plore the properties of these models with their relationships.
Also, six kinds of covering-based variable precision multi-
granulation (7,9 )-fuzzy rough sets are demonstrated. An
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application to a practical problem illustrates their ability to
help practitioners to make decisions. The outline of this
paper is as follows. Section 2 gives technical preliminaries.
Section 3 describes our three new types of covering-based
multigranulation (%, J)-fuzzy rough sets and also we in-
troduce variable precision in order to produce the six types
of covering-based variable precision multigranulation
(F, T)-fuzzy rough sets. Section 4 establishes relationships
among our models. Section 5 puts forward a decision-
making procedure that takes advantage of our theoretical
framework. The conclusion is written in Section 6.

2. Preliminaries

In this section, we provide a brief survey of some notions
used throughout the paper.

Definition 1 (see [1]). Suppose that the mapping 7: [0, 1] x
[0,1] — [0, 1] is commutative, associative, and satisfies the
increasing laws plus the boundary condition 7 (1, x) = x for
each x € [0,1]. We say that such a I is a t-norm (for tri-
angular norm) of [0, 1].

Among the most important continuous t-norms, we can
cite

(1) The minimum operator J , (x,y) =xAy
(2) The algebraic product 7 5 (x, y) =x * y
(3) The Lukasiewicz t-norm 7 o (x,y) =0V (x+ y - 1)

Definition 2 (see [1]). Suppose that the mapping §: [0, 1] x
[0,1] — [0, 1] is commutative, associative, and satisfies the
increasing laws plus the boundary condition § (0, x) = x for
each x € [0, 1]. We say that such an & is an s-norm or a ¢-
conorm of [0, 1].

Continuous s-norms are

(1) The maximum operator & , (x,y) = xVy

(2) The algebraic summation &' (x, y) = x+ y

(3) The bounded summation & (x, y) = 1A (x + y)

(4) The probabilistic
yoxxy

summation 931, (%, ) = x+

Definition 3 (see [1]). A negator operator is
W [0,1] — [0, 1], an order-reversing mapping with the
properties 4 (0) =1 and A (1) = 0.

We say that /" is involutive when A4 (A (x)) = x for
every x € [0,1].

The standard negator operator is
N (x) =1-x, for any x € [0, 1].

Involutive negators are continuous.

Negators produce fuzzy complements. Involutive ne-
gators assure that when X € #(Q) and x € Q, we always
obtain W (J (X (x))) = X (x).

We say that 7, a t-norm, and &, a t-conorm, are dual
with respect to negator ./, when for each x, y € [0,1], it
must be the case that & (/N (x), # (y)) = /(T (x, y)) and
T (N (x), V() = H (S (x, 7).

defined as

Complexity

Definition 4 (see [1]). A fuzzy implicator operator is
J: (0,11 x [0,1] — [0,1], and a mapping with the
properties J(0,00=7(0,1)=7(1,1)=1 and
F(1,0) = 0.

If, in addition, .# is such that x < y=.7 (x,2) > 7 (y, 2),
respectively, y<z=J5(x,y)<(x,z), for every
x, ¥,z € [0,1], then ¥ is left monotonic decreasing, re-
spectively, increasing.

We say that .# is hybrid monotonic when it is both left
and right monotonic.

An implicator .# is a border implicator when .# (1, x) =
x for each x € [0,1].

Next, we recall three relevant classes of implicator op-
erators [1].

Definition 5

(1) The &-implicator defined by & and /¥ is given: for
each x,y € [0,1], F5(x,y) = S (N (x), )

(2) The #-implicator defined by a continuous t-norm I
is given: for each x,y € [0,1], F45(x,y) =V{u e
[0,1]: 7 (x,u) < y}

(3)If § and & are dual with respect to ./, the
Q% -implicator defined from 7, &, and /' is given:
for all x,y € [0,1], Fpo(u,v) = S(N (1), T (u,v))
Well-known &-implicators are

(1) Fo(x,y) =1AN(1-x+y), according to &4 and
N

(2) 9o (x,¥) = (1 —x)Vy, according to § ,, and N ¢

(3) Fp(x,¥)=1-x+x* y,according to & ,, and N ¢

Definition 6 (see [42, 43]). Let Q be an arbitrary universal
set, and & (Q) be the fuzzy power set of Q. We call

[={C,C,....C,}, with C;e F(Q)(i=12,...,m), a

fuzzy covering of Q, if (Ujﬁléi) (x) =1 for each x € Q.
As a generalization of fuzzy covering, Ma [37] defined a

fuzzy p-covering by replacing 1 with a parameter

B(0<B<1), that is, we call T={C,,C,,...,C,}, with
C~i e F(Q)(i=1,2,...,m), a fuzzy B-covering of Q, if
(u ;ﬁléi) (x) = B for each x € Q. Moreover, (, T) is called a
fuzzy p-covering approximation space (briefly, FSCAS).

Definition 7 (see [37]). Let (L, ) be a FBCAS with T =
{CI,CZ, e ,Cm} for some S € (0, 1]. Then, for each x € Q,
define the fuzzy B-neighborhood of x as follows:

NE = [T, eT: G2 p). (1)

Definition 8 (see [38]). Let (Q,T) be a FBCAS for some
B € (0,1]. Then, for each x, y € Q, define the fuzzy com-
plementary f3-neighborhood of x as follows:

ME () = Nb (). 2)
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Definition 9. (see [39]). Let (Q T) be a FBCAS for some
B e (0, 1]. For each x € Qand X € J' (Q), define the fuzzy
set C (X) (resp C (X), C (X), C (X), C (X) C (X),
C (X ), and C (X)) wh1ch is called the first type fuzzy lower
approx1mat1on (resp., the first type of the fuzzy upper ap-
proximation, the second type of the fuzzy lower approxi-
mation, the second type of the fuzzy upper approximation,
the third type of the fuzzy lower approximation, the third
type of the fuzzy upper approximation, the fourth type of the
fuzzy lower approximation, and the fourth type of the fuzzy
upper approximation), briefly, 1-FCITFLA (resp., 1-FCIT-
FUA, 2-FCITFLA, 2-FCITFUA, 3-FCITFLA, 3-FCITFUA,
4-FCITFLA, and 4-FCITFUA), where

C;(X)(x)= A JFIF\lE(y)t,an(y)],

yeQ L
Cl DW= v T[N tnXa)] (vxeo),
X = A JP]\A/lZi(y)t,an(y)],

yeQ L
E R = v T M EnZa)]| (vxeq)
G R = A T[NLIAMG (b, ()],
6;(2)<x)=ygnc"wﬂ<y>mnM ahs, ()] (vxeq),

C 0@ = A T[NEGIvMig (b, ()],

CL 06 = v, T[N pmMlg(hs, ()] (vx € )

(3)

,(X), C5(X), C, (X))#C] (X) (resp.,
)), then X is called the first type of a

oL _(X)(x) =V, A J{ NE
yeQ Ci(x)

Z[:lci

J (o)

o Zzlx(X)(X)_A lyQ { NE
oLy i=1"C7 P (X)(x) = AT 1/E\J{

AP _(X)(x)=V, VT
yeQ

0
E Ci
i=1

If &7 (X) (resp., Z7P_(X)#,%” X

0 Z,lcz( ) (resp, Z,lcx( ) Z,lcx( )
(resp., 0%‘/ ) (X)) then X is called a covering-based
optimistic multigranulation (7, I)-tuzzy rough set (resp., a
covering-based pessimistic multigranulation (.7, 9)-fuzzy

rough set), briefly, 0-COMGITERS (resp., 0-CPMGITFRS).

fuzzy B-covering-based (.7, J)-fuzzy rough set (resp., the
second type of a fuzzy 3-covering-based (.7, 9)-fuzzy rough
set, the third type of a fuzzy f3-covering-based (%, 7)-fuzzy
rough set, and the fourth type of a fuzzy f3-covering-based
(F,T)-fuzzy rough set), briefly, 1-FCITFRS (resp., 2-
FCITFRS, 3-FCITEFRS, and 4-FCITERS).

Zhan et al. [40] defined the covering-based multi-
granulation (7,7 )-fuzzy rough set models (briefly,
CMGITERSs). So, in the following, some basic notions
related to CMGITFRSs are given.

Suppose that T = {CI, C,,. ,C:n} be m fuzzy f-cov-
erings of Q for some f € (0,1], where C; = ‘{6:1»6:‘2»~~»

CT,:}, foralli = 1,2,...,n. Then, for each x € Q, define the
family of fuzzy f-neighborhoods as follows:

N‘i( ={€,;eCixeBj=1,...,m} (4)
C;(x)

i

Definition 10 (see [40]). Let (Q,T) be an FBCAS and T =
{CI,CZ,...,CM} be m fuzzy B-coverings of Q for some
B e (0,1],whereCi = {C;,C;,,Ai} foralli=1,2,.

n. For each X € F(Q), the set 5?% o) (X) (resp "

2T ~(X), and %7 P_ (X)) is called the
211 i z:l i z'l i

optimistic multigranulation (%, J)-fuzzy rough lower ap-
proximation (resp., the optimistic multigranulation
(F, T )-fuzzy rough upper approximation, the pessimistic
multigranulation (.7, 7)-fuzzy rough lower approximation,
and the pessimistic multigranulation (%, J)-fuzzy rough
upper approximation), briefly, 0-OMGITFRLA (resp., 0-
OMGITFRUA, 0-PMGITFRLA, and 0-PMGITFRUA),
where

~(X), 2L

(y),X(y)},

O

()’) X(y)} (Vx € ),
(5)
(y),f((y)},

~ﬂ -~
2 , Q).
{Nci(x)(y) X(y)} (Vx € Q)

Definition 11 (see [40]). Let (Q,T) be an FBCAS and T =
{C:,’C;,...,CN,[} be n fuzzy B-coverings of Q for some
B e (0,1], {[Ci,Cos. .., Cyp by for all =
1,2,...,n. For any X € #(Q) and a variable precision
parameter y € [0,1]. Then, the set Ig‘yiwl (X) (resp.,

i=1 i

where C, =



197 "L (%), 127 "L (X), and 177 "L (X)) is called the
first x:type of the variable precisi(;n multigranulation
(F, T)-fuzzy lower approximation (resp., the first type of
the variable precision multigranulation (%, 9)-fuzzy upper
approximation, the second type of the variable precision

oy

I%JZ‘XPL (X)(x) = <

i=1 !

20 (X) (x) = AL

Zi:lc'

w7 P (X)(x) =

~ (1= ) 1 Y
Zi:l << y>>17 ,.(x) g ’ > <X(y)<1

it 127 (R) (resp., 1ZT"PL (X)) "L (X)
C =1 i i=1 i

(resp., 1% rbp (X)), then X is called a covering-based

i=1 i

I-variable precision multigranulation (.7, J)-fuzzy rough
set (resp., a covering-based II-variable precision multi-
granulation (JF,T)-tuzzy  rough  set),  briefly,
I-VPMGITEFRS (resp., II-VPMGITFRS); otherwise, it is
I-variable precision multigranulation fuzzy definable (resp.,
II-variable precision multigranulation fuzzy definable).

3. Three Types of Covering-Based
Multigranulation (¥, 7 )-Fuzzy Rough Sets

Here, three new kinds of covering-based multigranulation
(7, T)-tuzzy rough sets models (briefly, CMGITFRS) are
introduced. Also, some of their properties are investigated.

Assume that T = {C,,C,, ...,
of Q for some f € (0, 1], where C~i

6,;} be m fuzzy -coverings

= {6:,6;,,6;}, for

all i =1,2,...,n. Then, for each x € Q, define the family of
fuzzy f-neighborhoods as follows:
v N
M=~ (y)=N-= (x). 7
C;(x) Y Ci(y) ( )

Example 1. Let (Q,T) be a FBCAS and T = {a, tC,} be 2
fuzzy B-coverings of Q, where Q = {xl,xz,x3,x4, X5, X6}
B=06, and C, = {C,;,Cp,,...,Cpy} and C, ={C;,,C,,,
.,C,5} as in Tables 1 and 2.
Then, we introduce the family of a fuzzy B-neighborhood
and fuzzy complementary -neighborhood for T = {C b tC}
as follows in Tables 3-6.

A o N

< ( c(x)(y)’y)>/\<A
NE ,1— ) \ T

<X(y)>17 ( C”(X)(y) ! > (3}0' <l-y

<X(y)<y < C(")(y)’y)>/\<A

X(y)>y

X(y)>y
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multigranulation (%, 9 )-fuzzy lower approximation, and
the second type of the variable precision multigranulation
(F, T )-tuzzy upper approximation), briefly, I-VPMGIT-
FLA (resp., I-VPMGITFUA, II-VPMGITFLA, and II-
VPMGITFUA), where

- (}’),X(,’V)>>>> (Vx>)/ € Q),
C;(x)
<NC,-(x) (y),X(y))>>, (Vx, y € Q),

V
)
A J(Ng()(y)f((y)»), (Vx, y € Q),

9(Nﬁ~ (y),i((y)>>>, (Vx, y € Q).
v Ci(®)

3.1. Three Types of the Optimistic Multigranulation
(F, T )-Fuzzy Rough Sets. In the following, three kinds of
COMGITEFRS models are given and some of their properties
are presented.

(6)

Definition 12. Let (Q,T) be a FBCAS and T = {FCT’ Cy..os
6:1} be n fuzzy -coverings of Q) for some 3 € (0, 1], for each

X € Z(Q). Then, the first type of the optimistic multi-
granulation (%, 9)- fuzzy lower approximation (briefly, 1-

OMGITFLA) 13‘] ~(X) and the first type of the opti-

!l‘

mistic multigranulation (%, 9)-fuzzy upper approximation

(briefly, 1-OMGITFUA) 1%;&”)6 (X) are, respectively, de-
i=1 i

...,ﬁ —~
yeﬂf{Ma(x>(y),X(y)},
(y),f((y)]», (Vx € Q).

(8)
- (X), then X is called a cov-

fined as follows:
13§f> : () (x) =

%J (o)

1
Zx 1C'

_(X)(x) = A", vV y{M‘i
yeQ Ci(x)

7 (0) va
If 321 1 ’(X)¢ %Zx ICX

ering-based optimistic multigranulation (%, J)-fuzzy
rough set (briefly, 1-COMGITEFRS); otherwise, it is opti-
mistic multigranulation fuzzy definable.

Example 2. Let us consider Example 1. If X = (0.6/x,) +
(0.1/x,) + (0.7/x3) + (0.2/x4)+ (0.5/x5) + (0.4/x,), then we
have the following.

Case 1 Let us fix F = .7, based on &4 and Ay, and
eo/w:gg):
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TasLE 1: Table for C,. TaBLE 6: Table for 1\715 of C,.
(o o Cis Cu X1 X2 X3 X4 X5 X6
X 0.7 0.8 0.3 04 A1)’ 0.5 0.3 0.3 0.4 0.4 0.4
Xy 0.3 0.6 0.5 0.2 — 0.5
X 0.4 01 0.9 0.7 ]_\iIgZS 0.1 0.7 0.3 0.1 0.3 0.3
Xy 0.8 0.4 0.6 0.3 Mx; 0.3 0.3 0.6 0.3 0.3 0.3
Xs 0.2 0.7 0.4 0.8 % 0.4 0.2 0.2 0.6 0.2 0.4
xg 0.5 0.9 0.6 0.1 o
M, 0.2 0.2 0.2 0.4 0.5 0.2
_ M 0.2 0.4 0.4 0.2 0.2 0.7
TaBLE 2: Table for C,. ¢
C C C C C
2 2 23 24 2 F0) oy 072 055 073 052 0.68 0.58
x, 0.6 0.3 0.5 0.4 0.7 1z, ~(X)=x—+x—+x—+x—+ ot
X 0.9 0.7 0.1 0.3 0.4 2 G ! 2 3 4 5 6
X3 0.3 0.6 0.4 0.8 0.3 T0) ,oy 03 018 042 024 025 0.28
X4 0.4 0.2 0.9 0.7 0.6 % ,,0C~ (X) = x_+x—+x_+x—+x_+x—'
X5 0.2 0.8 0.4 0.6 0.5 2 ! 2 3 4 5 6
Xq 0.7 0.4 0.3 0.9 0.2 (9)
P Case 2 Let us fix ¥ = f o based on & 4, and /¢, and
Tasre 3: Table for N, of C;. I =3 . Then, we have the following results:
x x x x x X - 06 05 07 04 05 04
— ! 2 3 4 > u FTO (R = e e e
Ny 0.7 0.3 0.1 0.4 0.2 0.5 2t Ci Xy Xy Xz Xy X5 Xg (10)
~0.5
7 - 05 03 06 04 05 04
N, 0.3 0.5 0.1 0.4 0.4 0.6 wTO_(x)=22,03, 06 04 05 04
Ny 0.3 0.2 0.7 0.3 0.4 01 2 G X1 Xy X3 Xy X5 Xg
Ny 0.3 0.3 0.4 0.6 0.2 0.5
~0.5
N 0.4 0.2 0.1 0.3 0.7 0.1 = = -~ = —~
Theorem 1. Let (Q,T) bea FBCASandT = {C,,C,,...,C,}
Ng: 0.3 0.3 0.1 0.4 0.2 0.5 be n fuzzy B-coverings of Q for some € (0,1], for each
X € F(Q). Then, we have the following properties:
s (1) If F is an S-implicator based on §, a continuous
TaBLE 4: Table for N', of C,. t-conorm, and W, an involutive negator,
X X, X5 Xy X5 Xg (i) 1$§i0)~ (X) = (1%;5‘0)~ (X ))er
— . Ci i Gi
Ny 0.5 0.1 0.3 0.4 0.2 0.2 = ; ~ e 1) .
05 (ii) \ %7~ (X) = (L7~ (X" )™
N, 0.3 0.7 0.3 0.2 0.2 0.4 Y G Y G
~0.5
Ny, 0.3 0.3 0.6 0.2 0.2 0.4 (2) If either J is an R-implicator based on T, a con-
N?{S 0.4 01 0.3 0.6 0.4 0.2 tinuous t-norm, and /', a negator induced by .7, or I
~05 is a Q< -implicator based on T, a continuous t-norm,
N 0.4 0.3 0.3 0.2 0.5 0.2 . .
- and W, an involutive negator,
~0.5
N 0.4 0.3 0.3 0.4 0.2 0.7 . S T S ;
X (i) 1$JE,0)“(X)Q(1%J 50)~(XCA ))cﬂ,
Zi:l G Zi:l G
TaBLE 5: Table for ]\N/Ifc of C,. (ii) 1%g£0)~ (X)c (1$JE‘O)~ (X))
Zi:l G Zi:l Gi
X X, X3 Xy X5 X ) o
Yy (3) If .7 satisfies left monotonicity, then
M, 0.7 0.3 0.3 0.3 0.4 0.3 . 7(0)
~015 (i), & N -(Q)=0Q
M, 0.3 0.5 0.2 0.3 0.2 0.3 " C
1\712‘35 0.1 0.1 0.7 0.4 0.1 0.1 (ii) %7 - (2) = @
My 0.4 0.4 0.3 0.6 0.3 0.4 =
i 0 04 04 0.2 07 02 (4) If .7 satisfies right monotonicity and XCY, then
. . } . . . :
_ : F0©) (% F(0) (7
MY 0.5 0.6 0.1 0.5 0.1 0.5 ), 2,7~ (X627~ ()

i=1 1 =1 i



i) %70 (X)c, u” (Y
(ii) ZLCx( )<, ZLCI( )

(5) If F satisfies right monotonicity, then lgji°)~
C.
o - - - e
(Xnt?) =, 279 (X)n, 27 (Y).  Further-

izt Ci C

more, if & and T satisfyf(u,?/'i:(lv,‘w))zg(.f(u,v),
I (u,w)), for allu,v,we [0,1], then 3](0) (XnY)2

yg(o) (X)n, gﬂw (Y). Also, if (7, O"“)satzsﬁes
1Cx C

T (u,T* (v, w))<57* (J (u,v), T (u,w)) for all u,v,

wel0,1], then %79~ (XntY)c, %7 (X)n

%9(0)~ }7 . i=1 i i=1 i
! Z?:lci( )
(6) If 7 and § satisfy F (u, S (v,w)) = S (F (u,v), J (u,

w)) for every u,v,we [0,1], then 13”7(“0)~
iz1 Ci

(XutV)2, 27 (X)u, L7 (V). Also, if T
1 Gi i=1

and & satisfy the weakened distributivity laws, then

U7 (Xut?)gl%gff’)g (X)u 1%9ff>~ (7).

Specially, \ %7~ (Xut¥)=, %7 <°>~ (R0, %7

Zx G Z, 1 zi:l i

(7).

Proof. We only need to prove (1)-(4) (i), (5), and (6), since
the other proofs are similar:

1 G %J ©_ (Au N =N (A 1”Vyeﬂg{Mg( ) e

(X(IN=H (AL Vyeq ¥ (J{Mg(x)(y)j((y)}))

i

N (F Ve T F= P DX DNV,

Amf{ﬂg(x) <y>,>‘<<y>}=1zfi‘”~ (X).

i=1 1

(2) (1%57,(10)" (XCJV))C‘/VZ./V (A?zlvyeﬂg{Mé(x) (y),./V

i=1 1

(X()H=H (AL, yeQ'/V(j{Mf:( (y),)?(y)}))=
W I Ve u{M‘g( )<y>5<<y>}>>>zv?_mym

J{Mﬁg )(y)ﬁ(y)}:lz"’i“l (X).
(3) Since .7 is left monotonic, we have 13Ji°)~ Q)=

<y>,o} - v:‘_lAyle{M‘i

VLN jeq T M
i=17"yeQ { C.(x)

C (x)

(y),l}:I:Q. Also, we have 1%‘0750)~(®)=/\?:1

=11

Complexity

=B B
Viyeq T { M~ DB =NV eq T { M~ ,0
a7 W ol T R 0ol
=0=9.
(4) Since .# is right monotonic, we have lgjiot (X)=

i=1"i

\%a lAyEQJ{M‘i( (y)X]»CVl 1/\yEQJ{Mi( ) (),

1

V=, 27 (¥). Thus, ,. 27 - (X)c 27 - (V)
5. .6 5.

holds.

(5) Since .7 is right monotonic, we have lgji”L (Xnt
=171
?):v?_l/\yeﬂf{fw’i (y),)?/\?}v;?_l/\ymj{ﬁ/[~
C

i (x i

B (y), XNV A T | B Yi= 2l
(x) ()/) } i=1" yeQ Ci(x)(y) 1 Z,n:lci

(}A()nlg‘y?L satisfy & (u,T

i=1 "1

(Y). Since .# and T

(v,w))=2T (S (u,v), S (u,w)), for all u,v,we|0,1].

Then, we have Zj(“) (XNtY)=V2 A yeol

i=1 i

M= JXAY - >V A S M~ X EA
{ cwo } =1 { oo }
n =B 2 J0) (% 7 (0)
VLA oI 1 M~ Y= L7 _(X)n, L7
e { Gi )(y) } ' ZLQ( 4 YiCi

Z7O_(XntY)2, 279 (X)n

i=1 i i=1 i

i (X

(). Thus,

12]i°>~ (Y). Also, since XnY<X and XnY<Y, from

i=1 71

(3) above, we have 1%9i")~ ()A(ﬁti?)nglgio)~ (X)

i=1 i i=1 i

and l%yiOL (}A(ﬂt?)gl?lgioL (Y). Therefore,

i=1 "1 i=1 1

%JZ ©_(Xnt Y)g, ozﬂz ©_(X)n, %JZ ~ (V).
1Cx i:lC’ i= 1Cx

(6) Since ¥ and & satisty S (u, T (v,w)) =T (J (u,
v), F (u, w)), for all u, v, w € [0, 1]. We conclude that

lgfiwi()?ut?): v?_l/\yeQJ{Mg(x (y),f(vf’}z

Vz lAyeﬂj{Mli( (J’) X}sz lAyer{M/é( )
V=, 27O (Xu, L7 F

(y), Y=, Z,lcz( ) Z,IQ( ).



Complexity
Hence, 132_: 1"C; © (Xu 1,‘17)21$j(ﬂ0)~ (X)u
i=1 i
13]i0)~ (Y). Also, Vx € Q, we have 1%9i0)~
i=1 i i=1 i

D@ = ALYy (M= (0 ()8 (RUED) ()

(XUt

IN

o

_ I (o) 5% T (o) s _
= S(ﬂlz?la (X) (x), I%ZL& (Y)(x)> =

o

an:l G

In particular, if x € Q, we have

U7 O_(XUET) (x) = AL,V v{ME (), (Xut?)(y)} =

ye Ci(x)

i=1 i

= %7 (X) (v, %7 (V) (x) = (1

i=1 i

Definition (Q,T) be a FBCAS and
T= {6: tCon,q. ..h,g} be n fuzzy B-coverings of Q for

13. Let

some f3 € (0,1]. Then, for each X € F(Q), the second type
of the optimistic multigranulation (%, 9)-fuzzy lower ap-
proximation (briefly, 2-OMGITFLA) 23J50)~ (X) and the
second type of the optimistic r;llultigranulation
(F,T)-fuzzy upper approximation (briefly, 2-OMGIT-
FUA) ,%7

i=1 i

(X) are, respectively, defined as follows:

7O_(X)(x) = V! B — B -
Zgz;a(x)(vx)_ i1 Q\QJ{MC (x)(y)ANa(x)(y),X(y)},
%" P ~p -
LR = ALY, {Ma(x)(y)/\Na()(y),X(y)},
(Vx € Q).
(13)

If , 279 (X)#,%7 -

i=1 G i=1 i

ering-based optimistic multigranulation (.7, 9)-fuzzy

rough set (briefly, 2-COMGITERS); otherwise, it is opti-
mistic multigranulation fuzzy definable.

(X), then X is called a cov-

Example 3. (continued from Example 2). We compute

(Nﬁ /\Mﬁ) for all x; € Q, where i =1,2,.

B = 0.5, as shown in Tables 7 and 8 as follows
Now, we calculate the 2-OMGITFLA and 2-OMGIT-

FUA as explored in the following two cases.

,6 for some

< ALV ymé’{,/ (Mﬁ( "), X )T (Mi‘(x)

. Y )}

Since the weakened distributivity laws are satisfied,

S{A?Iy\e/(zg(]\?[i( (»), X(y)) N yé/ﬂ&”(Mg(x)(y),?(y))}

27O _(R) (o, 27 - () () = (l%”"” - (XU, %Y - (X)> ().

Z:’:l G Z:l:l G

i=1 i

(11)

n o ~,B~ = o ~5~ ~
Ny V J{MCI(X)(y),X(y)}V A ,/{MC,(x)(y),Y(y)}

yeQ

?ﬂ,ﬁ")g (X)u,u7 - (?)) (x).

i=1 1 i=1 1

(12)
O
Case 1 Let us fix . = .7, based on &5 and /¢ and
9 7@ SO,
27O (%)= 072 055 076 052 073 0.68
hyNe! X x2 x3 x4 x5 x6
g = 0.3 0.18 0.42 0.21 025 02
LUTO (X)) = S e e Ty
i Ci Xy X X3 Xy X xs
(14)

Case 2 Let us fix J = F 4, based on & ,, and A ¢ and

I =9 ,. Thus,
- 0 6 0 5 0 7 0 4 0 5 0 5
ng(o) (X) =
1Ci X1 x2 x3 x4 x5 x6 (15)
P ~ 05 03 06 04 05 04
UTO ()=
hye X, Xy X3 X4 X5 Xg

Remark 1. Definition 13 satisfies Theorem 1.

Definition 14. Let (Q,T) be a FBCAS and T = {a, Cy...s
C,,} be n fuzzy B-coverings of Q) for some 8 € (0, 1]. For each
X € F(Q), the third type of the optimistic multigranulation
(F, T)-tuzzy lower approximation (briefly, 3-OMGITFLA)
gj (0)
3l

Zi:l G
granulation (%, 9 )-fuzzy upper approximation (briefly, 3-
OMGITFUA) 3%J () _ (X) are, respectively, defined as

i=1 i

(X) and the third type of the optimistic multi-

follows:



TaBLE 7: Table for N?C;s /\]\7[?('15 of C,.

x, X, X5 X4 X5 X

NP AM, 07 03 01 03 02 03
NPAM; 03 05 01 03 02 03
Ny B, 01 0.1 07 03 01 0.1
NJPAM 03 03 03 06 02 04
NP AM 02 02 01 02 07 01
Nx; /\1\71,;6 0.3 0.3 0.1 0.4 0.1 0.5

TasLE 8: Table for N?("S /\1\7[2"5 of C,.

X X, X3 X4 X5 X

NYPAM, 05 01 03 04 02 02
NPAM 01 07 03 01 02 03
NPAM; 03 03 06 02 02 03
NPAM 04 01 02 06 02 02
Ny AM, 02 02 02 02 05 02
Nx'ﬁ /\Mx'& 0.2 0.3 0.3 0.2 0.2 0.7

i) X)) = yEQJ{Mfé( SOVRE ), X(y)}
JZ() (X)) = AL, yggf/‘{Mg_ W OVNE 01X y)},
(Vx € Q).

(16)

If 327 (X)#,%47 0~
-1 Ci i=1 i
ering-based optimistic multigranulation (.7, 9)-fuzzy
rough set (briefly, 3-COMGITEFRS); otherwise, it is opti-
mistic multigranulation fuzzy definable.

(X), then X is called a cov-

Z, G

1%7ip) X)) (x)=V - gﬁg{Mg(x)(y),f((y)}, (Vx € Q).

i=1"1

Model 2:

Z, G

AT P (X)) =V, v T
yeQ

i=1 i

TP (X)(x) = AL /e\ 7

F7P_(X)(x) = A" LA J{Mﬁ

{M‘i (»)ARE
C;(x) Ci(

Complexity

Example 4 (continued from Example 2). We compute
(Nﬁ VM ) for all x; € Q, where i=1,2,...,6 for some
B = 0.5, as shown in Tables 9 and 10.

The following two cases calculate the 3-OMGITFLA and
3-OMGITFUA, respectively.

Case 1 Let us fix . = .7, based on &4 and /¢ and

I =T 4. So,

-, 068 0.64 0.73 0.52 0.68 0.58
LD (R = T
Zi:ICI X1 X2 X3 Xy X5 Xg
T - 03 021 042 024 025 028
UL (R =S o T
= Ci X1 X2 X3 Xy X5 Xg
(17)

Case 2 Let us fix 5 = 4, based on &, and /i and

I =9 4. Thus,
gjn~(X) 0.6 04+06+04 0.5 04’
ZH, Xy Xy X3 Xy X5 Xg
(18)
. W70 _ (%) = 0.5 % %+04 0.5 04.
Zi:lcl Xp Xy X3 Xy X5 Xg

Remark 2. Definition 14 satisfies Theorem 1.

3.2. Three Types of the Pessimistic Multigranulation
(F, T)-Fuzzy Rough Sets. In the following, we introduce
three kinds of CPMGITFRS models and study some of their
properties.

Let (Q,T) be a FBCAS and T = {6;,6;,,6;} be n
fuzzy f-coverings of Q for some f € (0,1]. For each
X € F(Q). We have three models of the pessimistic multi-
granulation (7,9 )-fuzzy lower approximation (briefly, 1-
PMGITFLA, 2-PMGITFLA, and 3-PMGITFLA) and three
model of the pessimistic multigranulation (.7, J)-fuzzy
upper approximation (briefly, 1-PMGITFUA, 2-PMGITFUA,
and 3-PMGITFUA) are, respectively, defined as follows.

Model 1:

{Mﬂ - )(y),X(y)},
’ (19)

N
AN=
(») .

i

)(y),i((y)},
(20)
)(y>,5<(y)}, (Vx € Q).

i



Complexity 9
TaBLE 9: Table for Nﬁ_va of C,.
X1 X2 X3 Xy X5 X6
~05 =05
NPV 0.7 0.3 0.3 0.4 0.4 0.5
Ny VAL 0.3 0.5 0.2 0.4 0.4 0.6
N?;SVMZS 0.3 0.2 0.7 0.4 0.4 01
3 3
N v’ 0.4 0.4 0.4 0.6 0.3 0.5
4 4
Ny VAL 0.4 0.4 0.4 0.3 0.7 0.2
N v’ 0.5 0.6 0.1 0.5 0.2 0.5
6 6
TaBLE 10: Table for Nﬁ,VAN/Ii of C,.
x; X, X3 X4 Xs X
~05 ~05
N VA, 0.5 0.3 0.3 0.4 0.4 0.4
Ny VAL 0.3 0.7 0.3 0.2 0.3 0.4
NP v 0.3 0.3 0.6 0.3 0.3 0.4
3 3
Ny VAL, 0.4 0.2 0.3 0.6 0.4 0.4
Ny VAL 0.4 0.3 0.3 0.4 0.5 0.2
Ny VAL, 0.4 0.4 0.4 0.4 0.2 0.7
Model 3
7 p b %
3$ZPC (X)(x) = AL, s J{MC (y)VNE )(y),X(y)},
i=1 ! ! (21)
97 P

l

Y

J(P

Zx IC’
(X)), then X is

it ,Z7P_(X) (resp, ,Z7P_(X), ,
Z[:l G Z[:l G

# %7 P _ () (vesp., , 47 P (X), 47 P~
i=1 1 =1 Ci i=1 1

called a covering-based pessimistic multigranulation
(F,9)-fuzzy rough set (briefly, 1-CPMGITERS, 2-
CPMGITEFRS, and 3-CPMGITERS); otherwise, it is pessi-
mistic multigranulation fuzzy definable.

It is obvious that the properties of these mentioned
models satisfy Theorem 1.

~ (X))

Example 5. (continued from Examples 2 and 3 and Remark
2). We have the following results.

Case 1 Let us fix F = .7, based on &, and Ay and
9 G‘@ SO,

(@) 27 P (R)= (0.68/x,)+ (0.37/x,) + (0.68/
x3)+ (0.52/x,) + (0.64/x5)+ (0.46/x;) and
U7 P_ ()= (0.42/x,) + (0.21/x,) + (0.49/
x3)+t (0 124/x4) +(0.28/x5)+ (0.3/x)
(i) , 27 P_ (X)= (0.68/x,)+ (0.37/x,)+ (0.73/

x3)+ (0.52/x4)+ (0.58/x5)+ (0.58/x¢) and

v =B i
X vV TIM~ VN~
5 (X0 = !yea { C(x ) C(

)(y),X(y)}, (Vx € Q).

U7 P_(X)= (0.42/x,)+ (0.21/x,) + (0.49/

x3)+ (0.24/x4)+ (0.35/x5)+ (0.28/x;)
(i) , 7P (X)= (0.68/x,) + (0.37/x,) + (0.68/

x3)+izb.32/x4)+ (0.64/x5) +(0.46/x5) and
%79 (X) = (0.42/x,)+ (0.24/x,) + (0.49/

i=1 1

x3)+ (0.28/x4)+ (0.35/x5)+ (0.3/x;)

Case 2 Let us fix .F = F 4, based on & 4, and A ¢ and
I =9 ,. Thus,

(i) 1fzjff’~ (X) = (0.6/x,) + (0.3/x,) + (0.6/
x3) +i:Eg.i4/x4) +(0.5/x5) + (0.4/x;)  and
U7 P_(X) = (0.6/x,) + (0.3/x,) + (0.7/
X1 l(g'.4/x4) T (0.5/x5) + (0.5/x)

(i) , 27 P_ (%) = (0.6/x,) + (0.3/x,) + (0.7/
%) T (04/x,) + (0.5/x;) + (0.4/x;)  and
%7 P_(X) = (0.6/x,) + (0.3/x,) + (0.7/

x3)z+’ l(gl.4/x4) 1 (0.5/x5) + (0.4/x)
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(iii) , 7 P (X)=(0.5/x))+ (0.3/x,)+ (0.6/ x3)

+(0.4x,)+ (0.5/x5)+ (0.4/x,) and
3%gi">c~ (X) = (0.6/x,)+ (0.4/x,) + (0.7/x5)

i=1 i

+(0-4/x,)+ (0.5/x5) + (0.5/x¢)

3.3. Some Types of Covering-Based Variable Precision Mul-
tigranulation (7, I )-Fuzzy Rough Sets. In the following, six
new kinds of CVPMITERS are defined and their properties
are investigated. It is clear that the properties of these
mentioned models satisfy Theorem 1. So, we only present the
concepts and omit the properties.

Definition  15. Let  (Q, ) be a FBCAS and
T= {a, C,,... ,CZL be n fuzzy B-coverings of Q for some
B € (0,1]. For each X € #(Q) and a variable precision
parameter y € [0, 1]. Define the i-variable precision multi-
granulation (%,J)-fuzzy lower approximation (briefly,
i-VPMGITFLA) and the i-variable precision multi-
granulation (.%,J)-fuzzy upper approximation (briefly,
i-VPMGITFUA), Vi € {LILIIL, IV, V, VI} are, respectively,
defined as follows:

M) 13"‘”") (X)) = VL, (A5

B
/\ = M=
(y)sy S C:(x)

7 (M
X(»=y c(x)
(7, X (y)) and %7 "L (X) (x)

YA

! i=1 i

_ o
)(y),l MWz, I

B
G‘J —~
(MC ( )<1-y

i

= N (v Ay)>1y

(M‘i( (X)), (Vx € Q)
@ w0 (D6 = ML (Mg, T O P

A A= J(M’g( )(y),X(y))) and

X(y)>y
W27 (R) () = Vi (Ve T ()1

X (y)z1-y C (%)
(M@-( (D, X (), (Vx € Q)

i=1 1

y)va ()<loy

3w g(”’; (X) (%) = VI, (A
g ~ ~ B =B <
e DLYINA N5 (y)>yJ(Ma(x)(y)VNa(x)(y),X

n A o
- (VX(y)zl—yJ

..,ﬁ ~
X(J’)SVJ(ME,.(;C) (y)V N

() and ;%7 PL(X)(x) =

=8 N — 8
M~ vNEZ J1- V= T (M~
( Ci(x) ) Gi(x) ) V) Xy’ ( GCi(x)
(y)VRE LX), (vx e Q)
@ e R () = AL, (A
2t Gi
=B B B
NZ AN~  F(M=- v N~ ,
e (y) ) Ry ( ) (y) e (»)
T vp) (3 _ n o
IR B = Vi Vi
T (M2 NP _ T (M~
T (M )(y)vNC( )(y),l YV vX(y)<1 y,/ ( s

i (X i (X i

X (), (Vx € Q)

B
X(y)<yj(ME,. (x) (v

X(y))) and %

xF (VNE (),
C;(x)

i

Complexity

C‘if(VP) (5{) (x) = X(y)<yj (ME
ﬁ
X()>y S M C;(x) (y)/\
N R 7 (vp) _
N- ), X and L (X)(x) =
) ), X(»)) ﬁ vU ﬁZL c,-( )
n . g (ME. NP _
AL (vX(y)Zl_y I (Mc,. i (y)ANc,.( )(y),l PV

(5) V"?ZL VL (A

(x)f (y)/\Ng(

i (X

)(y),y)/\ N

Ve T (M~
X(y)<l-y ( C

P ANE (1), X (), (¥x € Q)

VP) n =~ p
O v LX) = AL (g, TG

=B
ANZ
(») <

A

i=1 i

NE mnns (n)>yrs (M-
Ci(x) Ci(x)

(X () and %7 (R) (0 = Vi, (Vg

(M~

i=1 i

y)vv

B B
T (M=~ AN=
( Ci(x) ) G y<izy

( )a 1-
i (x) 4
D DIANE ()X (Vx € 0)

If igji”’l (X);&i%g?pl (X), then X is called a cov-
ering-basedl: i-variable precision  multigranulation
(F, T)-tuzzy rough set (briefly, i-VPMGITERS); otherwise,
it is i-variable precision multigranulation fuzzy definable.

The best way to explain the above definition is to give the

following example.

Example 6 (continued from Example 2). Assume that
y = 0.5. Then, we have the following results:
a) 1< J(VP (X)=(0.8/x;)+ (0.75/x,) + (0.82/x3)+ (0.7/
1Cl
x4) + (0.75/x5) + (0.7/x¢) and I%giwl (X)=(0.25/

x;) + (0.15/x,) + (0.3/x3) + (0.2/x,) + (0.25/x5) +

(0.25 / x4)

55*; UPL (%) = (0.72/x,) + (0.65/x,) + (0.79/x;) +
e

(0.7/x,)+ (0.65/x5) + (0.65/x¢)and ;% "PL (X) =

i=1 i

(0.35/x,) + (0.15/x,) + (0.35/x;)+ (0.2/x,)+ (0.35/

2)

x5) + (0.28/x)
(3) mZLPL (X) =0.8/x, +0.75/x, +0.82/x; +0.7/x,+

tl‘

0.75/x5 +0.7/xgand [, %7 2L (X) = 0.25/x,+ 0.15/
i=1 i

x2 +0. (3/9)C3 +0.2/x,+0.25/x5+ 0.25/x4
VP
@ v’ o (X)=0.72/ x| 10.65/x,+0.79/x3 +0.7/x, +

=11

0.65/x5+0.65/x.and v %~ 2L (X)=0.35/x, +0.15/
5 6 v n 1
i=1 "1

x,+0. 35/x3 +0.16/x,+0.35/x5+0.28/x,
I (v
5) vZ LX) = (0.8/x,) + (0.7/x,) + (0.8/x5)+ (0.7/

L

x,) + (0.75/x5) + (0.7/x¢)and , %7 "L (X) = (0.25/

i=1 i



Complexity

x;)+ (0.16/x,) + (0.3/x5) + (0.2/x,) + (0.25/

x5)+ (0.25/x4)
©6) Vlffg (f‘% (X) = (0.72/x,) + (0.65/x,) + (0.79/x;)+

(0.7/x) + (0.65/x5) + (0.65/x¢) and %~ "PL (X) =

(0.35/x,) + (0.24/x,) + (0.35/x;) + (0.2/x,) + (0.35

Ix5) + (0.28/x4)

4. The Relationships between COMGITFRS
Models and CPMGITFRS Models

In this section, we explain relationships among our
models. Through the proposed study, we have the fol-
lowing results.

From Definitions 10 and 12, we conclude the following
results.

Proposition 1. Let (Q,T) be a FRCAS and T = {6},6;
. ,6;} be n fuzzy 3-coverings of Q) for some 3 € (0, 1]. Then,
for each X € F(Q), we have the following properties: (i)
27O _(X)=ur,C,(X) and ,27P_(X)=nn,C,
Z[:l Gi Z[:l G
(X). (i) %79 (X)) =nr,Cy(X) and %7 P_(X) =
ur, G (X).
By Definitions 11 and 13, we have the following results.

Proposition 2. Let (Q,T) be a FBCAS and T = HFCT, C,,
-.»C,} be n fuzzy B-coverings of Q) for some 3 € (0, 1]. Then,
for each X € F (Q), we have the following properties:
(i), 270 (%)= v, C(X) and ,Z7P-(X)=n
L () ) )
(i) , 279 (X) = nr,Ci(X) and ,%TP_(X) =
i=1 G i=1 i
SR
VLG5 (X)

From Definitions 11 and 14, we have the following results.

Proposition 3. Let (Q,T) be a FBCAS and T = HFCT, C,,
-»C,} be n fuzzy B-coverings of Q1 for some 3 € (0, 1]. Then,
for each X € F(Q), we have the following properties.

(i) 279 (X)=un,C,(X) and ,27P_(X)=

Zi:1ci Zz:lcf
NGy (X)

(ii 3%“23’)5 (%)= n,Ci(X)  and 3%Jzi")5<x>=
UGl

Proposition 4. Let (Q,T) be a FBCAS and T = {C’\;,C’V2
..., C,} be n fuzzy B-coverings of Q) for some 3 € (0,1]. Then,
for each X € F (Q), we have the following properties:

11

(i) ;279 (X, 277~ (X)c, 27 - (X)
(i) ;27 - (X)e, 277~ (X6, 277~ (%)

(o) _ (X)
(,

(iii) ,27 9~ (X, %7 O~ (X)c,U”
() 2T~ () 2~ <X>g3%§:>~ (%)
. . . C;

Proposition 5. Let (Q,T) be a FBCAS and T = HFCT, C,,
..»C,} be n fuzzy B-coverings of Q) for some 3 € (0, 1]. Then,
for each X € F(Q), we have the following properties:

(i) , 279 _(X) = 279 (X)v, 27 _(X)

i=1 i i=1 i

Z[:l G Zi:l G Zx‘:1 G
(i) 2%; E‘O)E (X) = 0%; i")g X)A 1%; ff’)a (X)
iii) , 7 (X) = 27O~ ()" 27O~ (X
( )3 Z?:lci( ) ’ Z?:lci( ) : ZLCI( )
(iv) 327~ (X) = %7~ (v, %7~ (X)
Z; C; Z:‘:l G Z:l:l G

Remark 3. Let (Q,T) be a FBCAS and T = {a, C,... ,6;}
be n fuzzy B-coverings of Q) for some 3 € (0, 1]. Then, for
each X € #(Q), we have the following properties:

(1 1=(Zfip)~ (X)§13Ji0)~ (}A() and 1?[;510)5 (2)9
%9(P)~ (X)
1 n
Zizl G
2),27P_(X)c,#79_(X) and %79 (X)c
( )2 Z:’:lci( ) 2 Z:‘:lci( ) ? Z:‘:lci( )
%9(P)~ (X)
2 "
Zizl G
3,27 P _(X)c, 79 (X) and %79~ (X)c
( )3 ZLQ( ) ’ Z:‘:lci( ) ’ Z:‘:lci( )
%9(P)~ (X)
3 n
Zizl G
@ 7 (g 7P (X) and 27l (X)c
Zi:l G Zi:l G Zi:l G
T (vp) (X)
I n
Zizl G
(5) Ivggff% (X)nggivpéf (X) and HI%;‘ZP& (X)<
%57(1/17) (X)
ey ¢,
© w37 X 7P (%) and V%gi”} (R)c
w7 "L (%)
VI "
Zi:l G

5. An Application to Decision-Making

In this section, we apply the proposed method to make a
decision on a real-life problem.

5.1. Description and Process. Let Q = {u,u,,...,u,} be n
alternatives and & = {e,,e,,...,¢;} be I decision makers.
Suppose for each v; is a weighted vector correspondingly to e;,
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where 7,20 for i=1,...,1 and Yl v =1
Ci={Ci.Cp....Cpp b foralli=1,2,...
tributes. A family of mappings ¥ ={g;}, where
g: QxC, — [0,1]. So, we construct the MAGDM with
fuzzy information system (Q), C, &, &). Based on the proposed

Hence,
,n is a set of at-

Complexity

covering methods, we present a decision-making algorithm to
find the best alternative through the following steps:

Step 1: Construct the decision-making object with fuzzy
information of the universe of discourse. Through
the rule of fuzzy TOPSIS method, we have

P :{élj7l<\i/<n(gl(ui761j)): (j=1....m(= 1>~~~>t)} :{(Czl’V(gn)) "(Clm’v(glm))}’
o (22)
P = {élj’ ls/i\gn(gl(”i’élj)): (j= >m)(l=1,.. ~>t)} ={(611’ A (911)) "(Clm’ A (glm))}

where A and A denote “max” and “min,”

respectively.
Step 2: Compute the respective distances @ and 9 as
follows:

) = §(Cy (w).Cy(2)) - \,L 2 (€)= v(ay))'
j=1
9, = §(Cy (), Gy (P)) = \:n Y (Cy () - A(gy))
]:l
(23)
where
S(V,t7) = \/(l/m) > (Y (u)t — nZq(u))?

and m is the cardmallty of Q.

Step 3: Calculate the lower and upper approximations of
the best and worst decision-making objects with
fuzzy information by Definition 13 (2-
OMGITFLA and 2-OMGITFUA).

Step 4: Calculate the closeness coefficient degree by
Ry (w) =W, )l Wy (u;) + Wy (u;), where

%(“z) = 9‘%(33}](? ~ (@l)(“i)w%g(o) ~ (91)(“i)>>

2. 2.
r=1 r=1

Wz(“z) =% (33J(g) ~ gl (”i)w%mf) ~ gl (%))
, ch’( ) ZMQ( )

(24)

t0.82), (C,,,10.76),

10.85), (Cp 10.77

> >

Cyy»10.35), (Cppy 10.34

> >

=
=
2={
:={C
(o

19 %I IQ %I |® %I

) (C»10.76)
) (Ci10.32)
) (G 10.77)
) (C10.34)
) (G 10.75)
) (G 10.36)

C C\5,10.74),
C,1,10.28),(C,,10.32), (C 3,10.36 ), (C,,, £0.45), (C 5, £0.43
Cy1» C,3,10.79
C,3,10.46
C,,,10.84),(C5,,10.75), (C33,10.74), (Cs,, £0.69), (C35, £0.78
={(C31,t0 37),(C;,,10.36), (C33,£0.35),

be the worst and the best decision-making objects
for individual ranking function of expert  for the
candidates v, and 0< % (w,), W' (u;) < 1.

Step 5: Calculate the group ranking function by the
following equation & (u;) = ¥;_, %, (u;), and
hence rank the alternatives.

According to these steps, we give an algorithm to solve
the decision-making problems based on the 2-COMGITFRS
model. The steps corresponding to it are summarized in
Algorithm 1.

5.2. Applied Example. The abovementioned steps have been
illustrated with a numerical example as shown next.

Example 7 (see [40]). Let Q = {uy,u,, ..., ug} be six system
analysis engineers and T = {emotional steadiness (C,), oral
communication skill (C,), personality (C;), past experience
(C,), self-confidence (Cs)} be the attribute set of the basic
description of the candidates. Suppose that three experts
e, €,, and e; are invited to evaluate the system analysis en-
gineers according to their specialized knowledge. The weights
of every expert are v; = 0.4,7, = 0.1, and v; = 0.5. The fol-
lowing steps of the stated algorithm are implemented here.

Step 1: Experts evaluate each candidate under the set of
the attribute and present their judgments with
the real values. These values are summarized in
Tables 11-13.

Step 2: According to the importance of these five attri-
butes, we give the following results for each expert:

C,,»10.78),(C 5, 10.91

C,,,10.81),(Cys,10.71

> >

C,,,10.26),(Cys,10.43

) (G 1078), (051}
) (G 10:9), (G0}
) (Gtos1). (G0, .
) (G 1020 (G0
) (G 109), (G075
) (G 10:2), (G 05)

C,,,10.42),(C5s5,£0.48
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Input: Fuzzy information systems (€, C, 8, Q).
Output: Decision-Making.
(1) Enter X, B, T = {Ci: tin = qlh, _x, 7n} and Q = {xj: j=1,... ,m}.
(2) From Definition 7, calculate fuzzy f3-neighborhood.
(3) From Step 2 and by Definition 8, calculate complementary fuzzy -neighborhood
(4) From Steps 2 and 3, calculate N oAME
(5) Enter %, and &, Cilw) Ci ()
(6) Calculate the distances &, and ;.
(7) From Definition 13, calculate the lower approximation SZJ (ko) ~ (2)) and the upper approximation 3%12") ~-(9).
(8) Calculate the worst and the best decision-making objects %', and % for each individual decision-maker.
(9) Calculate the individual ranking function ;. o
(10) Calculate the group ranking function &.
(11) Obtain the decision.

ALGORITHM 1: Algorithm for MAGDM with the TOPSIS method.

Step 3: If the threshold § = 0.6, it produces N, M2 o, 0246 0278 0209 0352 0293 0.278
_ _ C; C; Ly = >
and N %6 /\M%’6 as displayed in Tables 14-22. * 4 U3 Uy Us Us
Step 4: Calculate the distances &, and 2, as follows: 9. = 0.243 + 0.233 + 021 + 0.219 + 0.184 + 0'259,
oy Uy s Uy Us Us
— 0.248 0.269 0.315 0.189 0.261 0.306
D, = + + + + + > P = 0.225 0.231 0.25 0.237 0.232 0.212
U, u, 7N U, Us Ug Dy=— A
1 2 3 4 5 6
0307 0307 0.241 0317 0247 0.259 (26)
2, = w o wy up o us o ug
! 2 3 4 > 6 Step 5: Calculate the lower and upper approximations of
the best and worst decision-making objects as
— 0276 0.276 0.293 0.146 0.261 0.228
P, = + + + + n X follows.
U () U3 Uy Us Us Take e = e, and we have

— 0.49616 0.52485 0.55475 0.48907 0.51965 0.54196
3gj(‘:)~(91)= + + + + + ,
Zr:lc, Uy U Us Uy Us Us

— 0.16616 0.17485 0.20475 0.11907 0.16965 0.20196
2L (2)) = + + + + + ,
G Uy Uy Us Uy Us Ug

T

(27)

>

0.53569 0.54955 0.50665 0.56971 0.51055 0.51094
L2790 () = + + + + +
C

k
Zm . U U, Us Uy Us Ug

0.20569 0.19955 0.15665 0.19971 0.16055 0.17094
w9 (@)= + + + + + :

ZHC, Uy U, Us Uy Us Ug
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Take e = e,, and we have

Complexity

— 0.51492 0.5294 0.54045 0.46198 0.51965 0.49048
L7 ~(92) = + + + + + ,
ZMC, Uy U Us Uy Us Us
— 0.18492 0.1794 0.19045 0.09198 0.16965 0.15048
R ~(92) = + + + + + ,
G U U, Us Uy Us Us
(28)
0.49482 0.5307 0.48585 0.59176 0.54045 0.52348
L2790 _(2,) = + + + + + ,
ZMC, Uy U Us Uy Us Us
0.16482 0.1807 0.13585 0.22176 0.19045 0.18348
U _(2,) = + + + + + :
ZMC, Uy U Us Uy Us Ug
Take e = e;, and we have
— 0.49281 0.50145 0.4865 0.50797 0.4696 0.51094
, 270 ~(93) = + + + + + ,
Zrzlc, [51 U, Us Uy Us Us
— 0.16281 0.15145 0.1365 0.13797 0.1196 0.17094
3%5(‘;) ~(93) = + + + + + )
ZMC’ Uy U Us Uy Us Us
(29)
0.48075 0.50015 0.5125 0.51931 0.5008 0.47992
27O _(2,) = + + + + + ,
ZMC, U U Us Uy Us Us
0.15085 0.15015 0.1625 0.14931 0.1508 0.13992
U _(2,) = + + + + + :
ZMC, Uy U Us Uy Us Us
Step 6 Based on the importance of these five attributes,
we give the worst and the best decision-making
objects as follows:
—— 057988 0.60793 0.645915 0.549904 0.60114 0.63447
W, = + + + + + ,
U U Us Uy Us Ug
0.631194 0.63944 0.58393 0.65564 0.58913 0.59848
W, = + + + + + ,
- U U Us Uy Us Us
——  0.604621 0.61383 0.62797 0.52247 0.60114 0.57115
v, = + + + + + ,
U U Us Uy Us Ug
(30)
0.578084 0.615503 0.5557 0.68229 0.62797 0.61091
v, = + + + + + ,
- U U Us Uy Us Usg
—— 0.57539 0.57696 0.55659 0.57586 0.53304 0.59454
v/ + + + + + ,
U U Uz Uy Us Ug
0.55908 0.57520 0.58667 0.591082 0.57608 0.55269
% = + + + + + .

U U

Us

Uy

Us Ug
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TasLE 11: Table for C,.
Q Cll CIZ 613 614 615
u; 0.82 0.71 0.46 0.55 0.52
U, 0.73 0.32 0.65 0.58 0.84
Us 0.56 0.68 0.36 0.78 0.44
Uy 0.53 0.48 0.74 0.65 0.91
Us 0.66 0.53 0.57 0.72 0.43
Ug 0.28 0.76 0.52 0.45 0.77
TaBLE 12: Table for (~32.
Q 621 622 623 é24 625
u 0.78 0.56 0.67 0.26 0.59
U, 0.35 0.77 0.49 0.69 0.55
Us 0.51 0.37 0.79 0.42 0.67
Uy 0.85 0.68 0.57 0.75 0.48
Us 0.58 0.34 0.73 0.81 0.43
Ug 0.53 0.75 0.46 0.59 0.71
Thus, we evaluate a closeness coeflicient as follows:
0.521185 0.51263 0.45625 0.54385 0.49495 0.48540
L= + + + + + ,
Uy U, Uy Us Ug
0.48878 0.50068 0.46947 0.57155 0.51091 0.51682
, = n + + + + , (31)

Uy U, Us

U, Us U

3=

Uy Uy Us

Step 7 Based on these results, we calculate the group
optimal index as follows. & = (0.503757/u,) +
(0.50474/u,) + (0.486027/ u5) + (0.527955/u,) +
(0.508771/us) + (0.486722/ ug), and hence get
the ranking order as u, >us >u, > u; > ugz > u;.

From the calculations, we conclude that the 4th
system analysis engineer is the best alternative
among the others.

Furthermore, we get the solution for Case 2 by

the same analysis in Case 1. Therefore, we have
the group optimal index as follows:

0.50055 0.500528 0.500528 0.500636
+ + +

R =
U U, U u
(32)
0.500528 0.500539
+ + ,
us Ug
and  hence get the ranking order as

Uy > Uy 2 Ug > U, > Uz >us. Through the previous com-
putation, we obtain the 4th system analysis engineer is
the best alternative among the others.

0.49281 0.49924 0.51316 0.50652 0.51940 0.48176
= + + + + + .

Uy Us Ug

5.3. Comparative Analysis. The main aim of the current
work is to present a method that increases the lower ap-
proximation and decreases the upper approximation of
Zhan’s methods in [40]. This can be seen easily from Ex-
amples 2— 4. Moreover and by looking at Tables 23 and 24,
we can see that the ranking results of the two decision-
making models. It is obvious that the optimal selected al-
ternative is the same, although there exist some differences
in the ranking results because we choose different decision-
making methods.

An easy way to see the effectiveness of our method and
the differences between the four models (i.e., our three
proposed models and Zhan’s model) are shown in Figures 1
and 2.

Figure 1 explained the comparisons between the lower
approximations for the four models (i.e., 0-OMGITFLA, 1-
OMGITFLA, 2-OMGITFLA, and 3-OMGITFLA) for the
two cases (i.e., Case 1 (resp., Case 2) is in the left (resp., right)
figure). This figure justifies that the 2-OMGITFLA is better
than the others.

Figure 2 clarified the differences between the upper
approximations for the four models (i.e., 0-OMGITFUA, 1-
OMGITFUA, 2-OMGITFUA, and 3-OMGITFUA) for the
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TasLE 13: Table for 63.
Q 631 632 6‘33 634 635
u, 0.56 0.75 0.39 0.67 0.48
u, 0.76 0.36 0.68 0.45 0.55
U, 0.84 0.55 0.35 0.58 0.65
u, 0.43 0.53 0.74 0.69 0.63
us 0.59 0.71 0.65 0.48 0.55
U 0.37 0.66 0.56 0.42 0.78
TABLE 14: Table for N%° .
Cy (u)
U U, Us Uy Us Ug
151%6( ) 0.71 0.32 0.56 0.48 0.53 0.28
zyg"(“l) 0.46 0.65 0.36 0.53 0.43 0.28
zyof(“z) 0.55 0.32 0.68 0.48 0.53 0.45
Jyg"’(’”) 0.46 0.58 0.36 0.65 0.43 0.45
N&?(W) 0.55 0.58 0.56 0.53 0.66 0.28
N 0.52 0.32 0.44 0.48 0.43 0.76
IR
TaBLE 15: Table for Nq‘é
2 (U
U U, Us Uy Us Ug
fjf‘g( ) 0.67 0.35 0.51 0.57 0.58 0.46
zyg"(”l) 0.26 0.69 0.37 0.68 0.34 0.59
N&?(”Z) 0.59 0.49 0.67 0.48 0.43 0.46
11155"(”3) 0.26 0.35 0.37 0.68 0.34 0.53
zyof(““) 0.26 0.49 0.42 0.57 0.73 0.46
o) 0.56 0.55 0.37 0.48 0.34 0.71
2 \Ag)
TaBLE 16: Table for NO~'6
3 (Y;
U U, Us Uy Us Ug
I:\](();(’( ) 0.67 0.36 0.55 0.53 0.48 0.42
zygé(“l) 0.39 0.68 0.35 0.43 0.59 0.37
zygé(“z) 0.48 0.55 0.65 0.43 0.55 0.37
zyaj’(’“) 0.39 0.45 0.35 0.63 0.48 0.42
Iy(;f . 0.39 0.36 0.35 0.53 0.65 0.56
N 0.48 0.36 0.55 0.53 0.55 0.66
B
TaBLE 17: Table for ]\7[0*6 .
C, (u;)
u; U, Us Uy Us Ug
M 0.71 0.46 0.55 0.46 0.55 0.52
1\115(“‘) 0.32 0.65 0.32 0.58 0.58 0.32
]\:I(f(uz) 0.56 0.36 0.68 0.36 0.56 0.44
1\:1&6(“3) 0.48 0.53 0.48 0.65 0.53 0.48
Jy({ﬁ(““) 0.53 0.43 0.53 0.43 0.66 0.43
Y 0.28 0.28 0.45 0.45 0.28 0.76




Complexity 17
TaBLE 18: Table for 1\7[0*6
AL
u; U, Us Uy Us Ug
A:/I(éﬁ( 0.67 0.26 0.59 0.26 0.26 0.56
M ~§(“‘) 0.35 0.69 0.49 0.35 0.49 0.55
]\N/I(f(“z) 0.51 0.37 0.67 0.37 0.42 0.37
1\45(“3) 0.57 0.68 0.48 0.68 0.57 0.48
1\~4~f’(“‘) 0.58 0.34 0.43 0.34 0.73 0.34
M= 0.46 0.59 0.46 0.53 0.46 0.71
2 g/
TaBLE 19: Table for ]\7[0*6
3\
U U, Us U, Us Ug
]\:/I(é(’( ) 0.67 0.39 0.48 0.39 0.39 0.48
1\:15 “‘) 0.36 0.68 0.55 0.45 0.36 0.36
MO;"E“Z 0.55 0.35 0.65 0.35 0.35 0.55
1\215(“3; 0.53 0.43 0.43 0.63 0.53 0.53
1\45(“4) 0.48 0.59 0.55 0.48 0.65 0.55
s 0.42 0.37 0.37 0.42 0.56 0.66
3\ Ag/)
TasLE 20: Table for N%  Am% .
C (u;) C, (1)
U U, Us Uy Us Ug
IE]%(’( A 1{/12?6( ) 0.71 0.32 0.55 0.46 0.53 0.28
No o AmS 0.32 0.65 0.32 0.53 0.43 0.28
zyéﬁ(”z) A 1\:15(“2) 0.55 0.32 0.68 0.36 0.53 0.44
zyg"('“) A 1\:15"(“3) 0.46 0.53 0.36 0.65 0.43 0.45
Jyéf(”“) A ]\:I(;ﬁ(”") 0.53 0.43 0.53 0.43 0.66 0.28
NP A ) 0.28 0.28 0.44 0.45 0.28 0.76
Ttg) T\tg)
TasLE 21: Table for NO*G /\]T/IO*6
2 (Y C, (u;)
U U, Us Uy Us Ug
zy‘é'-s( A A:/[‘é-"’( ) 0.67 0.26 0.51 0.26 0.26 0.46
No—f ”‘) A Ag(f ”') 0.26 0.69 0.37 035 0.34 0.55
z:\'fgf’i“z) A ]\~/I@~§E"z) 0.51 037 0.67 0.37 0.42 037
I:Ilf(”}) A zgf(f(“‘) 0.26 0.35 0.37 0.68 0.34 0.48
Jygf’(”“) A 1\:15(““) 0.26 0.34 0.42 0.34 0.73 0.34
N A ) 0.46 0.55 0.37 0.48 0.34 0.71
ANV ATV
TaBLE 22: Table for NO*G /\1\7[0*6 .
C; (u;) Cs ()
U U, Us Uy Us Ug
N‘é‘ﬁ A M‘éf’ ) 0.67 0.36 0.48 0.39 0.39 0.42
I\:I@ji"l) A ]\~7I@~§E”') 036 0.68 0.35 0.43 0.36 0.36
zygé(“z) A 1\1[5(”2) 0.48 0.35 0.65 0.35 0.35 0.37
zyo—f ”3) AM &9 “3) 0.39 0.43 0.35 0.63 0.48 0.42
ij’i’”) A Mgi““) 039 036 0.35 0.48 0.65 0.55
o= U -~ Uu,
N A & 0.42 0.36 0.37 0.42 0.55 0.66
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TaBLE 23: Table for the ranking results for Case 1.

Two models Obtain a decision

Zhan model X4 2 X2 X2 Xy = X3 = Xs

Our model Xg2X|2Xg2X) = X3 = X5
TaBLE 24: Table for the ranking results for Case 2.

Two models Obtain a decision

Zhan model X422 X 2X52X) 2 X3 2Xg

Our model Xy 2 X52X, 2 X 2 X2 X3

0.8
0.7
0.6
0.5
x1 x2 x3 x4 x5 X6
—— 0-OMGIT... 2-OMGIT...
—— 1-OMGIT... —— 3-OMGIT...

()

0.8
0.6
0.4
0.2
x1 x2 x3 x4 x5 x6
—— 0-OMGIT... 2-OMGIT...
—— 1-OMGIT... —— 3-OMGIT...

(b)

FIGURE 1: The representations of the lower approximations by using our model and Zhan model in two cases.

0.5 0.8
04 0.6
0.3
0.4
0.2
0.1 0.2
0.0 0.0
x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6
—— 0-OMGIT... 2-OMGIT... —— 0-OMGIT... 2-OMGIT...
—— 1-OMGIT... —— 3-OMGIT... —— 1-OMGIT... —— 3-OMGIT...

(a)

(b

FIGURE 2: The representations of the upper approximations by using our model and Zhan model in two cases.

two cases (i.e., Case 1 (resp., Case 2) is in the left (resp., right)
figure). This figure illustrates that the 2-OMGITFUA is
lower than the others.

6. Conclusion and Future Work

The main aim of the present work is to increase the effec-
tiveness of Zhan’s method by increasing the lower

approximation and decreasing the upper approximation. So,
based on the concepts of a family of fuzzy S-neighborhood
(and a family of fuzzy complementary .#, 9 -neighborhood),
we introduced new three types of covering-based multi-
granulation (.7, J)-fuzzy rough sets models and their
properties. Furthermore, we give six kinds of covering-based
variable precision multigranulation ([[1008]])-fuzzy rough
sets. The relationships among these models are investigated.
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Also, an illustrative example with algorithm is given.
Therefore, it is clear to see that 2-COMGITEFRS is better than
the other models (i.e., 0-COMGITFRS, 1-COMGITFRS, and
3-COMGITERS).

In future research, we plan to further investigate along
with the following: (1) topological properties of the pre-
sented methods [44, 45], (2) combination with the soft set
and the proposed methods [46, 47], and (3) combination
with the neutrosophic set and the current methods [48].
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