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*is paper investigates the fixed-time coordinated control problem of six-degree-of-freedom (6-DOF) dynamic model for
multiple spacecraft formation flying (SFF) with input quantization, where the communication topology is assumed
directed. Firstly, a new multispacecraft nonsingular fixed-time terminal sliding mode vector is derived by using
neighborhood state information. Secondly, a hysteretic quantizer is utilized to quantify control force and torque. Utilizing
such a quantizer not only can reduce the required communication rate but also can eliminate the control chattering
phenomenon induced by the logarithmic quantizer. *irdly, a 6-DOF fixed-time coordinated control strategy with
adaptive tuning laws is proposed, such that the practical fixed-time stability of the controlled system is ensured in the
presence of both upper bounds of unknown external disturbances. It theoretically proves that the relative tracking errors of
attitude and position can converge into the regions in a fixed time. Finally, a numerical example is exploited to show the
usefulness of the theoretical results.

1. Introduction

*e recent decades have seen an ever increasing research
interest in the coordinated control problem of spacecraft
formation flying (SFF) due to its successful applications in
the space industry such as atmosphere monitoring of the
Earth, deep space exploration, and spacecraft on-orbit
maintenance [1–5]. As is well known, the coordinated
control of attitude and orbit are two equally important
technologies. It is essential to achieve the desired attitude
and position simultaneously for SFF mission [6, 7]. Owning
to the dynamical coupling between orbit motion and atti-
tudemotion, these twomotions can be considered as a whole
six-degree-of-freedom (6-DOF) motion. Recently, the 6-
DOF coordinated control of SFF has attracted considerable
research attention [8, 9]. However, the control strategies
proposed in the aforementioned literature can only guar-
antee asymptotic stability of the controlled systems [10–13].

For coordinated control problems of SFF, fast conver-
gence performance is an important requirement [14–18]. In
contrast to asymptotic stabilization controllers, the finite-
time stabilization controllers can provide a faster response
and better disturbance-rejection ability [19–22]. *erefore,
the finite-time controllers have been developed in spacecraft
formation control [23–25]. Even though the finite-time
control methods can ensure the controlled systems finite-
time stabilization, the convergence time relies on the in-
formation of initial system states, which gives rise to diffi-
culties in practical applications [26]. To cope with this
constraint, the fixed-time stable concept was applied to study
finite-time controller design, in that the convergence time is
upper bounded regardless of initial system states [27–29]. To
date, fixed-time control strategies have been used for various
control systems [30, 31] but less attention has been paid to
fixed-time 6-DOF coordinated control problem for SFF,
especially for external disturbances with unknown upper
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bounds. Another significant issue in multiple SFF task is that
the interspacecraft communication links are not always
bidirectional, such as in the unidirectional spacecraft laser
communication system. However, in some of the existing
results, the coordinated control issue is investigated based on
an assumption that the communication topology is
undirected.

On another research frontier, networked control systems
(NCSs) as an active field of research have been applied
successfully in various modern complicated engineering
processes [13, 32–35] such as unmanned vehicles, nuclear
power stations, and aerospace engineering systems. In
modern low-cost plug-and-play small spacecraft formation
systems, the functional components connected by wireless
networked media [36–39]. It is quite common that when the
signal is transmitted between the control and actuator
module via wireless networks, the SFF systems unavoidably
suffer from quantization errors caused by quantization
behavior which will degrade the control performance or
even lead to instability [40–43]. *us, it is needed to propose
new controllers for SFF where the signal quantization is
taken into consideration. Although some research attention
has been centered on the quantized control problem of SFF,
there is still no result available that considers 6-DOF co-
ordinated control of multiple spacecraft formation in the
presence of quantized input control signal. *e complexity
of the multiple spacecraft formation coordinated control
task makes the quantized fixed-time coordinated control a
serious challenge.

In this paper, we are motivated to deal with the problem
of fixed-time 6-DOF adaptive coordinated control for
multiple SFF with input quantization under directed

communication topology. *e main contributions of this
paper are highlighted as follows: (1) the communication
topology among follower spacecraft is described by a di-
rected graph, which will bring more challenges than the case
that the communication topology among follower spacecraft
is described by an undirected graph. (2) A novel multi-
spacecraft nonsingular FTTSM based on a 6-DOF dynamic
model is designed, on which each spacecraft converges to its
desired states while keeping synchronization with other
formation spacecraft. (3) A fixed-time adaptive coordinate
control strategy is derived to compensate for the effects of
hysteretic quantizer and external disturbances on the control
performance and guarantee the practical fixed-time stability
of the controlled system.

*e rest of this paper is organized as follows: in section 2,
the modelling and preliminaries are presented. In section 3,
a multispacecraft nonsingular fixed-time terminal sliding
mode vector is designed. In section 4, a fixed-time adaptive
coordinated control scheme is proposed. An illustrative
example and a conclusion are given in Sections 5 and 6,
respectively.

2. Modelling and Preliminaries

2.1. 6-DOF Dynamic Model. *e 6-DOF dynamic model of
spacecraft formation is represented as follows [8]:

_x1i � Λ _x1i( 􏼁x2i,

Gfi _x2i + C x2i( 􏼁 + N x1i( 􏼁 + τi � ui, i � 1, 2, . . . , n,

⎧⎨

⎩
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(2)

where superscript i stands for the ith follower spacecraft;
ρi � [xi yi zi]

T represents the relative position vector from
the ith follower spacecraft to the leader spacecraft; ωi ∈ R3

denotes the angular velocity; qi ∈ R4 is the quaternion de-
fined as qi � q0i qvi􏼂 􏼃

T, where n0 ∈ R represents angular

velocity of the virtual leader spacecraft; q0i is the scalar part
and qvi is the vector part; mfi ∈ R denotes the mass;
Jfi ∈ R3×3 is the inertia matrix; ufi ∈ R3 represents the
control force; uit ∈ R3 is the control torque; Fdi ∈ R3 is
disturbance force; and zi � ℓi − TiGT, where ℓi ∈ R3 is

2 Complexity



disturbance torque and TiGT ∈ R3 is the gravity gradient
torque. *e notation ı× for the vector ı � ı1 ı2 ı3􏼂 􏼃

T rep-
resents the skew-symmetric matrix as follows:

l
×

�

0 − l3 l2

l3 0 − l1

− l2 l1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

It is worth to mention that the attitude and orbit are
mutually coupled by TiGT ∈ R3, which is given as

TiGT � 3μ
􏽢R×

fiJfi
􏽢Rfi

x
2
i + R + yi( 􏼁

2
+ z

2
i􏼐 􏼑

(3/2)
, (4)

where 􏽢Rfi ∈ R3 is the position unit vector. Since TiGT is
much smaller compared with control torque, TiGT is always
treated as a disturbance.

We define the following error states:

e1i �
ρi − ρdi

qei

􏼢 􏼣, e2i �
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ωei

􏼢 􏼣 �
_ρi − _ρidi

ωi − R qei( 􏼁ωdi

􏼢 􏼣, (5)

where qei is error quaternion defined as
qei � q0ei qT

vei􏽨 􏽩
T

� qei ⊗ qdi; R(qei) is the rotation matrix
from the ith follower spacecraft’s reference frame to its body-
fixed frame; and ρdi, ρ

.

di, ωdi, and qdi are the desired position,
desired velocity, desired angular velocity, and desired atti-
tude, respectively.

*en the 6-DOF relative error dynamicmodel of SFF can
be expressed by
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2.2. Graph 6eory. It is supposed that the information
flow among n follower spacecraft is described by a di-
rected graph G � (V, χ,A), where V � V1,V2, . . . ,Vn􏼈 􏼉

represents the set of nodes, χ ⊆V × V represents the set of
edges, and (Vi,Vj) ∈ χ represents if and only if node Vi

can receive the information of node Vj. In spacecraft 6-
DOD coordinated control application, (Vi,Vj) ∈ χ rep-
resents only the jth spacecraft can obtain the ith
spacecraft’s states information. A � [aij] ∈ Rn×n denotes

the weighted adjacency matrix of the graph G with
entries

aij > 0, if ( (Vi,Vj ) ∈ χ ),

aij � 0, otherwise,
⎧⎨

⎩ (8)

where aij is the nonnegative element of A, which denotes
communication quality between the ith spacecraft and jth
spacecraft. It is noticeable that self-edges are not allowed,
meaning that aii � 0.

*e in-degree matrix of the graph G is D with entries

D � diag d1, d2, . . . , dn􏼈 􏼉, (9)

where

di � 􏽘
n

j�1
aij � 􏽐

j∈χi

aij, (i � 1, 2, . . . , n). (10)

*e Laplacian matrix L ∈ Rn×n of the graph G is [44]

L � D − A. (11)

2.3. Hysteretic Quantizer. To eliminate the control chat-
tering phenomenon induced by logarithmic quantizer, a
hysteretic quantizer is used to quantify control torque and
force in this paper, which is similar to [45]. It can be
expressed by

q( u( t ) )≜
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−
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(12)

where uJ � ρ(1− i)umin, J � 1, 2, . . . , n with 0< ρ< 1, umin > 0,
and δ � (1 − ρ/1 + ρ). q(u(t)) is in the set
U � 0, ± ui, ± ui(1 + δ)􏼈 􏼉. *e map of the hysteresis
quantizer q(u(t)) for u> 0 is illustrated in Figure 1.

Remark 1. *e parameter ρ can be termed as a measure of
quantization density. From the definition of ρ, we can see
that the smaller parameter ρ is, the coarser the hysteretic
quantizer becomes [45].*erefore, the design of parameter ρ
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should be based on a criterion to guarantee the control
performance with a smaller quantization density. In addi-
tion, compared with a traditional logarithmic quantizer, the
hysteretic quantizer (10) can avoid oscillations by adding
additional quantization levels.

2.4. Preliminaries. For deriving the 6-DOF fixed-time co-
ordinated controller, the lemmas are made as follows.

Lemma 1. 6e hysteretic quantizer q(u(t)) is decomposed
into two parts as

q(u(t)) � D(u)u(t) + Q(t), (13)

where D(u) and Q(t) satisfy

1 − δ ≤D(u)≤ 1 + δ, |Q(t)|≤ umin. (14)

6e proof of Lemma 1 is similar to 6eorem 1 in [45].

Lemma 2 (see [44]). If G is a directed graph with N nodes,
then all the eigenvalues of the weighted Laplace matrix L have
nonnegative real part.

Lemma 3 (see [46]). For any matrix M ∈ Rm×m, N ∈ Rn×n,
X ∈ Rm×m, and Y ∈ Rn×n, then the following equalities hold:

(1) (M⊗N)(X⊗Y) � MX⊗NY

(2) If the matrices M and N are invertible, then
(M⊗N)− 1 � M− 1 ⊗N− 1

(3) If the eigenvalues of M are λ1, . . . , λm and the ei-
genvalues of N are μ1, . . . , μn, then the eigenvalues of
M⊗N can be expressed by
λiμj (i � 1, . . . , m; j � 1, . . . , n)

Lemma 4 (see [47]). For any x, y ∈ R, if ] ∈ R+ and ]> 1,
then

|x + y|
] ≤ 2]− 1

x
]

+ y
]􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (15)

Lemma 5 (see [48]). If xi ∈ R, i � 1, 2, . . . , n, and 0<p≤ 1,
then

􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p

≤ 􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p ≤ n

1− p
􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p

. (16)

Lemma 6 (see [47]). Consider the nonlinear system given by

_x � f(x, t), f(0, t) � 0, x ∈ Rn
. (17)

Suppose that there exists a Lyapunov function V(x) that
satisfies the following condition:

_V(x)≤ − αV(x)
p

+ βV(x)
g

( 􏼁
k

+ υ, x ∈ Uo, (18)

where α, β, p, g ∈ R+, pk< 1, gk> 1, and 0< υ<∞. *en,
the origin of system (17) is practical fixed-time stable and the
residual set of the solution satisfies

limt⟶Tx|V(x) ≤min α− (1/p) υ
1 − θk

􏼒 􏼓
(1/kp)

, β− (1/g) υ
1 − θk

􏼒 􏼓
(1/kg)

􏼨 􏼩􏼨 􏼩, (19)

where θ is a scalar satisfying 0< θ ≤ 1. *e setting time is
bounded by

T≤
1

αkθk
(1 − pk)

+
1

βkθk
(gk − 1)

. (20)

3. Multispacecraft Nonsingular Fixed-Time
Terminal Sliding Mode

In this section, a multispacecraft nonsingular fixed-time
terminal sliding mode (FTTSM) vector is proposed to realize
the orbit and attitude coordinated control for SFF. *e

following assumptions are presented regarding the 6-DOF
dynamic model.

Assumption 1. *e total disturbance τi is assumed to be
bounded due to the fact that magnetic forces, J2 pertur-
bations, gravitation, and solar radiation pressure are
bounded.

Assumption 2. *e desired angular velocity ωdi and its time
derivative ω

.

di are assumed to be bounded. *e desired
trajectory ρdi and its time derivative ρ

.

di are assumed to be
bounded.

Slope = 1 + δ 

Slope = 1 – δ 

q(u)
u2 (1 + δ)

u1 (1 + δ)

u2

u1

u1/
1 + δ

u1 u1/
1 – δ

u1 ((1 + δ)/
(1 – δ))

u2 ((1 + δ)/
(1 – δ))

u2/
1 – δ

Figure 1: Map of q(u(t)) for u> 0.
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In order to achieve coordinated control for multiple
spacecraft formation, the sliding mode based on (6) is de-
fined as

S � s1, . . . , si􏼂 􏼃
T
, (21)

where si � [si,1, si,2, . . . , si,k]T ∈ R6×1, i � 1, 2, . . . , n and
k � 1, 2, . . . , 6, given by

si � biGfi e2i + αi e1i( 􏼁􏼂 􏼃 + 􏽘
n

j�1
aij Gfie2i − Gfje2j􏼐 􏼑 + Gfiαi e1i( 􏼁 − Gfjαj e1j􏼐 􏼑􏼐 􏼑􏽨 􏽩, (22)

with αi(e1i) � [αi,1(e1i1), αi,2(e1i2), . . . , αi,k(e1ik)]T ∈ R6×1,
and

αi,k e1ik( 􏼁 �
sgn σ1i sgn e1ik( 􏼁

p1 + σ2i sgn e1ik( 􏼁
p2􏼐 􏼑

k1
, if si,k � 0 or si,k ≠ 0, e1ik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε,

l1i e1ik + l2i sgn e1ik( 􏼁
2
, if si,k ≠ 0, e1ik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε,

⎧⎪⎨

⎪⎩
(23)

where i � 1, . . . , n, k � 1, 2, . . . , 6, si � [si,1, si,2, . . . , si,6]
T,

si � e2i + sgn(σ1i sgn(e1i)
p1 + σ2i sgn(e1i)

p2)k1 , l1i � (2 − k1)

(σ1iεp1− (1/k1) + σ2iεp2− (1/k1))k1, l2i � (k1 − 1)(σ1iεp1− (1/k1)

+σ2iεp2− (1/k1))k1, bi > 0 is control scheme gain to realize tracking
control, aij ≥ 0 is control scheme gain to realize coordinated
control between ith and jth formation spacecraft, sgn(e1ik)p1 �

|e1ik|p1 sgn(e1ik) and sgn(e1ik)p2 � |e1ik|p2 sgn(e1ik), σ1i > 0,
σ1i > 0, p1 > 0, p2 > 0 k1 > 0 are designed parameters,
sgn(σ1i sgn(e1ik)p1 + σ2i sgn(e1ik)p2)k1 � |(σ1i sgn(e1ik) p1+

σ2i sgn(e1ik)p2)|k1 sgn( σ1i sgn(e1ik)p1 + σ2i sgn(e1ik)p2 ), ε> 0
is small constant, 0<p1k1 < 1, p2k1 > 1, and sgn(·) is sign
function.

Remark 2. It is supposed that the communication topology of
SFF is undirected; we can obtain aij � aji, which simplifies the
design and analysis of the controller. However, for the directed
communication topology, aij � aji does not hold. *erefore,
compared with bidirectional communication topology, the
coordinated control of formation spacecraft under directed
communication topology is more challenging.

Remark 3. Note that the multispacecraft FTTSM (21) can be
simplified as a modified terminal sliding mode (TSM)
designed in [47] if k1 � 1 and p2 � 0; moreover, (21) co-
incides with the modified fast TSM designed in [49] for
k1 � 1. It is worth mentioning that when e1ik converges to
the region |e1ik|≤ ε, the multispacecraft FTTSM is converted
to the general sliding mode for si,1 ≠ 0. *us, the singularity
problem of (21) can be effectively avoided. Moreover, by the
choice of l1 and l2, the continuity of αi,k and its first-order
time derivative is guaranteed.

By Kronecker product, the sliding mode function (21)
can be described by

S � (L + B)⊗ I6􏼂 􏼃G e2 + α e1( 􏼁( 􏼁, (24)

where L is the weighted Laplace matrix, which is determined
by directed topology, B � diag[b1, b2, . . . , bn], e2 �

[eT
21, eT

22, . . . , eT
2n]T, α(e1) � [αT

1 (e11), αT
2 (e12), . . . , α

T
n (e1n)]T,G � diag[Gf1,Gf2, . . . ,Gfn].

4. Design of Fixed-Time Adaptive Coordinated
Control Scheme

In this section, a fixed-time adaptive 6-DOF coordinated
control scheme is presented for multiple SFF with input
quantization and external disturbances.

To design the control scheme, (6) can be derived as

Gfi _e2i + _αi e1i( 􏼁( 􏼁 � hi + D ui( 􏼁ui + Qi(t) + τi, (25)

with

_αi( e1i ) �

σ1ip1k1diag( σ1isgn e1i( 􏼁
p1 + σ2isgn e1i( 􏼁

p2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
k1− 1

),

· diag( e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p1− 1

)Λ( _e1i )e2i + σ2ip2k1diag( |σ1isgn e1i( 􏼁
p1 ,

+ σ2isgn e1i( 􏼁
p2 |

k1− 1
)diag( e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2− 1

)Λ( _e1i )e2i,

if sik � 0 or sik ≠ 0, e1ik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε,

l1iΛ( _x1i )e2i + 2l2idiag( e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 )Λ( _e1i )( e2i ),

if sik ≠ 0, e1ik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hi � − C( e2i ) − N( e1i ) − Gfi − _e2i d + Gfi _αi( e1i ).

(26)
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Under Assumption 1, it can be seen that

( L + B )⊗ I6
����

����1 τi + Qi( t )
����

����1􏼐 􏼑
2
≤ ci, i � 1, . . . , n, (27)

where ci are nonnegative constant numbers.
*e fixed-time adaptive controller is designed as

ui � −
1

1 − δ
hi +

1
1 − δ

􏽘

n

j�1,j≠ i

aij+bi
⎛⎝ ⎞⎠

− 1

􏽘

n

j�1,j≠ i

aij (1 − δ)uj + hj􏼐 􏼑 − αisgn si( 􏼁
c1

, − βisgn si( 􏼁
c2

−
􏽢ci

2I2
i

si
⎡⎢⎢⎣ ⎤⎥⎥⎦, i � 1, . . . , n, (28)

_􏽢ci � − 2κiϱi􏽢ci +
κi

2I2
i

si

����
����, i � 1, . . . , n,

(29)

where 0< c1< 1, c2> 1, Ii > 0, κi > 0, and ϱi > 0 are the
controller parameters.

Theorem 1. Consider the 6-DOF control system (6) with the
fixed-time coordinated control law (28). If the parameter
uncertainty and external disturbance satisfy Assumptions 1-2,
then the sliding mode vector si will converge into

si

����
����≤Δs � min υ− (2/1+c1)

1
υ

1 − θo

􏼠 􏼡

(2/1+c1)

, υ2
1

2υ+12− 1􏼒 􏼓
n+k− 1

􏼠 􏼡

− (2/1+c1) υ
1 − θo

􏼠 􏼡

(2/1+c2)⎧⎨

⎩

⎫⎬

⎭, (30)

in fixed time, where βmin � min βi􏼈 􏼉, αmin � min αi􏼈 􏼉,
ιmin � min ιi􏼈 􏼉, υ1 � min αmin2(c1+1/2), ιmin(c1+1/2)2(c1+1/2)􏼈 􏼉,
υ2 � min βmin2(c2+1/2), ιmin(c2+1/2)2(c2+1/2)􏼈 􏼉, υ � 􏽐

n
i�1 ϱioic

2
i

+1 + 􏽐
n
i�1 /I

22 + 􏽐
n
i�1[((ιi/κi)Δ2i )(c2+1/2) − (ιi/κi)Δ2i ] ,

ιi � κi(ϱi(2oi − 1)/2oi), Δi > 0, 0< θ0 ≤ 1, oi > (1/2).

Proof. We construct the following Lyapunov function
candidate:

V1 � V2 + V3, (31)

with

V2 �
1
2
STS, V3 �

1
2

􏽘

n

i�1
κ− 1

i 􏽥c
2
i , (32)

where 􏽥ci � ci − 􏽢ci.
By the Kronecker product, the controller (28) can be

rewritten as

U � −
1

1 − δ
H +

1
1 − δ

(D + B)
− 1 ⊗ I6􏽨 􏽩

[ (A⊗ I6 )( ( 1 − δ )U + H ) − α sgn(S)
c1

,

− β sgn(S)
c2

− 􏽢cS.

(33)

where U � [u1, . . . , un]T, H � [h1, . . . , hn]T,
α � diag[α1I6, . . . , αnI6], α � diag[α1I6, . . . , αnI6], 􏽢c
� diag[(􏽢c1/2I

2
1)I6, . . . , (􏽢cn/2I

2
n)I6].

Since I6n − [(D + B)− 1 ⊗ I6](A⊗ I6) can be equivalently
expressed as

I6n − (D + B)
− 1 ⊗ I6􏽨 􏽩 A⊗ I6( 􏼁,

� [ (D + B)
− 1 ⊗ I6 ] (D + B)⊗ I6 ] − A⊗ I3􏼈 􏼉,

� (D + B)
− 1 ⊗ I6􏽨 􏽩 (L + B)⊗ I6􏼂 􏼃.

(34)

It follows from (34) that

U � −
1

1 − δ
H −

1
1 − δ

I6n − (D + B)
− 1 ⊗ I6􏽨 􏽩 A⊗ I6( 􏼁􏽮 􏽯

− 1

(D + B)
− 1 ⊗ I6􏽨 􏽩,

× α sgn(S)
c1

+ β sgn(S)
c2

+ 􏽢cS􏼐 􏼑,

� −
1

1 − δ
H −

1
1 − δ

(D + B)
− 1 ⊗ I6􏽨 􏽩 (L + B)⊗ I6􏼂 􏼃􏽮 􏽯

− 1

(D + B)
− 1 ⊗ I6􏽨 􏽩,

× α sgn(S)
c1

+ β sgn(S)
c2

+ 􏽢cS􏼐 􏼑,

� −
1

1 − δ
H −

1
1 − δ

(L + B)⊗ I6􏼂 􏼃
− 1

α sgn(S)
c1

+ β sgn(S)
c2

+ 􏽢cS􏼐 􏼑.

(35)

Considering (24) and (25), it can be shown that
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_V2 � ST _S,

� ST
(L + B)⊗ I6􏼂 􏼃 Gfi _e2i + Gfi _αi e1i( 􏼁􏼐 􏼑,

� ST
(L + B)⊗ I6􏼂 􏼃(H + D(U)U + Q(t) + τ),

(36)

where τ � [τ1, . . . , τn]T, D(U) � diag[D(u1), . . . ,D(un)],
Q(t) � [Q1(t), . . . , Qn(t)]T.

Next, it can be derived that

_V2 � ST
[ ( L + B )⊗ I6 ]( (L + B)⊗ I6􏼂 􏼃

− 1
− αsgn(S)

c1
− βsgn(S)

c2
− cS􏼐 􏼑 + Q( t ) + τ ),

� ST
[ ( L + B )⊗ I6 ]( τ + Q( t ) ) − STαsgn(S

c1
− STβsgn(Sc2

− ST
􏽢cS,

≤ 􏽘
n

i�1
( L + B )⊗ I6
����

���� τi + Qi( t )
����

���� si

����
���� − 􏽘

n

i�1

􏽢ci

2I2
i

si

����
����
2

− 􏽘
n

i�1
􏽘

p

k�1
βi sik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c2+1

,

− 􏽘
n

i�1
􏽘

p

k�1
αi sik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1+1

,

≤ 􏽘
n

i�1

(( L + B )⊗ I6
����

����1 τi + Qi( t )
����

����1 )2 si

����
����

2I2

2

+ 􏽘
n

i�1

I
2

2
− 􏽘

n

i�1

􏽢ci

2I2
i

si

����
����
2
,

− 􏽘
n

i�1
􏽘

p

k�1
αi s

2
ik􏼐 􏼑

(c1+1/2)
− 􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c1+1/2)
,

≤ 􏽘
n

i�1

􏽥ci

2I2
i

si

����
����
2

+ 􏽘
n

i�1

I
2

2
− 􏽘

n

i�1
􏽘

p

k�1
αi s

2
ik􏼐 􏼑

(c1+1/2)
− 􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c2+1/2)
.

(37)

In addition, taking the derivative of V3 yields

_V3 � 􏽘
n

i�1
κ− 1

i 􏽥ci
_􏽥ci,

� − 􏽘
n

i�1

􏽥ci

2I2
i

si

����
����
2

+ 􏽘
n

i�1
2ϱi􏽥ci􏽢ci.

(38)

It is noticed from (37) and (38) that

_V1 ≤ − 􏽘
n

i�1
􏽘

p

k�1
αi sik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1+1

− 􏽘
n

i�1
􏽘

p

k�1
βi sik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c2+1

+ 2 􏽘
n

i�1
ϱi􏽥ci􏽢ci + 􏽘

n

i�1

I
2

2

. (39)

From

ϱi􏽥ci􏽢ci ≤ −
ϱi 2oi − 1( 􏼁

2oi

􏽥c
2
i +
ϱioi

2
c
2
i (40)

and by substituting (40) into (39), we have

_V1 ≤ − 􏽘
n

i�1
􏽘

p

k�1
αi sik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1+1

− 􏽘
n

i�1
􏽘

p

k�1
βi sik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c2+1

− 􏽘
n

i�1

ιi
κi

􏽥c
2
i + 􏽘

n

i�1
ϱioic

2
i ,

− 􏽘
n

i�1

ιi
κi

􏽥c
2
i − 􏽘

n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

1+c1/2( )

+ 􏽘
n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

1+c1/2( )

+ 􏽘
n

i�1

I
2

2
.

(41)

where (ιi/κi) � (ϱi(2oi − 1)/2oi). □

Case 1. If (ιi/κi)􏽥c
2
i ≥ 1, we have

ιi
κi

􏽥c
2
i􏼠 􏼡

1+c1/2( )

≤
ιi
κi

􏽥c
2
i

. (42)

Substituting (42) into (41) yields

_V1 ≤ − 􏽘
n

i�1
􏽘

p

k�1
αi s

2
ik􏼐 􏼑

(c1+1/2)
− 􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c2+1/2)
􏽘

n

i�1

ιi
κi

􏽥c
2
i

+ 􏽘
n

i�1
ϱioic

2
i − 􏽘

n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

(c1+1/2)

+ 􏽘
n

i�1

I
2

2
.

(43)

According to Lemma 5, it is easy to prove that
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􏽘

n

i�1
􏽘

p

k�1
αi s

2
ik􏼐 􏼑

(c1+1/2)
+ 􏽘

n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

(1+c1/2)

≥ υ1V
(1+c1/2)
8 ,

(44)

where υ1 � min αmin2(c1+1/2), ιmin(c1+1/2)2(c1+1/2)􏼈 􏼉,
αmin � min αi􏼈 􏼉, ιmin � min ιi􏼈 􏼉.

By applying (44), (43) can be rewritten as

_V1 ≤ − υ1V
(1+c1/2)
1 − 􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c2+1/2)
− 􏽘

n

i�1

ιi
κi

􏽥c
2
i

+ 􏽘

n

i�1
ϱioic

2
i + 􏽘

n

i�1

I
2

2

. (45)

Case 2. If (ιi/κi)􏽥c
2
i < 1, one can obtain

ιi
κi

􏽥c
2
i􏼠 􏼡

1+c1/2( )

−
ιi
κi

􏽥c
2
i ≤ 1 −

ιi
κi

􏽥c
2
i < 1 . (46)

Substituting (46) into (41) yields

_V1 ≤ − υ1V
(1+c1/2)
1 − 􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c2+1/2)
− 􏽘

n

i�1

ιi
κi

􏽥c
2
i

+ 􏽘
n

i�1
ϱioic

2
i + 1 + 􏽘

n

i�1

I
2

2
.

(47)

Furthermore, (47) can be rewritten as

_V1 ≤ − υ1V
(1+c1/2)
1 − 􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c2+1/2)

− 􏽘
n

i�1

ιi
κi

􏽥c
2
i − 􏽘

n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

(c2+1/2)

,

+ 􏽘
n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

(c2+1/2)

+ 􏽘
n

i�1
ϱioic

2
i + 1 + 􏽘

n

i�1

I
2

2
.

(48)

According to Lemma 5, we obtain

􏽘

n

i�1
􏽘

p

k�1
βi s

2
ik􏼐 􏼑

(c2+1/2)
+ 􏽘

n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

(1+c2/2)

≥ υ2
1

2c2+12− 1􏼠 􏼡V
(1+c2/2)
5 ,

(49)

where υ2 � min βmin2(c2+1/2), ιmin(c2+1/2)2(c2+1/2)􏼈 􏼉,
βmin � min βi􏼈 􏼉, ιmin � min ιi􏼈 􏼉.

From (49), we have

_V1 ≤ − υ1V
(1+c1/2)
1 − υ2

1
2c2+12− 1􏼠 􏼡V

(1+c2/2)
1 − 􏽘

n

i�1

ιi
κi

􏽥c
2
i

+ 􏽘
n

i�1

ιi
κi

􏽥c
2
i􏼠 􏼡

(c2+1/2)

+ 􏽘
n

i�1
ϱioic

2
i + 􏽘

n

i�1

I
2

2
+ 1.

(50)

Assume that there exists a compact set Πi satisfying

Πi � ( 􏽥ci| 􏽥ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Δi􏽮 􏽯, (51)

where Δi is an unknown constant.
If Δi <

�����
(ζ i/ιi)

􏽰
, we can obtain

ιi
κi

􏽥c
2
i < 1,

ιi
κi

􏽥c
2
i􏼠 􏼡

(c2+1/2)

<
ιi
κi

􏽥c
2
i

. (52)

If Δi ≥
�����
(ζ i/ιi)

􏽰
, we can obtain

ιi
κi

􏽥c
2
i􏼠 􏼡

(c2+1/2)

−
ιi
κi

􏽥c
2
i ≤

ιi
κi

Δ2i􏼠 􏼡

(c2+1/2)

−
ιi
κi

Δ2i . (53)

Denote

υ � 􏽘
n

i�1
ϱioic

2
i + 1 + 􏽘

n

i�1

ιi
κi

Δ2i􏼠 􏼡

(c2+1/2)

−
ιi
κi

Δ2i⎡⎣ ⎤⎦ . (54)

*en, from the above analyses, we can further conclude
that

_V1 ≤ − υ1V
(1+c1/2)
1 − υ2

1
2c2+12− 1􏼒 􏼓

n+k− 1
V

(1+c2/2)
1 + υ .

(55)

With Lemma 6, system (6) is practical fixed-time stable.
Furthermore, si will converge into the region

Φ � limt⟶Ts
si|V1 ≤min υ− (2/1+c1)

1
υ

1 − θo

􏼠 􏼡

(2/1+c1)

, υ2
1

2υ+12− 1􏼒 􏼓
n+k− 1

􏼠 􏼡

− (2/1+c1) υ
1 − θo

􏼠 􏼡

(2/1+c2)⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, (56)
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in a fixed-time Ts ≤ (1/ϑ1θo(1 − c1 + 12)) + (1/ϑ2
(12c2+12 − 1)nθo(c2 + 12 − 1)); that is, si will converge into
the region‖ si ‖ ≤Δs in a fixed-time Ts.

Theorem 2. When si reach the boundary Δs in fixed-time,
the tracking error e1i and e2i will converge to

e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δe1i � max ε,

Δ1ks

σ1i

􏼠 􏼡

1/p1( )

,
Δ1ks

σ2i

􏼠 􏼡

1/p2( )⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

e2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δe2i � max Δs + l1Δe1ik + l2Δ

2
e1ik,􏽮

Δs + σ1iΔ
p1
e1i + σ2iΔ

p2
e1i􏼐 􏼑

k1
􏼛,

(57)

in a fixed time, where i � 1, . . . , n, k � 1, 2, . . . , 6.

Proof. If si � 0, we can obtain

si � e2i + sgn σ1isgn e1i( 􏼁
p1 + σ2isgn e1i( 􏼁

p2􏼐 􏼑
k1

� 0, i � 1, . . . , n.

(58)

Furthermore, one can obtain

_ρei + sgn σ1isgn ρei( 􏼁
p1 + σ2isgn ρei( 􏼁

p2􏼐 􏼑
k1

� 0, i � 1, . . . , n,

ωei + sgn σ1isgn qei( 􏼁
p1 + σ2isgn qei( 􏼁

p2􏼐 􏼑
k1

� 0, i � 1, . . . , n.

(59)

Construct the following Lyapunov function candidate:

V4 �
1
2
ρT

eiρei + qT
eiqei + 1 − q0ei( 􏼁

2
,

�
1
2
ρT

eiρei + 2 1 − q0ei( 􏼁.

(60)

Denote

V5 � ρT
eiρei, V6 � 2 1 − q0ei( 􏼁 . (61)

Taking the derivative of V5 and V6 yields

_V5 � ρT
ei _ρei,

� ρT
ei − sgn σ1isgn ρei( 􏼁

p1 + σ2isgn ρei( 􏼁
p2􏼐 􏼑

k1
􏼒 􏼓,

− σ1i ρT
eiρei􏼐 􏼑

1/k1( )+p1/2( )
+ σ2i ρT

eiρei􏼐 􏼑
1/k1( )+p21/2( )

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

k1

,

≤ − σ1i2
1/k1( )+p1/2( )V

1/k1( )+p1/2( )
5 + σ2i2

1/k1( )+p2/2( )V
1/k1( )+p2/2( )

5􏼒 􏼓
k1

.

(62)

Similarly, taking the derivative of V6 yields

_V6 � − 2 _q0ei,

� qT
ievωei,

� − qT
iev sgn σ1isgn qei( 􏼁

p1 + σ2isgn qei( 􏼁
p2􏼐 􏼑

k1
􏼒 􏼓,

� − σ1i qT
ievqiev􏼐 􏼑

1/k1( )+p1/2( )
+ σ2i qT

ievqiev􏼐 􏼑
1/k1( )+p2/2( )

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

k1

,

≤ − σ1i0.5 1/k1( )+p1/2( )V
1/k1( )+p1/2( )

6 + σ2i0.5 1/k1( )+p2/2( )V
1/k1( )+p2/2( )

6􏼒 􏼓
k1

.

(63)

*en, from (62) and (63), we can obtain that system error
states (ρei, qei) converge into regions (0, 0), at the same time
_q0ei ∈ ( − 1, 1 ] converges to 1 in fixed-time by using Lemma
6. □

If si ≠ 0 and |e1ik|< ε, which implies that ∣e1ik ∣ has con-
verged to the region |e1ik|<Δe1ik � ε in a fixed time. *en,
from (23), we have
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e2ik + l1ie1ik + l2isgn e1ik( 􏼁
2

� ϖik, ϖik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Δs. (64)

Moreover, it is easy to see that

e2ik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δs + l1iΔe1ik + l2iΔ

2
e1ik, (65)

which means that |e2ik| converges to the region
|e1ik|<Δe1ik � ε in a fixed time.

If si ≠ 0 and |e1ik|> ε, we can obtain

si � e2i + sgn σ1isgn e1i( 􏼁
p1 + σ2isgn e1i( 􏼁

p2􏼐 􏼑
k1 ≠ 0, i � 1, . . . , n,

(66)

which means

si � e2i + sgn σ1isgn e1i( 􏼁
p1 + σ2isgn e1i( 􏼁

p2􏼐 􏼑
k1

� ϖik, ϖik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Δs.

(67)

After a simple transformation, (67) can be rewritten as

e2i + 1 −
ϖik

sgn σ1isgn e1i( 􏼁
c1

+ σ2isgn e1i( 􏼁
c2

􏼐 􏼑
k1

⎛⎜⎜⎝ ⎞⎟⎟⎠sgn σ1isgn e1i( 􏼁
c1

+ σ2isgn e1i( 􏼁
c2

􏼐 􏼑
k1

� 0. (68)

When 1 − (ϖik/sgn(σ1isgn(e1i)
p1 + σ2isgn(e1i)

p2)k1)> 0,
(66) is still kept in the form of the FTTSM as in Case 1, which
implies that

e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<
Δ1ks

σ1i

􏼠 􏼡

1/p1( )

, e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<
Δ1ks

σ2i

􏼠 􏼡

1/p2( )

. (69)

*us, system state e1i will converge into the region

e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δe1i � max

Δ1ks

σ1i

􏼠 􏼡

1/p1( )

,
Δ1ks

σ2i

􏼠 􏼡

1/p2( )⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (70)

in a fixed time.
On the other hand, from (67), we can obtain that system

state e2i will converge to the region

e2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δe2i � Δs + σ1iΔ

p1
e1i + σ2iΔ

p2
e1i􏼐 􏼑

k1
, (71)

in a fixed time.
Furthermore, we can conclude that

e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δe1i � max ε,

Δ1ks

σ1i

􏼠 􏼡

1/p1( )

,
Δ1ks

σ2i

􏼠 􏼡

1/p2( )⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

e2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δe2i � max Δs + l1Δe1ik + l2Δ

2
e1ik,􏽮

Δs + σ1iΔ
p1
e1i + σ2iΔ

p2
e1i􏼐 􏼑

k1
􏼛.

(72)

*us, e1i and e2i, i � 1, 2, 3, will converge to the regions Δe1i

and Δe2i in a fixed time, respectively.

Remark 4. Based on the multispacecraft FTTSM results, the
property of graph theory and adaptive technique, a fixed-
time 6-DOF coordinated control strategy is designed under
directed communication topology. Subsequently, the system
tracking error states can be guaranteed to converge their
desired trajectories in a fixed time even with external dis-
turbances and quantized control input. Note that this small
region is determined by the controller parameters αi > 0,

βi > 0, and κi > 0.*us, this small region is adjustable and can
be reduced as needed.

Remark 5. By employing the adaptive method, the precise
information of the external disturbance and parameters
uncertain is not needed for the controller (28) design.
Moreover, it is no required to make an additional as-
sumption about interspacecraft communication topology in
the designed fixed-time coordinated controller. Hence, the
designed controller is suitable for any communication to-
pology. Even if there is no communication link between the
formation spacecraft, this proposed controller can still
guarantee the practical fixed-time stability of each formation
spacecraft.

5. Illustrative Example

To validate the proposed coordinated controller, we give an
illustrative example in this section. *e communicate to-
pology of three follower spacecraft is described in Figure 2,
in which “Sat i(i � 1, 2, 3)” denotes the ith formation
spacecraft. *e leader spacecraft is specified to a circular
orbit with a radius of 6878 km and orbit angel velocity is
n0 � 1.11 × 10− 3 rad/s.

*e weighted Laplace matrix L is designed as

L �

1 0 − 1

− 1 1 0

0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (73)

*e inertia matrix and mass are

J1 �

10 1 0.4

1 8 0.2

0.4 0.2 7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦kg.m2
, J2 �

11 0.5 0.4

0.5 9 0.2

0.4 0.2 7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦kg.m2
,

J3 �

9 0.5 0.7

0.5 3.5 0.3

0.7 0.2 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦kg.m2
, mfi � 50 kg, ∀i � 1, 2, 3.

(74)
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*e desired attitude quaternion and attitude angular
velocity are

qdi � 1 0 0 0􏼂 􏼃
T
, ωdi � 0 0 0􏼂 􏼃

Trad/s, ∀i � 1, 2, 3. (75)

*e initial attitude quaternion and attitude angular
velocity are

q1(0) � 0.3317 0.3 0.4 − 0.8􏼂 􏼃
T
,ω1(0) � 0.07 − 0.05 − 0.04􏼂 􏼃

Trad/s,

q2(0) � 0.2646 0.2 0.5 − 0.8􏼂 􏼃
T
,ω2(0) � 0.07 − 0.05 − 0.04􏼂 􏼃

Trad/s,

q3(0) � 0.5568 0.2 0.4 − 0.7􏼂 􏼃
T
,ω3(0) � 0.06 − 0.05 − 0.05􏼂 􏼃

Trad/s.

(76)

*e relative position and velocity are initialized:

ρi(0) � − 10 160 50􏼂 􏼃
Tm, vi(0) � 0 0 0􏼂 􏼃

Tm/s, ∀i � 1, 2, 3.

(77)

In order to form a triangle of three follower spacecraft,
the desired relative position and velocity are specified as

ρ1d � 0 100 0􏼂 􏼃
Tm, ρ2 d � 0 200 0􏼂 􏼃

Tm,

ρ3d � 0 150 50
�
3

√
􏼂 􏼃

Tm, vdi(0) � 0 0 0􏼂 􏼃
Tm/s, ∀i � 1, 2, 3.

(78)

*e external disturbance of torque and force are spec-
ified as

Sat1

Sat2Sat3

Figure 2: *e directed communication topology of three follower spacecraft.
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zi � 0.06cos(0.3t) 0.01sin(0.1t) 0.06cos(0.2t)􏼂 􏼃
TNm,

Fit � 0.001cos(0.02t)0.002sin(0.02t)− 0.001sin(0.02t)􏼂 􏼃
TN, ∀i � 1, 2, 3.

(79)

*e maximum of input control force and torques are
limited to 5N and 1Nm, respectively.

*e following performance indexes are defined to de-
scribe the synchronization accuracy and tracking accuracy of
the proposed control law (28):

ϖ1 �

�������

􏽘
3

i�1
􏽥ρi

����
����
2

􏽶
􏽴

, ϖ2 �

�����������

􏽘

3

i�1
􏽘

j∈Ni

􏽥ρi,j

�����

�����
2

􏽶
􏽴

,

ϖ3 �

��������

􏽘

3

i�1
qT

veiqvei

􏽶
􏽴

, ϖ4 �

���

􏽘

3

i�1

􏽶
􏽴

􏽘
j∈Ni

qT
i,jveqi,jve ,

(80)

where 􏽥ρi � ρi − ρdi, 􏽥ρj � ρj − ρj d, 􏽥ρi,j � 􏽥ρi − 􏽥ρj, and qi,jve is

the vector part of qi,je � qi,j0e qT
i,jve􏽨 􏽩

T
� qei ⊗ qej. From the

definition ofϖ1,ϖ2,ϖ3, andϖ4, it can be shown that smaller
ϖ1 and ϖ3 can guarantee the better formation and attitude
tracking performance, respectively; smaller ϖ2 and ϖ4 can
ensure the better formation and attitude synchronization
performance, respectively.

*e control scheme (28), adaptive updating law (29), and
hysteretic quantizer (12) parameters are chosen as c1 � 0.9,
c2 � 1.1, a12 � 0.5, a23 � 0.5, a31 � 0.5, αi � 0.1, βi � 1,
p1 � 0.4, p2 � 1.5, k1 � 2, ci � 0.1, bi � 0.04, κi � 0.000002,
Ii � 0.5, ϱi � 0.000002, ∀i � 1, 2, 3, δ � 0.25, and
umin � 0.00001.

*e simulation results of the controller (28) are shown
in Figures 3 to 9, where Figure 3 depicts the relative at-
titude error and Figure 4 plots the relative angular velocity
error. It can be observed that the relative attitude errors
converge to near zero within 50 s, which has a fast con-
vergence rate. *e relative position error and relative
velocity error are shown in Figures 5 and 6, respectively. It
can be seen that the relative position errors converge to
near zero about 85 s, which has a fast convergence rate.
*e quantized control force and torque are shown in
Figures 7 and 8, respectively. *e curves of the perfor-
mance indexes ϖ1 to ϖ4 are depicted in Figure 9. As seen
from the simulation results, the proposed fixed-time
control strategy provides a good performance of tracking
and synchronization.

6. Conclusion

In this paper, the fixed-time 6-DOF coordinated control
problem has been studied for multiple spacecraft formation
with input quantization under directed communication
graph. A fixed-time adaptive coordinated control strategy is
designed by using multispacecraft FTTSM vector such that,
in the presence of the upper bounds of unknown external
disturbances, the controlled system is practical fixed-time
stable and, at the same time, the tracking errors converge to

their desired trajectories in a fixed time. Compared with the
existing finite-time stabilization controllers, the designed
adaptive fixed-time coordinated controller in this paper is
more suitable for practical engineering application due to its
convergent time regardless of initial system states. An il-
lustrative example is given to illustrate the performance of
the presented fixed-time coordinated controller. It was
shown that the presented controller not only can ensure each
spacecraft’s convergence to its desired states but also can
provide the desired synchronization and tacking perfor-
mance. Future study will focus on the extension of the
presented controller under time-varying communication
topology and communication time delay.
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