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In this paper, we study the problem of protecting privacy in recommender systems. We focus on protecting the items rated by
users and propose a novel privacy-preservingmatrix factorization algorithm. In our algorithm, the user will submit a fake gradient
to make the central server not able to distinguish which items are selected by the user. We make the Kullback–Leibler distance
between the real and fake gradient distributions to be small thus hard to be distinguished. Using theories and experiments, we
show that our algorithm can be reduced to a time-delay SGD, which can be proved to have a good convergence so that the accuracy
will not decline. Our algorithm achieves a good tradeoff between the privacy and accuracy.

1. Introduction

Recommender systems, which help the electronic commerce
websites to give more useful suggestions, are becoming more
and more important. However, to provide users with ap-
propriate options, the server will collect users’ data, which
includes lots of sensitive information.

Data in electronic commerce, economics, supply chain,
financial system [1–10], etc., are generally very sensitive. In
the electronic commerce case, it is shown in many studies,
such as [11, 12] that user data in recommender systems,
shopping records, movies a user has watched, and ratings for
the restaurants contain lots of very private information such
as political attitudes, sexual orientation, etc. In this paper, we
study the privacy-protecting problem in electronic com-
merce data. Privacy has been an important issue for a long
time, not only in the recommender system but also in almost
all algorithms in data mining and machine learning.

Differential privacy [13] is a popular method to protect
privacy in machine learning algorithms. For recommender
systems, there aremanyworks applying differential privacy, such

as [14–16]. Differential privacy matrix factorization algorithms
are introduced in [17, 18], etc. Traditional differential privacy
method is centralized, in other words, relying on a trustworthy
data collector.When we want the central server not to be able to
get privacy information, local differential privacy (LDP) should
be used. Every user will add noise to their private data in their
own device before being submitted to the central server. Rec-
ommender systems with LDP are studied in [19–21]. LDP has
been used in Google’s Chrome browser [22] and Apple IOS 10
[23] to collect user data.

In local differential privacy, there are two important things
to be protected. ,e first one is which items this user has rated
and the second one is the ratings of the user. In some situations,
which items have been rated is much more sensitive than the
rating itself. For example, shopping record contains a lot of
private information, but the ratings can only represent the
quality of goods. ,e work in [19] can only protect the ratings
but not both. Shin et al. [17] proposed a novel LDP matrix
factorization algorithm to protect both kinds of privacy infor-
mation based on the work in [24].,eirmethod is to let the user
submit a noisy gradient, whose value is either B or − B. ,e
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algorithm is ε-LDP, and in each round of the training process,
and since the output is binary, the adversary can not learn about
which items are rated in a single iteration process.

However, if the adversary can get noisy gradients in
multiple iterations since the noisy gradients obey the
Bernoulli distribution with a mean 0, the items which have
not been rated can be identified by a statistical test. ,e
intensity of the privacy protection for the ratings and items
after multiple iterations can be guaranteed by composition
theorems for LDP [25, 26]. If every iteration is ε-LDP, after
k iterations, the final algorithm is at most kε-LDP. But
these analyses are not a direct guarantee to protect the
items rated by the users. We can turn to a new perspective
on this question. After performing k iterations, given a
sequence with length k denoted by yi, where yj

i is the
gradient submitted in iteration i, let Preal(yj) be the
probability that yj is a real gradient sequence and let
Pfake(yj) be the probability that yj is fake. Using these two
probabilities, we can consider testing two hypotheses, the
sequence is real and the sequence is fake. So now comes the
question, how can we make it difficult to distinguish the
two situations?

In order to improve the ability of protecting privacy, we
want the probability error to be large. Note that the average
negative log probability of error is well-known deduced from
the Chernoff–Stein lemma.

Theorem 1 (Theorem 11.8.3 in [27]). X ∼ Q is a random
variable; consider the hypothesis test between two alterna-
tives, Q � P1 and Q � P2, where D(P1, P2), the K-L distance,
is finite. 0en the average negative log probability of error of
this hypothesis testing is D(P1, P2).

Using this result, although we can not obtain the dis-
tribution of the real sequence, in Section 4, we will show that
for the Gaussian noise based differential privacy algorithm,
we can estimate themean value of K-L distance and optimize
the value of fake gradient to make the two distributions to be
difficult to distinguish.

In this paper, we propose a novel algorithm such that
if the item has not been rated by the user, the user will
submit a fake gradient. Else, the user can submit the real
one, but all the submitted data will eventually be noise
added. ,e paper is organized as follows. In Section 2, we
introduce differential privacy briefly as preliminaries. In
Section 3, we introduce the framework of the general
differential privacy matrix factorization algorithm. And
in Section 4, we will show that our algorithm can reduce
the average K-L distance between the fake and real
gradient distributions, such that it can improve the in-
tensity to protect the privacy items. Meanwhile, we can
prove that our algorithm has the form of SGD with time
delay, which can be proved that the accuracy of the model
will not be reduced by our updating rules so that our
algorithm achieves a tradeoff between accuracy and
privacy. In Section 5, we use experiments to show the
effectiveness of our algorithm. ,e related work is
reviewed in Section 6. In the final section, we conclude.

2. Preliminaries

In this paper, the notations we used are listed in Table 1.

2.1. Differential Privacy. Differential Privacy is first intro-
duced by Dwork et al. [13], the aim of which is to make it
difficult for an attacker to obtain privacy from the output
data by adding noise.

Definition 1. A randomized algorithm M: D⟶ R with
domain D and range R is (ε, δ)-Differential Privacy, if for
two adjacent data d, d′ ∈ D and for a subset S of range R, it
holds that

P(M(d) ∈ S)≤ e
ε
P M d′(  ∈ S(  + δ. (1)

Note that this definition is to compare the two proba-
bility. If δ � 0, it can be expressed as

ln
P(M(d) ∈ S)

P M d′(  ∈ S( 
≤ ε. (2)

If ε is small, such that it is hard to distinguish whether the
output data is come from d or d′. As in [28], one can link
differential privacy with mutual-information.

Another way to describe Differential Privacy is to use the
distance between distributions. We say a randomized al-
gorithm M: D⟶ R is (α, ε) Renyi Differential Privacy if
for all neighboring d′ and ′d′ we have

Dα M d′( , M(d)(  �
1

α − 1
ln

M d′( (z)

M(d)(z)
 

α

M(d)(z)dz≤ ε.

(3)

When α⟶ 1, D1 is the Kullback-Leibler distance, and
when α �∞, Renyi Differential Privacy is equal to (ε, 0)

Differential Privacy. So we can see Differential Privacy is to
make the output distributions with different inputs to be
indistinguishable(the distributions have small distances).

One may ask how to achieve (ε, δ)-Differential Privacy in
machine learning process. A basic paradigm to achieve ”--
differential privacy is to examine a query L2-sensitivity in [29].

Definition 2. f is a map from the data in the dataset D to a
vector. ,e L2-sensitivity of f is Δ2(f) � maxd′,d‖f(d) −

f(d)‖.

Table 1: Notations.

Notation Meaning
m Number of users
n Number of items
u ,e user profile vector
v ,e item profile vector
L (u, v) ,e loss function
M ,e set of the ratings

C
Bound of the norm of the gradient in privacy gradient

descent
η ,e learning rate
λ ,e regularization parameters
β β-Smooth parpameters for the loss function
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Using this definition, we have the following theorem in
[29].

Theorem 2. If f is a map from D toRd. 0en the randomized
algorithm M(D): f(D) + n where

P(n)∝ exp
ε‖n‖

Δ2(f)
 , (4)

achieves ε-Differential Privacy.

,is theorem provides a basic method to achieve Dif-
ferential-Privacy-Machine-Learning.

3. The Framwork of Perturbed Matrix
Factorization Algorithm

,e program of Matrix Factorization algorithm with privacy
protection has been studied by many authors, such as
[17, 19].

When minimizing the cost function

L(u, v) + λ 
i

ui

����
����
2

+ 
j

vj

�����

�����
2

⎛⎝ ⎞⎠

�
1
n


i,j∈M

rij − u
T
i vj 

2
+ λ 

i

ui

����
����
2

+ 
j

vj

�����

�����
2
.

(5)

We can use gradient descent

ui(t + 1) � ui(t) − η∇ui
L(u(t), v(t)) + 2λui(t),

vj(t + 1) � vj(t) − η∇vj
L(u(t), v(t)) + 2λvj(t).

(6)

,e vector ui is the user profile vector for user i, and vj is
the item profile vector for item j.

Note that we have


i,j∈M

rij − u
T
i vj 

2
� 

i,j

yij rij − u
T
i vj 

2
, (7)

∇vj
L(u, v) � −

2
n


i

gij � −
2
n


i

yijui rij − u
T
i vj ,

(8)

where yij � 1 if i, j ∈M else. yij � 0
In this type of program, the user profile vectors ui are saved

and updated on the users’ own devices. As for the item profile
vectors, all the users will send the gradient to the central server,
and individual users should perturb their gradient gij using a
random mechanism M. ,en the central server sums all these
gradients to update the item profile vectors vj. Using this
random perturbation, ε-differential privacy can be achieved by
adjusting the distribution of noise.

,e whole process is shown in Algorithm 1.
Note that there are two types of private information. One

is the ratings of the users and the other one is the items have
been rated by the users.

In order to protect the items, one way is to use the
random response mechanism introduced in Section 4.1 of

[17]. In this method, we generate a yij
′ such that yij

′ � 1 with
probability p, and if the original yij � 0, we set a fake rating
rij � 0 so the fake gradient is ui(0 − uT

i vj) by (8), and
Gaussian noise is added to the final gradient sent to the
central server to protect the ratings of users.

However, it is shown in the discussion of Section 4.1 of
[17] that the error caused by these fake ratings is not small,
which will influence the final model accuracy. ,e main
reason is that there are many fake gradients, which lead to a
great error in the expectation of the sum of gradients.

One way is to solve this problem is to set the fake
gradient Fij to be zero. If yij � 0, the user sends a random
variable M(0) to the central server. ,is method is used in
[17], where M(x) is a Bernoulli random variable with mean
value x. However, the disadvantage of this method is that the
distribution of gradients in the yij � 0 case is very different
from the distribution of the real gradient. For example, we
can collect some data of gij sent by the user i, and use a
statistical test to test if this data obeys the certain distribution
of mean 0, then we can know whether yij � 0.

All in all, we need to strike a balance between privacy and
accuracy. We need to provide a fake gradient to make sure
the accuracy will not be greatly affected and let these two
distributions, the fake one and the real one, to be statistically
indistinguishable as far as possible.

4. The Main Results

In this paper, since we are concerned about the items of
users, we will focus on considering the statistical distance
of yij � 0 and yij � 1 distributions. We propose a novel
algorithm to protect items of the users. In our algorithm, the
user will submit a noise-added fake gradient in the yij � 0 case.
,eK-L distance between the real and fake distributions will be
small so that they are hard to be distinguished. On the other
hand, we will study how will the fake gradients influence the
model accuracy. We will show that in our algorithm, the
updating rules can be reduced to a time-delay SGD, which will
not influence the accuracy.

In our algorithm, the random mechanism M we choose
is the Gaussian random mechanism, M(d) � N(d, σ2). One
of the advantages is that there is a very good composition
theorem [26] which gives a much tighter estimate on the
multi-iteration privacy loss for Gaussian mechanism-based
differential privacy gradient descent algorithm.

Theorem 3 (Theorem 1 in [26]). Let C be the gradient bound
in privacy gradient descent, there exist two constants c1 and c2
such that the after k iterations, the Gaussian noisy privacy
gradient descent algorithm is (ε, δ)-differentially private for
any δ > 0 if we choose

σ ≥ c2C

��������
T ln(1/δ)



ε
. (9)

Generally, C is chosen to be a prior bound of the gradient
norm, so we do not write it in the algorithm description
explicitly.
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In the case of the Gaussian randommechanism, it is easy
to calculate the K-L distance between distributions. In the
following section, we will show that we can find a good
choice of the fake gradient.

4.1. Estimating the K-L Distance between Two Distributions.
Given a gradient sequence yj with length k, a probability of
yj can be represented in the following form.

P yj � o1: k  � 
k

i�1
P y

i
j � oi|y

i− 1
j � oi− 1 . (10)

Using this form we can calculate K-L distance.
Given two probability measures P1 and P2 in length k

sequence space, we have

D P1, P2(  �  P1 o1:k(  

k

i�1
log

P1 oi|oi− 1( 

P2 oi|oi− 1( 
do

� 
k

i�1
 P1 oi|oi− 1( P1 oi− 1( log

P1 oi|oi− 1( 

P2 oi|oi− 1( 
doidoi− 1

� 

k

i�1
 P1 oi− 1( D P1 oi|oi− 1( , P2 oi|oi− 1( ( doi− 1.

(11)
In each iteration, the user will sent a perturbed gradient

gij
′ to the central server, which has the following forms:

gij
′ �

ui rij − u
T
i vj  + N 0, σ2 , if yij � 1,

Fij + N 0, σ2 , if yij � 0.

⎧⎪⎨

⎪⎩
(12)

,e we have Preal(ot|ot− 1) � P(xt + ηij � ot), where xt is
the gradient calculated from ot− 1, so D(Preal(ot|oi− 1),

Pfake(ot|oi− 1)) � D(N(x
ij
t , σ2), N(Gij, σ2).

,is is the K-L distance between two Gaussian distri-
butions with the same σ. We can show that
D(N(x

ij
t , σ2), N(Gij, σ2)) � const + (1/2σ2)‖x

ij
t − Gij‖

2.
From equation (11), if we want to optimize the K-L

distance, we need to consider


t

 Preal x
ij
t 

1
2σ2

x
ij
t − Fij

�����

�����
2
dx

ij
t . (13)

Although we do not know the distribution of real gra-
dients, this means value can be estimated by sampling. Let S

be the set of user i such that yij � 1.

 Preal x
ij
t 

1
2σ2

x
ij
t − Fij

�����

�����
2
dx

ij
t ∼ 

i∈S

1
2σ2

x
ij
t − Fij

�����

�����
2
.

(14)

And in our algorithm, for a given item j, all the users will
use the same F—in other words, we Fij is independent of i.
then the above equation is a function of the quadratic form.


i∈S

1
2σ2

x
ij
t − Fj

�����

�����
2
. (15)

Input: Random mechanism M, learning rate η, and redefined iteration number k
Output: Item profile matrix V
Randomly initialize ui(0), vj(0) for all i and j.
for t � 1, 2, 3 . . . do

Initialize Gj � 0 for all j in central server.
for i � 1, 2, 3, . . . , m do

On user i: sample j uniformly
from{1, 2, 3, . . . , n}.
if yij � 1 then

gij � ui(rij − uT
i vj)

gij � gij/max(1, (‖gij‖
2/C))

gij
′ � M(xij)

end
else

Generate a fake gradient of Fij.
set gij � Fij

gij
′ � M(xij)

end
Gj � Gj + xij

′ for all j.
end
For all j:
Gj � (Gj/m)

vj � vj + ηGj

for i � 1, 2, 3 . . . m do
Update ui on a local device by gradient descent.

end
end

ALGORITHM 1: Perturbed Matrix Factorization algorithm.
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In order to minimize this K-L distance, we should
set Fj � i∈S(xij/#S). Gj(t) ≈ (1/m)i∈Sui(t)(rij − uT

i (t)vj

(t)) � ∇vj
L(vj(t)). However, at time t, the user i can not get

the current gradient ∇vj
L(vj(t)). However, in the following

section, we will show that in our algorithmwe can estimate it
from the previous gradient igij(t − 1).

4.2. Algorithmic Description. In Algorithm 1 with Gaussian
random mechanism, we can see that the central server will
receive the gradients submitted from the users, whose
summation is as follows:

Gj � 
iwithyij�1

ui rij − u
T
i vj  + N 0, σ2  + 

iwithyij�0
Fj + N 0, σ2 .

(16)

Suppose Fj � 0, Gj is just a Langevin stochastic gradient
[30] whose expected value is the total gradient. When Fj ≠ 0,
using Gj to update the parameters will generally influence
the accuracy of the model. One way to solve this problem is
to subtract a value in the central server.

Gj � 
iwithyij�1

ui rij − u
T
i vj  + N 0, σ2 

+ 
iwithyij�0

Fj + N 0, σ2  − NjFj.
(17)

In order to determine the value of Nj to make the Fj part
small, we can use the Random Response mechanism.

,e random Response mechanism [31] is a well-known
method to obtain statistical information on sensitive issues,
e.g., the proportion of AIDS. In our algorithm, we will use
the Random Response mechanism to count the number of
yij � 0 items, which is used for the central server to correct
the sum of the gradients.

,e procedure of the Random Response mechanism is
that the responder will give the true answer with probability
p> 0.5, and with probability 1-p, the answer will give an
opposite answer.

Theorem 4 (Warner, 1965, in [31]). Suppose the number of
the answer of y � 0 is n1, and the total number of the re-
sponders is n. If p≠ (1/2), (p − 1/2p − 1) + (n1/(2p − 1)n)

is an unbiased estimate of the y � 0 ratio with variance
(θ(1 − θ)/n) + (p(1 − p)/n(2p − 1)2), where θ is the real
ratio of y � 0 items.

,e variance is O(1/n), so if the total number of the users
is large enough, with a high probability, θ ≈ θ.

,e whole process is shown in Algorithm 2.
It is easy to see that, in the central server, the update

process has the following forms:

vj(t + 1) � vj(t) − η ∇vj
L vj(t), z  +

numj − θjnj

n
 ΔVj,

(18)

where ∇vj
L(vj(t), z) is the sampling stochastic gradient and

numj is the number of yij � 0 terms in sampling.

As for ΔVj, we know that

ΔVj(t) �
i∈Sgij(t − 1) + # i ∉ S{ } − θjnj ΔVj(t − 1)

1 − θj nj

∼
i∈Sgij(t − 1)

#S
.

(19)

Note that since the regularization term bound the norm
of matrix U and V, there exits a small constant β to make the
loss function L(u, v) to be β− smooth, that is to say,

∇vj
L vj(t − 1)  − ∇vj

L vj(t) 
�����

�����2
≤ β vj(t − 1) − vj(t)

�����

�����2
.

(20)

Since (1/η)≫ β, ∇vj
L(vj(t − 1)) is a good approximation

of ∇vj
L(vj(t)).

So we have the folowing:

vj(t + 1) � vj(t) − η ∇vj
L vj(t), z  + μ∇vj

L vj(t − 1), z   + ζ.

(21)

One can easily prove that the variances of all these es-
timations are O(1/n).

4.3. 0e Influence of Model Accuracy. We can see the form
of updating rule (21) is a stochastic gradient descent with
time delay. It can be shown that even if μ a not small, time
delay SGD will still have good convergence.

,e convergence of SGD with time delay is proved in
[32]. In this paper, Lian proved the convergence of asyn-
chronous stochastic gradient descent which has the same
form as equation (21).

Theorem 5 (Theorem 1 in [32]). Assume the loss function
is β− smooth, η is the learning rate, B is the batch size, and T
is the time delay. If

βBη + 2β2B2
Tη

T

k

η≤ 1, (22)

after K iterations, we have with high probability,

mink ∇f xk( 
����

����
2
≤ 4

���������������

f x1( ( − f(x∗))β
BK



σ, (23)

Where f(x∗) is the global minimum of f and σ is the
standard deviation of stochastic gradients.

Proof of0eorem 5. In this case, the stochastic gradientsGm,t

sent by the node m at time t can be written as
Gm,t � ∇f(xt− τm,t

) + ζt,m, where τm,t is the time delay of the
gradient and ζt,m is the noise (including noise from the
stochastic gradients and the Gaussian noise we added). In
our case, ζt,m is a sub-Gaussian random variable. To simplify
the description, we assume ζt,m is σ-sub-Gaussian.
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f xτ+1(  − f x0(  � 
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τ
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η
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B
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τ

k�0
η〈∇f xk( , 

B
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j�k− τmax
k



B

m�1
ζj,m

�����������

�����������

2

≤ 
τ
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η
2B

  

B
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τ
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B
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τ

k�0
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T2,a
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τ

k�0
β2Bη3 
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j�k− τmax
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B
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ζj,m
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2

√√√√√√√√√√√√√√√√√√√√√√
T2,b

.

(24)

In order to estimate T2 � T2,a + T2,b, we can use lemmas
in [33].

Let ζk � (1/B) 
B
m�1 ζk,m. With probability 1 − e− ι, we

have the following:

− 
τ

k�0
η〈B∇f xk( , ζk〉 ≤

ηB

8


τ

k�0
∇f xk( 

����
����
2

+ cησ2ι. (25)

,is is from Lemma 30 in [33].
With high probability,



τ

k�0

3η2β
2



B

m�1
ζk,m

���������

���������

2

≤
3η2β
2

Bcσ2(τ + 1 + ι). (26)

And with high probability,



τ

k�0
β2Bη3 

k− 1

j�k− τmax
k



B

m�1
ζj,m

�����������

�����������

2

≤ β2TBη3Bcσ2
τ

TBη + 1 + T + ι
 

≤
η2L
2

Bcσ2(τ + 1 + ι).

(27)

We have the following:

T1 ≤
ηB

8


τ

k�0
∇f xk( 

����
����
2

+ cησ2ι + 2η2βBcσ2(τ + 1 + ι),

(28)

η2((3β/4) − β2MT2η) − (η/2B)< 0. With probability at least
1 − 3e− ι,

f xτ+1(  − f x0( ≤ 
τ

k�0
−
3Bη
8
∇f xk( 

����
����
2

+ cησ2ι

+ 2η2βBcσ2(τ + 1 + ι).

(29)

,e theorem follows.
,is theorem has the same form as the convergence

theorem of general and SGD, and in our case, we have T � 1.
So we can show this time delay will not influence the
convergence. □

4.4. Privacy Loss in the RandomResponseMechanism. At the
start of our algorithm, we need to use the Random response
mechanism to estimate the ratio of yij, which will cause a
privacy loss. However, we can show that since we need a
large number of iterations in the machine learning algo-
rithm, the initial privacy loss is insignificant.
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It is easy to prove that the Random response mechanism
is ln(p/1 − p)-Differential Privacy. We know from,eorem
3 that ε ∼ O(

��������
k ln(1/δ)


) after k iterations. If n is large

enough, we can choose a p near 0.5, and when k is large,
ln(p/1 − p) will be much less then ε.

Noting that the K-L distance for a length k sequence is
O(k), the discussion on the K-L distance is the same.

5. Experiments

We now show the performance of our algorithm. We
evaluate three types of privacy gradient descent
algorithms:

(i) Algorithm 1, the noisy gradient descent with
Fij � ui(0 − uT

i vj). ,e users will submit a gradient
Fij � ui(0 − uT

i vj) + ζ if yij � 0, where ζ is a
N(0, σ2) Gaussian random variable.

(ii) Algorithm 2, noisy gradient descent with Fij � ζ.
(iii) Algorithm 3, our algorithm in this paper.

In the Fij � 0 case, the only noise in the total gradient is
caused by Gaussian noise added to the users’ device. ,is
algorithm will be accurate but has no ability to protect the
item’s privacy. We will show that the performance of our
algorithm is very close to the case Fij � 0 and much better
than the algorithm using fake ratings.

Input: Redefined iteration number k, learning rate η, probability p for Random Response and Standard deviation of Gaussian
distribution σ.
Output: Item profile matrix V
For all items j, use the probability p Random Response method to estimate the ratio of the users with yij � 0 as θj.
Randomly initialize ui(0), vj(0) for all i and j.
for t � 1, 2, 3 . . . do

Initialize Gj � 0, nj � 0 for all j� 1, 2, . . ., n in central server.
for i � 1, 2, 3, . . . , m do

On user i: sample B items S � S1, S2, . . . , SB  uniformly from{1, 2, 3, . . . , n}
for j in S do

nj � nj + 1
if yij � 1 then

gij � ui(rij − uT
i vj)

Draw gij
′ ∼ N(xij, σ2)

end
else
if t≠ 1 then

Fij � ΔVj

end
else

Fij � ui(0 − uT
i vj)

end
gij � Fij

Draw gij
′ ∼ N(xij, σ2)

end
end
Gj � Gj + x ij

′ .
end
for j � 1, 2, . . . , n do

if nj � 0 then
Gj � 0
ΔVj � 0
end
else

Gj � Gj − θjnj × ΔVj(t − 1)

ΔVj(t) � (Gj/((1 − θj)nj))

Gj � (Gj/m)

vj � vj + ηGj

end
end
for i � 1, 2, 3, . . . , m do

Update ui on the local device by gradient descent.
end

end

ALGORITHM 2: Noisy matrix factorization with fake gradient.
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We test on MovieLens 100k dataset [34]. ,is version
contains 100k ratings of 1682movies submitted by 982 users.
,is dataset is very sparse. In order to test the performance
in different situations of sparsity, for every user, we choose a
set F of items to be selected to provide fake gradients. We
consider different cases that #F � #S (50% fake gradient
density), #F � 3#S (75% fake gradient density) to test the
algorithm. We set the profile vector dimension d � 15,
regularization parameters λ � 0.001, learning rate η � 0.1,
σ2 � 1 and use AdaDelta to optimize. ,e test RMSE is
shown in Figures 1 and 2.

After 400 iterations, the test RMSE is listed in Table 2.
We see that when the density of fake rating increases, the

test RSME of fake rating algorithm is growing rapidly, and
the performance algorithm is very close to the zero mean
fake gradient algorithm.

6. Related Work

Differential privacy introduced by Dwork [13] is a very
strong guarantee to protect privacy. ,e original version of
differential privacy consider a trusted server to provide data

to queriers, and the aim is to prevent access to user privacy
from queries.

Local differential privacy algorithm, such as RAPPORT
[22], is to make sure the central server can not access the
privacy of the users. ,e main technology is to add some
noise before submitting the data to the server. In the Chrome
browser, Google uses a randomized response mechanism to
collect the data of the users’ clicks. Also, there are many
works to use local differential privacy to perform machine
learning algorithms. For example, Google uses local dif-
ferential privacy Federated Learning [35] to learn a language
model in order to improve the performance of the inputting
method.

One of the difficulties in differential privacy machine
learning is that when training amodel usingmany iterations,
the privacy guarantees will decline rapidly. Differential
privacy for multi-iterations is studied in [25, 26] and a much
tighter composition theorem is given.

Private recommender system is studied by many authors
such as [17–20, 36, 37]. References [17, 18] are based on a
matrix factorization recommender system. ,e algorithm is
to adding some noise in users’ devices locally to protect
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Figure 1: RMSE with 50% density.
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Figure 2: RMSE with 75% density.
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privacy. ,e algorithm in [17] can protect both the ratings
and the items of the user. ,eir work is based on the work in
[24], where they propose a new randomization mechanism
and show that their mechanism is better when the dimension
of data is large.

7. Conclusion

In this paper, we propose a novel privacy matrix factor-
ization algorithm. In our algorithm, we use the Random
Response method to estimate the selection ratios of the
items, and then we use the average value of the gradients in
the previous time as the fake gradient to be sent to the central
server. Using our method, we can improve the indistin-
guishability of the real gradient and fake distributions so that
improve the ability to protect user private items. Meanwhile,
we show that our algorithms will not cut down the accuracy
of the model since the updating rule can be reduced to SGD
with time delay, which can be proved to convergence to
gradient zero points.

Data Availability

,e Movielens-100K, http://files.grouplens.org/datasets/
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