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Software defects prediction at the initial period of the software development life cycle remains a critical and important assignment.
Defect prediction and correctness leads to the assurance of the quality of software systems and has remained integral to study in the
previous years.(e quick forecast of imperfect or defectivemodules in software development can serve the development squad to use the
existing assets competently and effectively to provide remarkable software products in a given short timeline. Hitherto, several re-
searchers have industrialized defect prediction models by utilizing statistical and machine learning techniques that are operative and
effective approaches to pinpoint the defective modules. Tree family machine learning techniques are well-thought-out to be one of the
finest and ordinarily used supervised learningmethods. In this study, different tree familymachine learning techniques are employed for
software defect prediction using ten benchmark datasets.(ese techniques include Credal Decision Tree (CDT), Cost-Sensitive Decision
Forest (CS-Forest), Decision Stump (DS), Forest by Penalizing Attributes (Forest-PA), Hoeffding Tree (HT), Decision Tree (J48),
Logistic Model Tree (LMT), Random Forest (RF), Random Tree (RT), and REP-Tree (REP-T). Performance of each technique is
evaluated using different measures, i.e., mean absolute error (MAE), relative absolute error (RAE), root mean squared error (RMSE),
root relative squared error (RRSE), specificity, precision, recall, F-measure (FM), G-measure (GM), Matthew’s correlation coefficient
(MCC), and accuracy. (e overall outcomes of this paper suggested RF technique by producing best results in terms of reducing error
rates as well as increasing accuracy on five datasets, i.e., AR3, PC1, PC2, PC3, and PC4.(e average accuracy achieved by RF is 90.2238%.
(e comprehensive outcomes of this study can be used as a reference point for other researchers. Any assertion concerning the
enhancement in prediction through any new model, technique, or framework can be benchmarked and verified.

1. Introduction

Software engineering (SE) is a discipline that is worrisome with
all qualities of software development from the beginning period
of software specification over to keeping up to the software
maintenance after it has gone into practice [1]. In the field of
SE, software defect prediction (SDP) is one of the most sig-
nificant and dynamic research zones that assumes a significant
job in the software quality assurance (SQA) [2, 3]. An SD is a

flaw or insufficiency in a software system that roots the de-
velopment of a spontaneous result. (e rising convolutions as
well as dependencies of software systems have increased the
difficulty in delivering software with minimal effort, high
caliber, andmaintainability as well which increases the chances
of introducing software defects (SDs) [4]. Generally, SDs are
found in the testing stage of the Software Development Life
Cycle (SDLC) [5]. An SD can moreover be the situation when
the finalized software product does not meet the client’s desire
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or client prerequisite [6] which causes the diminution of the
software product quality and increases the development cost.

SDP is a momentous commotion to assure the sub-
stances of a software system that leads to adequate devel-
opment cost and recover the quality by identifying defect-
prone instances before testing [4]. It moreover embraces
categorizing software components in new varieties of a
software system, which constructs the testing progression
supplementary by concentrating on testing and evaluating
the components classified as defective [7]. Defects adversely
affect software reliability and quality [8].

SDP in the primary period of SDLC is measured as the
utmost thought-provoking aspect of SQA [9]. In SE, bug
fixing and testing are very costly which also requires a
massive amount of resources. Forecasting software
defects in software development have been observed by
numerous studies in the last decades. Amid all these
studies, machine learning (ML) techniques are
considered as the best approach toward SDPs [7, 10, 11].

Keeping the above issue related to SDP, various re-
searchers evaluated and built SDP models utilizing diverse
classification techniques. Still, it is quite challenging to sort
any broad-spectrum preparation to inaugurate the usability
of these techniques. Comprehensively, it was originated that
despite some uniqueness in the studies, no specific SDP
procedure conveys a higher precision to different methods
slantingly on different datasets. Most of the researchers have
utilized different evaluation measures to achieve a higher
accuracy, but to the best of our knowledge, no one has
worked on reducing error rate which is also an important
factor for any prediction model [12, 13].

However, this study focuses on exploring Tree Family
(TF) ML techniques for SDP. (ese TF-ML techniques
include Credal Decision Tree (CDT), Cost-Sensitive Deci-
sion Forest (CS-Forest), Decision Stump (DS), Forest by
Penalizing Attributes (Forest-PA), Hoeffding Tree (HT),
Decision Tree (J48), Logistic Model Tree (LMT), Random
Forest (RF), Random Tree (RT), and REP-Tree (REP-T).
(ese techniques are employed on ten different datasets
including AR1, AR3, CM1, KC2, KC3, MW1, PC1, PC2,
PC3, and PC4. All the experiments are validated using mean
absolute error (MAE), relative absolute error (RAE), root
mean squared error (RMSE), root relative squared error
(RRSE), specificity, precision, recall, F-measure (FM),
G-measure (GM), Matthew’s correlation coefficient (MCC),
and accuracy.

A question may be raised for the reason of selecting TF-
ML techniques. (e motive for the selection of TF-ML
techniques is well-thought-out to be one of the finest and
ordinarily used supervised learning methods. Tree-based
techniques empower predictive models with ease of inter-
pretation, stability, and high accuracy [14]. Disparate linear
models such as TF-ML techniques map nonlinear relation-
ships pretty well.(ey are flexible at resolving several kinds of
problems at hand (regression or classification). (ese tech-
niques also work for both categorical and continuous input
and output variables [15, 16]. TF is one of the wildest ways to
categorize the utmost momentous variables and relation
between two or more variables. TFs can produce new features

that have improved power to forecast object variable. It in-
volves fewer data cleaning contrasted to several other mod-
eling techniques. It is not prejudiced via outliers and missing
values to a rational amount [17–19].

(e main contributions of this research are as follows:

(i) We exploited ten benchmarked TF-ML techniques
(CDT, CS-Forest, DS, Forest-PA, HT, J48, LMT, RF,
RT, and REP-T) for SDP.

(ii) We demeanor a series of tryouts on different
datasets; i.e., AR1, AR3, CM1, KC2, KC3, MW1,
PC1, PC2, PC3, and PC4.

(iii) To gain insights into the experimental outcomes,
evaluation is accomplished using MAE, RAE,
RMSE, RRSE, specificity, precision, recall, FM, GM,
MCC, and accuracy.

(iv) To show the significance of the results, Friedman’s
two-way analysis of variance by ranks is performed.

Hereinafter, Section 2 presents the literature survey,
Section 3 comprises the methodology and techniques, while
experimental outcomes have conversed in Section 4, and
Section 6 covers the inclusive conclusion.

2. Literature Survey

(is section delivers an ephemeral study about existing
techniques in the field of SDP. Several researchers have
employed ML techniques for SDP at the initial phase of
software development. Several particular studies have
conversed here. Czibula et al. [11] presented a model
grounded on Relational Association Discovery (RAD) for
SDP.(ey applied all the investigations on the NASA dataset
including MC2, KC1, KC3, JM1, MW1, PC3, PC4, CM1,
PC1, and PC2. To assess the model by comparing it to other
models using accuracy, probability of detection (PD),
specificity, precision, and area under cover (ROC) assess-
ment measure, the acquired outcomes presented that RAD
performed well rather than other employed techniques.

Li et al. [20] recommended a framework for SDP named
Defect Prediction through Convolutional Neural Network
(DP-CNN). (ey evaluated DP-CNN on seven different
open source projects that are camel, jEdit, Lucene, xalam,
Xerces, synapse, and poi in terms of FM in defect predic-
tions. Overall outcomes illustrate that, on average, DP-CNN
enhanced the state-of-the-art method by 12%.

Jacob and Raju [21] introduced a hybrid feature selection
(HFS) method for SDP. (ey also performed their analysis
on NASA datasets including PC1, PC2, PC3, PC4, CM1,
JM1, KC3, and MW1. (e outcomes of HFS are bench-
marked with Näıve Bayes (NB), neural networks (NNs), RF,
Random Tree (RT), and J48. Benchmarking is carried out
using sensitivity, specificity, accuracy, and Matthew’s cor-
relation coefficient (MCC). (e analyzed outcome shows
that HFS outperforms by improving classification accuracy
from 82% to 98%.

Bashir et al. [22] presented a joined framework to im-
prove the SDP model using data sampling (DS), ranker
feature selection (FS) techniques, and iterative partition filter
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(IPF) to conquest class imbalance, high dimensionality, and
noise correspondingly. Seven ML techniques including NB,
RF, KNN,MLP, SVM, J48, and decision stump are employed
on CM1, JM1, KC2, MC1, PC1, and PC5 datasets for
evaluations. (e outcomes are carried out utilizing receiver
operating characteristic (ROC) performance evaluation.
Overall experimental outcomes of the proposed model
outperformed other models.

In another study [7], the author projected a new ap-
proach for SDP utilizing hybridized gradual relational as-
sociation and artificial neural network (HyGRAR) to classify
the defective and nondefective objects. Experiments were
achieved based on ten different open-source datasets that are
JEdit 4.0, JEdit 4.2, JEdit 4.3, Anr 1.7, Tomcat 6.0, AR1, AR3,
AR4, AR5, and AR6. For module evaluation, accuracy,
sensitivity, specificity, and precision measures were utilized.
(e author concluded that HyGRAR achieved better out-
comes compared to most of the foregoing projected
approaches.

Alsaeedi and Khan [8] performed the comparison of
supervised learning techniques including Bagging, SVM,
Decision Tree (DT), and RF and ensemble classifiers on
different NASA datasets that are KC2, KC3, PC1, PC3, PC4,
PC5, JM1, CM1, MC1, and MC2. (e basic learning and
ensemble classifiers are evaluated using GM, specificity,
F-score, recall, precision, and accuracy. (e experimental
results showed that RF, AdaBoost with RF, and DS with
bagging outperformed other employed techniques.

A comparative exploration of several ML techniques for
SDP is performed [9] on twelve NASA datasets that are PC1,
PC2, PC3, PC4, PC5, MC1, MC2, JM1, CM1, MW1, KC1,
and KC3, while the classification techniques include One
Rule (OneR), NB, MLP, DT, RBF, kStar (K∗), SVM, KNN,
PART, and RF. (e performance of each technique is
evaluated via MCC, ROC area, recall, precision, FM, and
accuracy. It is imitated from the outcomes that neither the
accuracy and nor the ROC can be utilized as an operative
performance measure as both of these did not respond to the
class imbalance problem.

Malhotra and Kamal [6] evaluated the efficiency of ML
classifiers for SDP on twelve excessive NASA datasets by
employing sampling methods and cost-sensitive classifiers.
(ey examine five prevailing methods including J48, RF, NB,
AdaBoost, and Bagging, as well as the SPIDER3 method for
SDP. (ey have compared the performance based on ac-
curacy, sensitivity, specificity, and precision. (e outcomes
show improvement in the prophecy competence of ML
classifiers with the usage of oversampling methods. More-
over, the projected SPIDER3 method shows hopeful results.

Manjula and Florence [23] developed a hybrid model
based on the genetic algorithm (GA) and deep neural
network (DNN). GA is used for feature optimization while
DNN is for classification. (e performance of the projected
technique is compared with NB, RF, DT, Immunos, ANN-
artificial bee colony (ABC), SVM, majority vote, AntMiner+,
and KNN. All the performances are carried out on datasets
that include KC1, KC2, CM1, PC1, and JM1 and assessed via
recall, F-score, sensitivity, precision, specificity, and accu-
racy. (e experimental outcomes showed that the

recommended technique outperformed as compared to
other techniques in terms of achieving better accuracy.

Researchers have used various techniques to incredulous
the boundaries of SDP on a variety of datasets. In each study,
different evaluation measures are accomplished to evaluate
the proposed techniques. (e overall summary of the lit-
erature discussed above is given in Table 1 As shown in
Table 1, each study has used different evaluation measures to
achieve a higher accuracy, but no one made an effort to
decrease the error rate which is a significant feature.

3. Research Methodology

(is research aims to present the performance analysis of TF-
ML techniques for SDP on various datasets includingAR1, AR3,
CM1, KC2, KC3,MW1, PC1, PC2, PC3, and PC4.(e complete
research is prepared via the procedure shown in Figure 1. All
experimentation is performed using open source ML and DM
tool Weka version 3.9 (https://machinelearningmastery.com/
use-ensemble-machine-learningalgorithms-weka/). After the
selection of datasets, a preprocessing step is applied on each
dataset for twomain purposes: replacing the missing values and
changing the class attribute from numerical to categorical as
some of the techniques do not work on numerical class attri-
butes. (en, ML techniques are applied to each dataset, and the
outcomes are assessed using different assessment measures to
show the better performance of an individual technique. Eleven
assessmentmeasures namedMAE [13, 24, 25], RMSE [8, 26, 27],
RAE [22, 28, 29], RRSE [28], specificity [30–32], precision
[9, 15, 33], recall [9, 10, 31], FM [9, 15, 20], GM [8, 34], MCC
[9, 35, 36], and accuracy [37–39] are utilized to evaluate the
performance of ML techniques on SDP datasets.

3.1. Datasets Description. Each dataset consists of some
attributes along with a known output class. Datasets contain
numerical data, while the total number of attributes and
instances are different, as presented in Table 2, where the first
column presents the datasets and second and third columns
present the number of attributes and number of instances,
respectively. (e fourth and fifth columns represent the
number of defective modules and the number of non-
defective modules, while the last column shows the type of
data in each dataset. However, Table 3 shows the list of all
attributes (software metrics) according to each dataset
utilized in this research, where “-” means that this attribute is
not part of the dataset while “Y” represents the presence of
an attribute in the dataset.

3.2. Performance Measurement Parameters. (is section
describes the calculation mechanism of each performance
measurement parameter with a short description, where
|yi − y| is the absolute error, n is the number of errors, Tj is
the goal value for record Ji, Pij is the value of forecast by the
specific model I for record j (out of n records), TP is the
number of true-positive classification, FN is the number of
false-negative classification, TN is the number of true-
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negative classification, and FP is the number of false-positive
classifications:

(A) MAE is the average of all absolute errors. It can be
calculated as

MAE �
1
2



n

j�1
yi − y


. (1)

(B) RMSE is the quadratic scoring statute that similarly
measures the average magnitude error that can be
calculated as

RMSE �

����

1
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2

. (2)

(C) RAE is the same as a modest predictor, which is
simply the average of the real values and can be
found as

RAE �


n
j�1 Pij − T
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. (3)

(D) RRSE is known as the square root of the relative
squared error (RSE) that mostly decreases the error
to similar dimensions as the quantity being pre-
dicted. It can be found as

RRSE �
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. (4)

(E) Specificity (also called the true-negative rate) mea-
sures the proportion of actual negatives that are
correctly identified as such (e.g., the percentage of
healthy instances that are correctly identified as not
having the condition). It can be calculated as

specificity �
TN

FP + TN
. (5)

(F) Precision is the number of positive predictions di-
vided by the total number of positive class values
expected. It is also called the positive predictive value
(PPV). It can be calculated as

precision �
TP

TP + FP
. (6)

(G) Recall is defined as the ratio of TP modules with
high opinion to the total number of positive
modules. It can be found as

recall �
TP

TP + FN
. (7)

(H) F-measure is also called the F-score. F1-score
conveys the balance between precision and recall. It
can be measured as

FM �
2∗ precision∗ recall
precision + recall

. (8)

(I) G-measure conveys the balance between the speci-
ficity and the recall. It can be calculated as

GM �
2∗ recall∗ specificity
recall + specificity

. (9)

(J) MCC is a correlation coefficient calculated using all
four values in the confusion matrix. (is can be
found as

MCC �
(TN∗TP) − (FN∗ FP)

�����������������������������������
(FP + TP)(FN + TP)(TN + FP)(TN + FN)

 . (10)

(K) Accuracy points to how much the forecast is ac-
curate and can be calculated as

accuracy �
TP + TN

TP + TN + FP + FN
. (11)

3.3. Summarization of Employed Techniques. ML techniques
are currently extensively used to excerpt significant
knowledge commencing a massive volume of data in diverse
areas. ML applications embrace numerous real-world situ-
ations such as cybersecurity, bioinformatics, detecting
communities in social networks, and software process en-
hancement to harvest high-quality software systems [7]. ML
as well as TF-ML-based solutions for SDP have also been
investigated [6, 10, 34]. (e following subsections briefly
discuss TF-ML techniques employed in this research.

3.3.1. Credal Decision Tree. Credal Decision Tree (CDT) is a
technique to design classifiers grounded on inexact possi-
bilities and improbability measures [18]. (roughout the
creation procedure of a CDT, to sidestep producing a too-
problematical decision tree, a new standard was presented:
stop once the total improbability increases due to the
splitting of the decision tree. (e function used in the total
uncertainty dimension can be fleetingly articulated as in
[14, 19].

3.3.2. Cost-Sensitive Decision Forest. CS-Forest practices
cost-sensitive pruning as a substitute for the pruning used by
C4.5. C4.5 prunes a tree if the probable number of
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misclassification for forthcoming records does not increase
expressively due to the pruning. However, CS-Forest prunes a
tree if the probable classification cost for forthcoming records

does not increase expressively due to the pruning. Moreover,
unlike Cost-Sensitive Decision Tree (CS-Tree), CS-Forest tol-
erates a tree to first completely develop and then get pruned [40].

Datasets

Data preprocessing

Training of the datasets

Tree family ML techniques

Classification

Performance evaluation

Final outcomes Best so�ware defect prediction (SDP)
model

MAE, RAE, RMSE, RRSE, Specificity
Precision, Recall, F-measure,
G-measure, MCC, Accuracy

Defective and non defective modules

CDT, CS-F DS, F-PA, HT, J48, LMT, RF,
RT, REP-T

AR1, AR3, KC3, MW1, PC1, PC2, PC3,
PC4

AR1, AR3, KC3, MW1, PC1, PC2, PC3,
PC4

Handling missing values and
transformation of class attribute from

numerical to categorical

Figure 1: Methodology work flow.

Table 1: Summary of the literature survey.

Author Technique/model Datasets Evaluation measures

Czibula et al. [11] RAD PC1, PC2, PC3, PC4, KC1, KC3, MC2, JM1,
MW1, and CM1

Accuracy, specificity, precision,
PD, and ROC

Li et al. [20] DP-CNN Camel, jEdit, Lucene, xalam, Xerces,
synapse, and poi FM

Jacob and Raju
[21] HFS, NB, NN, RF, RT, J48 PC1, PC2, PC3, PC4, CM1, MW1, KC3, and

JM1
Specificity, sensitivity, MCC, and

accuracy

Bashir et al. [22] NB, RF, KNN, MLP, SVM, J48,
and decision stump CM1, JM1, KC2, MC1, PC1, and PC5 ROC

Miholca et al. [7] HyGRAR JEdit 4.2, JEdit 4.0, Anr 1.7, JEdit 4.3, Tomcat
6.0, AR1, AR3, AR4, AR5, and AR6

Accuracy, sensitivity, specificity,
and precision

Alsaeedi and
Khan [8] Bagging, SVM, DT, and RF PC1, PC3, PC4, PC5, JM1, KC2, KC3, MC1,

MC2, and CM1
GM, specificity, F-score, recall,

precision, and accuracy

Iqbal et al. [9] OneR, NB, K∗, MLP, RBF, SVM,
KNN, DT, PART, and RF

PC1, PC2, PC3, PC4, PC5, KC1, KC3, CM1,
JM1, MW1, MC1, and MC2

MCC, ROC area, FM, recall,
precision, and accuracy

Malhotra and
Kamal [6]

J48, RF, NB, AdaBoost, bagging,
and SPIDER3 NASA datasets Accuracy, sensitivity, specificity,

and precision
Manjula and
Florence [23]

GA, DNN, NB, RF, DT, ABC,
SVM, and KNN KC1, KC2, CM1, PC1, and JM1 Precision, sensitivity, specificity,

recall, F-score, and accuracy
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Table 2: Attributes, instances, defective, and nondefective modules of each utilized dataset.

S. no. Datasets No. of attributes No. of instances No. of defective
modules

No. of
nondefective
modules

Data type

1 AR1 30 121 9 7.4% 112 92.6% Numerical
2 AR3 30 63 8 12.7% 55 87.3% Numerical
3 CM1 22 498 49 9.8% 449 90.2% Numerical
4 KC2 22 522 107 20.5% 415 79.5% Numerical
5 KC3 40 194 36 18.6% 158 81.4% Numerical
6 MW1 41 403 31 8.0% 372 92.0% Numerical
7 PC1 22 1109 77 6.9% 1032 93.1% Numerical
8 PC2 41 5589 23 0.5% 5566 99.5% Numerical
9 PC3 41 1563 160 10.1% 1403 89.9% Numerical
10 PC4 41 1458 178 12.2% 1280 87.8% Numerical

Table 3: List of attributes according to datasets.

Attributes Datasets
AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4

Halstead attributes

Halstead content Y Y — – Y Y – Y Y Y
Halstead difficulty Y Y Y Y Y Y Y Y Y Y
Halstead effort Y Y Y Y Y Y Y Y Y Y

Halstead error estimator Y Y – – Y Y – Y Y Y
Halstead length Y Y Y Y Y Y Y Y Y Y
Halstead level Y Y Y Y Y Y Y Y Y Y

Halstead program time Y Y Y Y Y Y Y Y Y Y
Halstead volume Y Y Y Y Y Y Y Y Y Y

Number of operands Y Y Y Y Y Y Y Y Y Y
Number of operators Y Y Y Y Y Y Y Y Y Y

Number of unique operands Y Y Y Y Y Y Y Y Y Y
Number of unique operators Y Y Y Y Y Y Y Y Y Y

McCabe attributes

Essential complexity – – Y Y Y Y Y Y Y Y
Cyclomatic complexity Y Y Y Y Y Y Y Y Y Y
Design complexity Y Y Y Y Y Y Y Y Y Y
Cyclomatic density Y Y – – Y Y – Y Y Y

Size attributes

Number of lines – – Y Y Y Y Y Y Y Y
LOC total Y Y Y Y Y Y Y Y Y Y

LOC executable Y Y – – Y Y – Y Y Y
LOC comments Y Y Y Y Y Y Y Y Y Y

LOC code and comments Y Y Y Y Y Y Y Y Y Y
LOC blank Y Y Y Y Y Y Y Y Y Y

Other attributes

Branch count Y Y Y Y Y Y Y Y Y Y
Condition count Y Y – – Y Y – Y Y Y
EDGE count – – – – Y Y – Y Y Y

Parameter count Y Y – – Y Y – Y Y Y
Modified condition count – – – – Y Y – Y Y Y
Multiple condition count Y Y – – Y Y – Y Y Y

Node count – – – – Y Y – Y Y Y
Design density Y Y – – Y Y – Y Y Y
Essential density – – – – Y Y – Y Y Y
Decision count Y Y – – Y Y – Y Y Y
Decision density Y Y – – Y Y – Y Y Y

Call pairs Y Y – – Y Y – Y Y Y
Global data complexity – – – – Y Y – Y Y Y
Global data density – – – – Y Y – Y Y Y
Maintenance severity – – Y Y Y Y Y Y Y Y

Normalized cyclomatic complexity Y Y – – Y Y – Y Y Y
Pathological complexity – – – – – Y – Y Y Y

Percent comments – – Y Y Y Y Y Y Y Y
Class attribute Defective Y Y Y Y Y Y Y Y Y Y
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3.3.3. Decision Stump. DS is utilized as a base learner to
construct ensemble models. DS is an ML model encom-
passing a one-level decision tree. (is ensemble learning
performs 1000 repetitions for accomplishing optimal per-
formance [41]. DS is essentially decision trees with a solitary
label. A stump is divergent to a tree that has various layers. It
mostly stops after the first split. DS is commonly utilized in
large data. Almost not, they also serve to create modest yes/
no decision models for smaller datasets [39].

3.3.4. Forest by Penalizing Attributes. Forest-PA technique
uses bootstrap samples and penalized attributes. It purposes
to construct a set of highly accurate decision trees by ma-
nipulating the strong point of all nonclass attributes pre-
sented in a data set, not like certain current techniques that
use a subset of the nonclass attributes. At a similar time to
support robust assortment, Forest-PA enforces disadvan-
tages (disadvantageous weights) to an individual’s attributes
that contributed to the newest tree to produce the subse-
quent trees. Forest-PA, moreover, has a contrivance to in-
crease weights step by step from the attributes that have not
been tested in the subsequent tree(s) [42].

3.3.5. Hoeffding Tree. HT is identified as the streaming
decision tree generation. (e term is resulting from the
Hoeffding bound that is utilized in tree generation. (e
elementary idea is Hoeffding bound delivers a specific level
of assurance on the finest attribute to riven the tree, which
can be the baseline to create the finest model [39].

3.3.6. Decision Tree (J48). (is is the basic C4.5 Decision
Tree (DT) used for classification problems [37]. It is the
deviation of information gain (IG), usually utilized to stun
the result of biasness. An attribute with a maximum gain
ratio is nominated in direction to shape a tree as a splitting
attribute. Gain ratio- (GR-) based DT performs well as
compared to IG, in terms of accuracy [43].

3.3.7. Logistic Model Tree. LMTs are classification trees using
logistic regression functions at the leaves.(is technique can
compact with dualistic and multiclass objective variables,
nominal and numeric attributes, and missing values. LMT is
a classification model with an attendant supervised training
technique. It syndicates decision tree learning and logistic
forecasts. Logistic model trees use a decision tree that has
linear regression models at its leaves to deliver fragment-
wise linear regression model [39].

3.3.8. Random Forest. RF produces a set of techniques that
involve constructing an ensemble or so-termed as a forest
of decision trees from a randomized variation of tree
induction techniques [44]. RF works by forming a mass of
decision trees at the training period and outputting the
class in the approach of the classes output by a single tree.
It is deliberated as one of the utmost techniques which are
extremely proficient for both classification and regression
problems [45].

3.3.9. Random Tree. RT is the supervised and collective
learning technique that creates numerous solitary learners. It
uses a grasping idea to construct a set of random data for
building a tree. In the standard tree, nearby every node is
split using the best split amid all variables. In the RF, each
node is divided utilizing a best amid the subset of predictors
randomly selected at that node [46].

3.3.10. REP-Tree. REP-Tuses a regression tree that produces
numerous trees in diverse repetitions. Afterward, it chooses
the best one from all created trees. REP-T constructs a
decision/regression tree using entropy as an adulteration
measure and prunes it employing reduced-error pruning. It
merely sorts of values for numeric attributes [46].

4. Experimental Study

(is section provides an experimental study for SDP
employing ten ML techniques using a 10-fold cross-vali-
dation method which is a standard approach for assessment
[47]. 10-fold cross-validation is the process that splits the
complete data into ten subsets of equal sizes; one subset is
used for testing, while others are used for training. (is
process is continued until each subset has been used for
testing. (e overall experiments are divided into three
phases; these are experimental scenarios 1, 2, and 3. Ex-
perimental scenario 1 represents the analysis of CCI, ICI,
TPR, and FPR, while experimental scenario 2 presents the
performance analysis of absolute and squared error rates
that are MAE, RAE, RMSE, and RRSE accordingly. How-
ever, experimental scenario 3 describes the performance
achieved using accurate measurements that are specificity,
precision, recall, F-measure, G-measure, MCC, and
accuracy.

4.1. Experimental Scenario 1: Instances Classification and
True-Positive and False-Positive Rates. Here, in this section,
experiments carried out to find correctly classified and in-
correctly classified instances are presented, as well as the
true-positive and false-positive rate of each classifier over
each solitary dataset. Tables 4 and 5 show the CCI and ICI
analyses achieved, while Tables 6 and 7, respectively, present
the TPR and FPR values of each technique on an individual
dataset. In each of the mentioned tables, the first row
represents the dataset utilized, while the first column rep-
resents the techniques employed. (e rest of the table
represents the outcome of CCI, ICI, TPR, and FPR,
respectively.

(e observation from CCI shows that RF correctly
classified the instances on five datasets that are AR3, PC1,
PC2, PC3, and PC4; CDT and HT do the same for three
datasets, DS and REP-T do the same for two datasets, while
other rest of CF-Forest and RT performs the same for only
one dataset individually. In the case of ICI, each technique
showed the same performance as CCI and ICI are con-
trasting each other. Figure 2 shows the inclusive analysis of
CCI and ICI. However, the situation has changed for TPR
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and FPR. Calculating TPR, RF shows the best performance
on five datasets, CDT, DS, HT, and LTM outperforms on
three datasets individually, REP-T on two datasets, while
Forest-PA and J48 do the same only on one individual
dataset. However, measuring FPR, Forest-PA performs well
on four datasets, DS, HT, and REP-T outperform on three
datasets, respectively, CDT and RF show the best perfor-
mance on two individual datasets, while J48 and LMT
outperform only on one individual dataset. (e overall
analysis showed that RF performs well while calculating CCI,
ICI, and TPR, while calculating FPR, Forest-PA out-
performed other techniques. Figure 3 shows the inclusive
analysis of TPR and FPR.

4.2. Experimental Scenario 2 (Error Rate Analysis and Results
Discussion). (is section describes all the error rates
achieved utilizing TF-ML techniques on different datasets.
Tables 8 and 9 show the absolute errors MAE and RAE,
respectively. Firstly, we consider MAE to measure MAE
where J48 outperformed other techniques and achieved best
results on five datasets; RT achieved best results on four
datasets and RF on two datasets, while CDT, DS, Forest-PA,
and HT performed well only on one solitary dataset. Sec-
ondly, if we consider RAE, likewise MAE J48 outperformed
other techniques achieving best results on four datasets, RT
on three datasets, RF on two, while HT surpassed other
techniques on one dataset. Figures 4 and 5 show the error bar
with a standard deviation of MAE and RAE, respectively.

Error bar is a graphical demonstration of the incon-
sistency of data and used on graphs to specify the uncertainty
or error in a described measurement. It provides an overall
indication of how accurate a measurement is or, on the other
hand, how distant from the described value the true (error
free) value might be. Here, these analyses show the best
performance of J48 and RT while reducing absolute error
rates.

Tables 10 and 11 present the analysis of squared errors
that are RMSE and RRSE. In each table, the first row rep-
resents the datasets, while the first column represents the
employed techniques. (e rest of the table cells shows the
outcomes of each employed technique on individual data-
sets. On both squared error measures RRSE and RMSE, RF
achieved better results on five datasets that are AR3, KC3,
PC1, PC3, and PC4. LMT outperforms other techniques on
two datasets, while CDT, DS, Forest-PA, and REP-T do the
same only on one individual dataset. Figures 6 and 7 rep-
resent the error bar with a standard deviation of RMSE and
RRSE.(ese outcomes present the best performance of RF to
reduce the squared error rate.

4.3. Experimental Scenario 3 (Accuracy Analysis and Results
Discussion). To measure the performance of any technique,
accuracy is considered as one of the most important eval-
uation measures. Here, in this section, we present different
measurements for accuracy that are specificity, precision,
recall, F-measure, G-measure, MCC, and accuracy. All these
measurements depend on the values of the confusion matrix

shown in Table 12. (ere are two types of classes in which
prediction is possible, i.e., class 1 (positive) and class 2
(negative). Class 1 represents that there is defect in the
software, while Class 2 represents that there is no defect in
the software. Here, TP is the case in which the software has
positive (they have the defect) and FP is also the case of
positive, but they do not actually have the defect, and it is
also called type 1 error. FN is the negative cases, but they
actually do have the defect, and it is also known as type 2
error. TN is a negative case, which shows that they do not
have the defect.

Table 13 presents the specificity assessment of all
employed techniques on various datasets. In this table,
column one presents the list of techniques, while the rest of
the columns represents the specificity achieved on an in-
dividual dataset. Instead of some values, there is a categorical
message “#DIV/0!,” which is due to the “0” value in the
confusion matrix. According to different equations, if there
is a need to divide some values and that value becomes “0,” at
that time as we know that “0” is not divisible, we will have
this message. Here, in the tables, we used “?” instead of
“#DIV/0!.”

(e analysis of Table 13 shows that measuring specificity,
DS outperforms on AR3 and KC3, J48 outperforms on AR1
and PC4, LMT outperforms on KC2 and MW1, while RF
shows better performance on CM1 and PC3. CS-Forest and
Forest-PA outperform other techniques on PC2 and PC1,
respectively.

Table 14 presents the overall analysis of precision
achieved by TF-ML techniques on each dataset. (e out-
comes show that, on one individual dataset, several tech-
niques perform better. As we consider the AR1 dataset, three
techniques perform well that are CDT, HT, and REP-T,
while on CM1, PC1, and PC3 datasets, DS and HT produce
the same results, whereas on the PC2 dataset, seven tech-
niques show the same results outperforming the rest of the
three techniques. However, on AR3, KC2, KC3, MW1, and
PC4 datasets, CDT, LMT, DS, HT, and J48, respectively,
outperform other techniques.

Table 15 shows the recall assessments of each technique.
(e analysis shows that CDT produces better results only
on the KC3 dataset while RF does the same only on the AR3
dataset. However, CS-Forest outperforms other techniques
and shows the best performance on eight datasets that are
AR1, CM1, KC2, MW1, PC1, PC2, PC3, and PC4. (is
analysis recommended the CS-Forest technique for calcu-
lating recall. For better understanding of analysis taken over
specificity, precision, and recall, Figures 8–10 represent the
error bar and standard deviation lines correspondingly for
specificity, precision, and recall.

(e F-measure analysis is presented in Table 16 where
RF generates better results on four datasets, DS and HT
generate better outcomes on three datasets, respectively,
while CDT, J48, LMT, and REP-T do the same for two
datasets, respectively. However, Forest-PA outperforms
other techniques only on one dataset. If we consider the PC2
dataset, seven techniques produce the same results and
likewise in the case of precision and MAE too. Now a
question may arise here that why more techniques present
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the same and good results on the PC2 dataset? (e riposte
here is that this is due to the PC2 dataset which contains a
very less number of defective modules that are only 0.5%. If

we consider the rest of the datasets, no one can have less than
6.9% defective modules which is why the performance of
each technique is different on these datasets.

Table 4: Correctly classified instances analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 112 55 445 433 159 372 1037 5566 1394 1300
CS-Forest 103 53 411 413 158 356 1011 5562 1325 1296
DS 110 57 449 416 159 367 1032 5566 1403 1280
Forest-PA 111 56 448 436 155 371 1037 5566 1402 1313
HT 112 53 449 435 157 372 1032 5566 1403 1284
J48 109 55 438 425 154 371 1035 5566 1390 1303
LMT 111 55 444 440 154 375 1025 5565 1393 1317
RF 109 58 444 435 158 371 1039 5566 1409 1322
RT 108 55 415 422 137 349 1010 5544 1337 1264
REP-T 112 55 444 426 154 369 1038 5566 1401 1308

Table 5: Incorrectly classified instances analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 9 8 53 89 35 31 72 23 169 158
CS-Forest 18 10 87 109 36 47 98 27 238 162
DS 11 6 49 106 35 36 77 23 160 178
Forest-PA 10 7 50 86 39 32 72 23 161 145
HT 9 10 49 87 37 31 77 23 160 174
J48 12 8 60 97 40 32 74 23 173 155
LMT 10 8 54 82 40 25 84 24 170 141
RF 12 5 54 87 36 32 70 23 154 136
RT 13 8 83 100 57 54 99 45 226 194
REP-T 9 8 54 96 40 34 71 23 162 150

Table 6: True-positive rate analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 0.926 0.873 0.894 0.83 0.82 0.923 0.935 0.996 0.892 0.892
CS-Forest 0.851 0.841 0.825 0.791 0.814 0.883 0.912 0.995 0.848 0.889
DS 0.909 0.905 0.902 0.797 0.82 0.911 0.931 0.996 0.898 0.878
Forest-PA 0.917 0.889 0.9 0.835 0.799 0.921 0.935 0.996 0.897 0.901
HT 0.926 0.841 0.902 0.833 0.809 0.923 0.931 0.996 0.898 0.881
J48 0.901 0.873 0.88 0.814 0.794 0.921 0.933 0.996 0.889 0.894
LMT 0.917 0.873 0.892 0.843 0.794 0.931 0.924 0.996 0.891 0.903
RF 0.901 0.921 0.892 0.833 0.814 0.921 0.937 0.996 0.901 0.907
RT 0.893 0.873 0.833 0.808 0.706 0.866 0.911 0.992 0.855 0.867
REP-T 0.926 0.873 0.892 0.816 0.794 0.916 0.936 0.996 0.896 0.897

Table 7: False-positive rate analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 0.926 0.873 0.902 0.439 0.663 0.834 0.69 0.996 0.871 0.562
CS-Forest 0.625 0.45 0.583 0.206 0.814 0.631 0.523 0.953 0.355 0.78
DS 0.927 0.548 0.902 0.337 0.534 0.747 0.931 0.996 0.898 0.878
Forest-PA 0.926 0.657 0.902 0.479 0.818 0.923 0.822 0.996 0.97 0.609
HT 0.926 0.557 0.902 0.466 0.816 0.923 0.931 0.996 0.898 0.849
J48 0.723 0.446 0.849 0.422 0.562 0.775 0.714 0.996 0.649 0.368
LMT 0.926 0.659 0.885 0.484 0.626 0.775 0.895 0.996 0.882 0.565
RF 0.928 0.332 0.848 0.431 0.707 0.746 0.654 0.996 0.731 0.531
RT 0.724 0.446 0.673 0.459 0.689 0.691 0.584 0.953 0.664 0.497
REP-T 0.926 0.766 0.903 0.526 0.69 0.894 0.69 0.996 0.859 0.522
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Table 17 shows the G-measure results. (e outcome
assessments show the best performance of CS-Forest, LMT,
and RF for two individual datasets that are PC2 and PC4,

KC2 and MW1, and CM1 and PC3 correspondingly, while
CDT, DS, Forest-PA, and J48 beat other techniques on KC3,
AR3, PC, and AR1 datasets, respectively. Furthermore,
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Figure 2: Overall analyses of CCI and ICI.
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Table 18 represents the analysis of MCC measurement
achieved using utilized TF-ML techniques.(e outcomes show
that utilizing CM1, KC2, PC2, and PC3 datasets, CS-Forest
outperforms other techniques producing better results. Going
on the KC3 dataset, the performance of the DS technique is
better than the rest of the utilized techniques, while
proceeding AR1 and PC4 datasets, the performance of J48
beats other employed techniques. Moreover, the perfor-
mance of LMT is better then other techniques employing
on MW1 datasset, while on AR3 and PC1 dataset, RF
outperform well instead of other techniques.

Accuracy assessments of all employed TF-ML tech-
niques are shown in Table 19. (e outcome achieved
on AR3, KC3, and PC2 datasets presents that CDT out-
performs other techniques in terms of achieving a higher
accuracy. Moreover, on AR1 and PC2 datasets, REP-T also
outperforms other techniques while achieving the same
results as CDT. Going on the PC2 dataset, CDT, REP-Twell
DS, Forest-PA, J48, and RF also produce the same results.
(is is due to the very less number of defective modules in
this dataset. However, on CM1 and KC3 datasets, DS beats
other employed techniques in tenure of achieving better
accuracy results, as well as proceeding CM1 dataset; HTalso

Table 8: MAE analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 0.138 0.209 0.175 0.23 0.28 0.129 0.103 0.008 0.163 0.14
CS-Forest 0.184 0.254 0.218 0.292 0.299 0.156 0.127 0.009 0.183 0.244
DS 0.144 0.131 0.171 0.24 0.264 0.126 0.121 0.008 0.166 0.171
Forest-PA 0.139 0.157 0.167 0.225 0.269 0.127 0.113 0.008 0.163 0.149
HT 0.144 0.21 0.179 0.165 0.298 0.144 0.13 0.009 0.184 0.202
J48 0.127 0.161 0.176 0.237 0.237 0.117 0.105 0.008 0.139 0.115
LMT 0.436 0.191 0.367 0.229 0.259 0.12 0.194 0.356 0.302 0.141
RF 0.127 0.148 0.163 0.221 0.257 0.126 0.095 0.008 0.148 0.133
RT 0.112 0.127 0.168 0.206 0.294 0.135 0.092 0.008 0.144 0.134
REP-T 0.138 0.215 0.181 0.235 0.297 0.135 0.103 0.008 0.163 0.131

Table 9: RAE analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 95.475 90.104 97.589 70.29 91.982 89.352 79.525 97.671 88.203 64.957
CS-Forest 127.68 109.45 121.64 89.521 98.066 108.64 97.525 100.87 99.451 113.5
DS 100.05 56.431 95.674 73.372 86.727 87.145 92.794 95.159 90.149 79.504
Forest-PA 96.114 67.856 93.351 68.794 88.439 88.169 86.666 97.098 88.415 69.191
HT 100 90.312 100 50.341 97.885 100 100 104.2 100 94.236
J48 87.977 69.248 98.213 72.675 77.888 81.303 80.946 97.671 75.478 53.491
LMT 302.3 82.477 204.91 70.219 85.175 83.399 149.57 4238.8 163.77 65.806
RF 87.961 63.786 91.195 67.493 84.379 87.357 72.995 93.456 80.296 61.913
RT 77.286 54.752 93.743 63.146 96.462 93.925 71.115 99.202 78.198 62.266
REP-T 95.475 92.809 101.17 71.812 97.438 94.043 79.355 97.671 88.505 60.846
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Figure 4: MAE analysis with error and standard deviation bar.
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Figure 5: RAE analysis with error and standard deviation bar.
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outperforms other techniques that turn out the same results
such as DS. Furthermore, on AR3, PC1, PC3, PC4, and PC2
as well, RF performs better results to achieve a higher ac-
curacy than other utilized techniques. (e overall accuracy
analysis suggests RF for a better measurement of accuracy.
Moreover, the error bar and standard deviation line for the
better understanding of F-measure, G-measure, MCC, and

accuracy are presented in Figures 11–14 individually. (e
average accuracy is demonstrated in Figure 15 for the better
understanding of outcomes analysis of each technique going
through each utilized dataset.

Table 10: RMSE analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 0.2627 0.3377 0.3046 0.3627 0.3818 0.2605 0.2358 0.064 0.2971 0.278
CS-Forest 0.2985 0.3449 0.3307 0.379 0.3766 0.2919 0.2504 0.0645 0.3088 0.3036
DS 0.2995 0.3046 0.297 0.3569 0.3712 0.2565 0.2457 0.0631 0.2908 0.2923
Forest-PA 0.2667 0.2836 0.292 0.3422 0.3709 0.2538 0.2349 0.642 0.2867 0.2687
HT 0.2628 0.3871 0.2979 0.402 0.3987 0.2665 0.2542 0.0639 0.3031 0.3236
J48 0.2997 0.3424 0.3301 0.3968 0.43 0.2751 0.2441 0.064 0.3151 0.299
LMT 0.4646 0.3254 0.4322 0.339 0.3918 0.243 0.315 0.4199 0.3917 0.2683
RF 0.2856 0.2724 0.2951 0.349 0.3667 0.2613 0.2223 0.0647 0.2715 0.247
RT 0.3309 0.3563 0.4089 0.4392 0.542 0.3652 0.3014 0.0899 0.3786 0.3652
REP-T 0.2627 0.3438 0.3102 0.3733 0.4093 0.275 0.2365 0.064 0.2944 0.2768

Table 11: RRSE analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 99.9593 100.959 102.252 89.8344 98.1628 97.7466 92.7793 99.9995 97.9979 84.9229
CS-Forest 113.601 103.118 111.028 93.8871 96.8295 109.526 98.4938 100.808 101.864 92.7438
DS 113.975 91.0648 99.7001 88.4132 95.4458 96.2335 96.6546 98.5476 95.9299 89.2681
Forest-PA 101.48 84.7947 98.0292 84.7724 95.3681 95.2364 92.397 100.288 94.5733 82.0605
HT 100 115.734 100 99.572 102.503 100 100 99.9618 100 98.8565
J48 114.05 102.391 110.822 98.2924 110.557 103.215 96.0121 99.9995 103.953 91.331
LMT 176.823 97.3056 145.11 83.9701 100.743 91.1714 123.907 655.858 129.23 81.9477
RF 108.688 81.4368 99.0872 86.4543 94.2824 98.0574 87.469 101.053 89.569 75.4394
RT 125.935 106.549 137.265 108.7792 139.372 137.037 118.574 140.375 124.894 111.563
REP-T 99.9593 102.791 104.148 92.4714 105.23 103.187 93.0209 99.9995 97.118 84.557
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Figure 6: RMSE analyses with error and standard deviation bar.

–100

0

100

200

300

400

500

600

700

AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4

CDT
CS-forest
DS
Forest-PA
HT

J48
LMT
RF
RT
REP-T

Figure 7: RRSE analyses with error and standard deviation bar.

Table 12: Confusion matrix.

Positive 1 Negative 0
Positive 1 TP FP
Negative 0 FN TN
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5. Discussion on Overall Performance

A popular way to compare the overall performances of
classifiers is to count (w) the number of data sets on which
an algorithm is an overall winner, also known as the Count
ofWins test. We have used 10 datasets, and no technique has
given the best results for at least 10 datasets at α� 0.05,
according to the critical values in Table 3 of [48]. Since the
Count of Wins test is also considered to be a weak testing
procedure, therefore, we have a detailed matrix in Table 20,
keeping in view Scenario 2. Table 20 shows the determined
analysis of all evaluated absolute and squared error rates. It
represents the measurement of absolute errors that are MAE
and RAE on the employed datasets and TF-ML techniques.
(e results concluded that J48 and RT outperform other
techniques. However, evaluating on squared errors that are
RMSE and RRSE, the RF technique beats the rest of the
techniques in terms of reducing squared error. Moreover,
Table 21 shows the inclusive outcomes of experimental
scenario 3. For specificity, the outcomes show the best
performance of J48, DS, RF, and LMT for two datasets
individually. On precision, HT beats other techniques on
five datasets and DS on four datasets, while CDT beats others
on only two datasets. At the moment of considering recall,
CF-Forest shows the best performance on eight datasets,
while on F-measure, RF outperforms the rest of the tech-
niques, and on G-measure, RF, LMT, and CS-Forest perform
better results on two individual datasets. Making an al-
lowance for MCC, CS-Forest outperforms on four datasets
and J48 and RF on two individual datasets. Finally, if we
discuss the accuracy, RF produces the best results on five
datasets, CDT on three datasets, while DS on two datasets.
However, the performance of RF for error rate as well as for
accuracy is better than the rest of the utilized TF-ML
techniques.

Generally, we can say that the more trees in the forest the
more robust the forest looks like. In the same way in the RF
classifier, the higher the number of trees in the forest gives
the high accuracy results. In other words, it is believed that
RF ensures as an ensemble method of numerous trees,
enhanced to knob categorical data when gaining the ultimate
solution in the widely held voting system for the outcomes of
respective trees is umpired [33, 45, 49]. RF not only delivers a
dual classification of data facts and nevertheless also delivers
the prospects for each factor to be appropriate to defective or
nondefective categories [50]. It is deliberated as one of the
utmost dominant techniques as it is extremely proficient in
the accomplishment of both regression and classification
[44].

5.1. Friedman Two-Way Analysis of Variance by Ranks.
To compare all applied ML techniques on multiple data sets,
we have applied the statistical procedure as described by
Sheskin [51], Garćıa, and Herrera (2008) [52]. (e Friedman
two-way analysis of variance by ranks (Friedman (1937) [53]
is adopted with rank-order data in a hypothesis testing
situation. A significant test indicates that there is a signif-
icant difference between at least two of the techniques in the

set of k techniques. Friedman test checks whether the
measured average ranks are significantly different from the
mean rank (in our case, Rj� 3.96). (e chi-square (χ2)
distribution is used to approximate the Friedman test sta-
tistic [51]. Friedman’s statistic is χ2 � 139.7985.

To reject the null hypothesis, the computed value must
be equal to or greater than χ2 the tabled (table of the chi-
square distribution) critical chi-square value at the pre-
specified level of significance [51]. (e number of degrees of
freedom df� k − 1; thus, df� 10 − 1� 9. For df� 9, the tabled
critical α� 0.05 chi-square values are� 16.92. Since the
computed value� 139.7985 is greater than χ20.05 � 16.92, the
alternative hypothesis is supported at α� 0.05. It can be
concluded that there is a significant difference among at least
nine of the ten ML techniques. (is result can be summa-
rized as follows: χ20.05 (9)� 139.7985, p< 0.05.

Since the critical value is lower than the χ2, we can
continue with the post hoc tests to spot the significant
pairwise differences among all the techniques.(e results are
shown in Table 22, where z is the corresponding statistics
and p values for each hypothesis. Z is computed using the
following equation:

z �
(Ri − Rj)

SE
, (12)

where Ri is the ith technique and the standard error is
SE �

������������
(k(k + 1)/6n)


� 0. 0.175. Columns 5th and 6th rep-

resent Nemenyi’s and Holm’s statics procedure. (e second
last column lists the differences between the average ranks of
ith and jth techniques. However, the last column shows the
critical difference (CD), and it states that the performance of
the two techniques is significantly different if the corre-
sponding average ranks differ by at least the CD. CD can be
calculated using the following equation:

CD � qα

�������

k(k + 1)

6n



, (13)

where critical values qα is given in Table 5(b) in (Demsar
2006) [48]. (e notations “significant” and “insignificant”
represent whether the difference in the average rank (Ri-Rj)
is greater or less than the value of CD, respectively. Greater
means a significant difference between two means. Here, the
value of CD is� 0.485.

In Table 22, the family of hypotheses is ordered by their p

values. As can be seen, Nemenyi’s procedure rejects the first 28
hypotheses, whereas Holm’s procedure also rejects the next 3
hypotheses since the corresponding p values are smaller than
the adjusted NMα’s andHolm.(erefore, we conclude that the
performance of HTand LMTis comparable, and RTresulted in
a lower performance. Besides, the obtained value CD� 0.485
indicates that any difference between the average ranks of two
techniques that is equal to or greater than 0.485 is significant.
Concerning the pairwise comparisons in Table 22, the differ-
ence between the average ranks of two techniques which are
greater thanCD� 0.485 is the first 33.(us, it can be concluded
that there is a significant difference between the average ranks
of the first 33 pairs of techniques.
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Table 13: Specificity analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT ? ? 0 0.6098 0.8398 0.5 0.5714 ? 0.2632 0.9162
CS-Forest 0.2 0.4 0.2432 0.4942 0.8144 0.2778 0.3820 0.1667 0.3587 0.8898
DS 0 0.75 ? 0.5038 0.8639 0.3530 ? ? ? 0.8779
Forest-PA 0 0.6667 0 0.6567 0.8115 0 0.6923 ? 0.4545 0.9109
HT ? 0.375 ? 0.6389 0.8135 ? ? ? ? 0.8814
J48 0.2857 0.5 0.1765 0.5521 0.8554 0.4546 0.5455 ? 0.4369 0.9426
LMT 0 0.5 0.1429 0.7049 0.843 0.7143 0.2308 0 0.1875 0.9166
RF 0 0.7143 0.2727 0.622 0.8315 0.4615 0.5897 ? 0.5556 0.9212
RT 0.25 0.5 0.2167 0.5393 0.8176 0.2051 0.362 0.0417 0.2829 0.9229
REP-T ? 0.5 0 0.5846 0.8315 0.2 0.5882 ? 0.4375 0.9216

Table 14: Precision analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 1 1 0.9911 0.9229 0.1944 0.9919 0.9855 1 0.99 0.3652
CS-Forest 0.8929 0.8909 0.8753 0.7904 0 0.9301 0.9467 0.9991 0.8738 0.1124
DS 0.9821 0.9818 1 0.8434 0.3611 0.9704 1 1 1 0
Forest-PA 0.9911 0.9818 0.9978 0.9446 0 0.9973 0.9961 1 0.9957 0.309
HT 1 0.9091 1 0.9373 0 1 1 1 1 0.0337
J48 0.9554 0.9273 0.9688 0.8964 0.3333 0.9839 0.9855 1 0.9587 0.5899
LMT 0.9911 0.9636 0.9866 0.9566 0.25 0.9946 0.9903 0.9998 0.9907 0.3596
RF 0.9732 0.9636 0.9822 0.9253 0.1389 0.9812 0.9845 1 0.9829 0.3989
RT 0.9464 0.9273 0.8953 0.9012 0.1944 0.9167 0.9506 0.9959 0.9223 0.4438
REP-T 1 0.9818 0.9889 0.9349 0.1667 0.9892 0.9864 1 0.9936 0.4101

Table 15: Recall analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 0.9256 0.873 0.9008 0.8705 0.5385 0.9295 0.9469 0.9959 0.8996 0.5909
CS-Forest 0.9434 0.9245 0.9269 0.9371 ? 0.9428 0.9578 0.9961 0.9526 0.8333
DS 0.9244 0.9153 0.9016 0.8951 0.52 0.9352 0.9306 0.9959 0.8976 ?
Forest-PA 0.925 0.9 0.9014 0.8615 0 0.9229 0.938 0.9959 0.9001 0.7143
HT 0.9256 0.9091 0.9016 0.8644 0 0.9231 0.9306 0.9959 0.8976 0.75
J48 0.9386 0.9273 0.9044 0.8732 0.4286 0.9337 0.9452 0.9959 0.9212 0.5615
LMT 0.925 0.8983 0.9022 0.8612 0.4091 0.9343 0.9325 0.9959 0.8985 0.7033
RF 0.9237 0.9464 0.9055 0.8727 0.5 0.9359 0.9495 0.9959 0.9139 0.71
RT 0.9381 0.9273 0.9178 0.8637 0.2 0.9368 0.9534 0.996 0.9171 0.454
REP-T 0.9256 0.8852 0.9006 0.849 0.375 0.9246 0.947 0.9959 0.9011 0.6186
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Figure 8: Specificity analyses with error and standard deviation
bar.
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Figure 10: Recall analyses with error and standard deviation bar.

Table 16: F-measure analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT 0.9614 0.9322 0.9438 0.8959 0.2857 0.9597 0.9658 0.9979 0.9427 0.4514
CS-Forest 0.9174 0.9074 0.9003 0.8575 ? 0.9364 0.9522 0.9976 0.9115 0.198
DS 0.9524 0.9474 0.9483 0.8685 0.4262 0.9525 0.964 0.9979 0.9461 ?
Forest-PA 0.9569 0.9391 0.9471 0.9011 ? 0.9587 0.9662 0.9979 0.9455 0.4314
HT 0.9614 0.9091 0.9483 0.8994 ? 0.96 0.964 0.9979 0.9461 0.0645
J48 0.9469 0.9273 0.9355 0.8847 0.375 0.9581 0.9649 0.9979 0.9396 0.5753
LMT 0.9569 0.9298 0.9426 0.9064 0.3103 0.9635 0.9605 0.9978 0.9424 0.4758
RF 0.9478 0.955 0.9423 0.8982 0.2174 0.958 0.9667 0.9979 0.9471 0.5108
RT 0.9422 0.9273 0.9064 0.8821 0.1972 0.9266 0.952 0.996 0.9197 0.4489
REP-T 0.9614 0.931 0.9427 0.8899 0.2308 0.9558 0.9663 0.9979 0.9451 0.4932

Table 17: G-measure analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT ? ? 0 0.7171 0.6562 0.6502 0.7128 ? 0.4072 0.7184
CS-Forest 0.33 0.5584 0.3854 0.6471 ? 0.4291 0.546 0.2856 0.5212 0.8607
DS 0 0.8244 ? 0.6447 0.6492 0.5125 ? ? ? ?
Forest-PA 0 0.766 0 0.7453 0 0 0.7966 ? 0.6041 0.8007
HT ? 0.531 ? 0.7347 0 ? ? ? ? 0.8104
J48 0.4381 0.6497 0.2953 0.6765 0.571 0.6114 0.6917 ? 0.5927 0.7038
LMT 0 0.6424 0.2467 0.7752 0.5509 0.8096 0.37 0 0.3103 0.7959
RF 0 0.8141 0.4192 0.7263 0.6245 0.6182 0.7276 ? 0.691 0.8019
RT 0.3948 0.6497 0.3506 0.664 0.3214 0.3366 0.5253 0.08 0.4324 0.6086
REP-T ? 0.6391 0 0.6924 0.5169 0.3289 0.7257 ? 0.589 0.7403

Table 18: MCC analysis by each TF-ML technique on individual dataset.

Technique AR1 AR3 CM1 KC2 KC3 MW1 PC1 PC2 PC3 PC4
CDT ? ? − 0.0297 0.4329 0.2433 0.1952 0.3565 ? 0.0588 0.4091
CS-Forest 0.1801 0.3562 0.2032 0.5022 ? 0.2361 0.3633 0.0832 0.3916 0.2811
DS − 0.0367 0.4872 ? 0.4285 0.3309 0.2174 ? ? ? ?
Forest-PA − 0.0259 0.3624 − 0.0148 0.4294 − 0.0598 − 0.0144 0.2669 ? 0.0978 0.4271
HT ? 0.2841 ? 0.4299 − 0.0344 ? ? ? ? 0.1425
J48 0.1996 0.4273 0.0493 0.4082 0.2567 0.2374 0.328 ? 0.2931 0.5148
LMT − 0.0259 0.2917 0.0178 0.4505 0.2056 0.318 0.0691 − 0.0009 0.0286 0.4581
RF − 0.0452 0.6236 0.088 0.4459 0.1886 0.2635 0.3908 ? 0.2828 0.4873
RT 0.1781 0.4273 0.147 0.3755 0.0174 0.1575 0.3215 0.0385 0.1955 0.3732
REP-T ? 0.2029 -0.0333 0.3547 0.1461 0.0518 0.363 ? 0.1124 0.4501
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Table 19: Results of different TF-ML techniques in terms of accuracy along with the rank values.

Datasets CDT CS-forest DS Forest-PA HT J48 LMT RF RT REP-T

AR1 92.56 (1.3) 85.12 (6) 90.90 (3) 91.73 (2.5) 92.56 (1.3) 90.08 (4.5) 91.73
(2.5)

90.08
(4.5) 89.25 (5) 92.56

(1.3)

AR3 87.30 (4.2) 84.12
(5.2) 90.4762 (2) 88.88 (3) 84.12 (5.2) 87.30 (4.2) 87.30

(4.2) 92.06 (1) 87.30
(4.2)

87.30
(4.2)

CM1 89.35 (3) 82.53 (7) 90.16 (1.2) 89.95 (2) 90.16 (1.2) 87.95 (5) 89.15
(4.3)

89.15
(4.3) 83.33 (6) 89.15

(4.3)

KC2 82.95 (4) 79.11 (9) 79.69 (8) 83.52 (2) 83.33 (3.5) 81.41 (6) 84.29 (1) 83.33
(3.5) 80.84 (7) 81.60 (5)

KC3 81.95 (1.2) 81.44
(2.5) 81.95 (1.2) 79.89 (4) 80.92 (3) 79.38 (5.3) 79.38

(5.3)
81.44
(2.5) 70.61 (6) 79.38

(5.3)

MW1 92.30 (2.5) 88.33 (6) 91.06 (5) 92.05 (3.3) 92.30 (2.5) 92.05 (3.3) 93.05 (1) 92.05
(3.3) 86.60 (7) 91.56 (4)

PC1 93.50 (3.5) 91.16 (7) 93.05 (5.2) 93.50 (3.5) 93.05 (5.2) 93.32 (4) 92.42 (6) 93.68 (1) 91.07 (8) 93.59 (2)

PC2 99.58 (1.14) 99.51 (3) 99.58 (1.14) 99.58 (1.14) 99.58 (1.14) 99.58 (1.14) 99.57 (2) 99.58
(1.14) 99.19 (4) 99.58

(1.14)
PC3 89.18 (5) 84.77 (9) 89.76 (2.5) 89.69 (3) 89.76 (2.5) 88.93 (7) 89.12 (6) 90.14 (1) 85.54 (8) 89.63 (4)

PC4 89.16 (6) 88.88 (7) 87.79 (9) 90.05 (3) 88.06 (8) 89.36 (5) 90.32 (2) 90.67 (1) 86.69
(10) 89.71 (4)

Sum (rank) 31.84 61.7 38.24 27.44 33.54 45.44 34.3 23.24 65.2 35.24
Average (rank) 3.18 6.17 3.82 2.74 3.35 4.54 3.43 2.32 6.52 3.52
Sum (Acc) 897.88 865.02 894.46 898.91 893.89 889.41 896.36 902.23 860.45 894.10
Average (Acc) 89.78 86.50 89.44 89.89 89.38 88.94 89.63 90.22 86.04 89.41
It ranks the technique for each data set separately, the best performing algorithm getting the rank of 1 and the second-best rank 2. Last two columns present
the sum and average of ranks for each technique.

Table 20: Decision table for experimental scenario 2.

Datasets
Evaluation measurements

MAE RAE RMSE RRSE
AR1 RT RT CDT CDT
AR3 RT RT RF RF
CM1 RF RF Forest-PA Forest-PA
KC2 HT HT LMT LMT
KC3 J48 J48 RF RF
MW1 J48 J48 LMT LMT
PC1 RT RT RF RF
PC2 Seven techniques RF DS DS
PC3 J48 J48 RF RF
PC4 J48 J48 RF RF

Table 21: Decision table for experimental scenario 3.

Datasets
Evaluation measurements

Specificity Precision Recall F-measure G-measure MCC Accuracy
AR1 J48 CDT, HT, REP-T CS-Forest CDT, HT, REP-T J48 J48 CDT, REP-T
AR3 DS CDT RF RF DS RF RF
CM1 RF DS, HT CS-Forest DS, HT RF CS-Forest DS, HT
KC2 LMT LMT CS-Forest LMT LMT CS-Forest LMT
KC3 DS DS CDT DS CDT DS CDT, DS
MW1 LMT HT CS-Forest LMT LMT LMT LMT
PC1 Forest-PA DS, HT CS-Forest RF Forest-PA RF RF
PC2 CS-Forest Seven techniques CS-Forest Seven techniques CS-Forest CS-Forest Seven techniques
PC3 RF DS, HT CS-Forest RF RF CS-Forest RF
PC4 J48 J48 CS-Forest J48 CS-Forest J48 RF
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5.2. Breats to Validity. In this section, we converse the
effects that may anguish the validity of this research work.

5.2.1. Internal Validity. (e exploration of this paper is
grounded on diverse very familiar evaluation standards that
are used in the past in various studies. Amid these standards,
several methods are used to assess the error rate, while
certain approaches are used to assess accuracy. So, the treat
can be that the renewal of new evaluation standards as a
replacement for utilized standards can decrease the accu-
racy. Furthermore, the techniques used in this research can
be supplanted with some newer techniques that can be

hybridized with each other and can harvest enhanced
outcomes than the employed techniques.

5.2.2. External Validity. We piloted investigations on various
datasets. A threat to validity may arise if we relate the projected
techniques in the other real data composed from the different
software development organizations using surveys etc. or re-
place these datasets with some other datasets, which may
distress the outcomes while growing the error rates. Likewise,
the projected techniquemay not be capable of harvesting better
forecasts in outcomes using some other SDP datasets. Hence,
this study concentrated on AR1, AR3, CM1, KC2, KC3, MW1,

Table 22: Family of hypotheses ordered by the p value and adjusting α by Nemenyi and Holm’s procedures, considering an initial α� 0.05.

Sr. no. Algo Algo z p Nm 0.05 Holm Ri-Rj Inference from CD
1 RF RT 24.00437415 1.81E − 09 0.001 0.0011111 4.196 Significant
2 CS-Forest RF 22.00210271 3.91E − 09 0.001 0.0011364 3.846 Significant
3 Forest-PA RT 21.60164842 4.60E − 09 0.001 0.0011628 3.776 Significant
4 CS-Forest Forest-PA 19.59937698 1.09E − 08 0.001 0.0011905 3.426 Significant
5 CDT RT 19.08450719 1.37E − 08 0.001 0.0012195 3.336 Significant
6 HT RT 18.11197535 2.17E − 08 0.001 0.00125 3.166 Significant
7 LMT RT 17.6771964 2.69E − 08 0.001 0.0012821 3.09 Significant
8 RT REP-T 17.1394435 3.53E − 08 0.001 0.0013158 2.996 Significant
9 CDT CS-Forest 17.08223575 3.63E − 08 0.001 0.0013514 2.986 Significant
10 CS-Forest HT 16.10970391 6.06E − 08 0.001 0.0013889 2.816 Significant
11 CS-Forest LMT 15.67492497 7.69E − 08 0.001 0.0014286 2.74 Significant
12 DS RT 15.42321084 8.86E − 08 0.001 0.0014706 2.696 Significant
13 CS-Forest REP-T 15.13717207 1.04E − 07 0.001 0.0015152 2.646 Significant
14 CS-Forest DS 13.42093941 2.95E − 07 0.001 0.0015625 2.346 Significant
15 J48 RF 12.70012169 4.74E − 07 0.001 0.0016129 2.22 Significant
16 J48 RT 11.30425246 1.28E − 06 0.001 0.0016667 1.976 Significant
17 Forest-PA J48 10.29739596 2.80E − 06 0.001 0.0017241 1.8 Significant
18 CS-Forest J48 9.301981021 6.51E − 06 0.001 0.0017857 1.626 Significant
19 DS RF 8.581163303 1.26E − 05 0.001 0.0018519 1.5 Significant
20 CDT J48 7.780254728 2.76E − 05 0.001 0.0019231 1.36 Significant
21 RF REP-T 6.864930643 7.35E − 05 0.001 0.002 1.2 Significant
22 HT J48 6.807722887 7.84E − 05 0.001 0.0020833 1.19 Significant
23 J48 LMT 6.372943947 1.29E − 04 0.001 0.0021739 1.114 Significant
24 LMT RF 6.327177742 1.37E − 04 0.001 0.0022727 1.106 Significant
25 DS Forest-PA 6.178437578 1.63E − 04 0.001 0.002381 1.08 Significant
26 HT RF 5.892398802 2.31E − 04 0.001 0.0025 1.03 Significant
27 J48 REP-T 5.835191046 2.48E − 04 0.001 0.0026316 1.02 Significant
28 CDT RF 4.919866961 8.25E − 04 0.001 0.0027778 0.86 Significant
29 Forest-PA REP-T 4.462204918 1.57E − 03 0.001 0.0029412 0.78 Significant
30 DS J48 4.118958386 2.60E − 03 0.001 0.003125 0.72 Significant
31 Forest-PA LMT 3.924452017 3.49E − 03 0.001 0.0033333 0.686 Significant
32 CDT DS 3.661296343 5.22E − 03 0.001 0.0035714 0.64 Significant
33 Forest-PA HT 3.489673077 6.83E − 03 0.001 0.0038462 0.61 Significant
34 DS HT 2.688764502 2.48E − 02 0.001 0.0041667 0.47 Insignificant
35 CDT Forest-PA 2.517141236 3.29E − 02 0.001 0.0045455 0.44 Insignificant
36 Forest-PA RF 2.402725725 3.97E − 02 0.001 0.005 0.42 Insignificant
37 DS LMT 2.253985561 5.07E − 02 0.001 0.0055556 0.394 Insignificant
38 CS-Forest RT 2.002271437 7.63E − 02 0.001 0.00625 0.35 Insignificant
39 CDT REP-T 1.945063682 8.36E − 02 0.001 0.0071429 0.34 Insignificant
40 DS REP-T 1.716232661 1.20E − 01 0.001 0.0083333 0.3 Insignificant
41 CDT LMT 1.407310782 1.93E − 01 0.001 0.01 0.246 Insignificant
42 CDT HT 0.972531841 3.56E − 01 0.001 0.0125 0.17 Insignificant
43 HT REP-T 0.972531841 3.56E − 01 0.001 0.0166667 0.17 Insignificant
44 LMT REP-T 0.5377529 6.04E − 01 0.001 0.025 0.094 Insignificant
45 HT LMT 0.434778941 6.74E − 01 0.001 0.05 0.076 Insignificant
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Figure 11: F-measure analyses with error and standard deviation bar.
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Figure 12: G-measure analysis with error and standard deviation bar.
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Figure 13: MCC analyses with error and standard deviation bar.
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PC1, PC2, PC3, and PC4 datasets to measure the performance
of the utilized techniques.

5.2.3. Construct Validity. In this study, diverse TF-ML tech-
niques are benchmarked with each on various datasets based on
several assessment measures. (e assortments of techniques
utilized in this study are at the center of their progressive features
over the other techniques that have been exploited by the re-
searchers in the last decades. However, the threat can be that if
we put on some other new techniques, then it can be the
probability that these new techniques can exhaust the projected
techniques. Furthermore, any change in the dataset splitting
(increasing or decreasing the number of K-Folds) may change
the current outcomes. It also can be promising that using the
newest evaluation standards creates improved outcomes that can
beat the current accomplished outcomes.

6. Conclusion

Nowadays, SDP using ML techniques is dignified as one of
the emerging research areas. As the identification of software

defects at the primary stage of SDLS is a challenging task,
nevertheless it can subsidize the provision of high-quality
software systems.(is paper considered ten extensively used
publically available datasets to compare ten famous TF-ML
techniques: CDT, CS-Forest, DS, Forest-PA, HT, J48, LMT,
RF, RT, and REP-T, which are broadly used for SDP. (e
performance is evaluated utilizing different measures such as
MAE, RAE, RMSE, RRSE, specificity, precision, recall, FM,
GM, MCC, and accuracy. (e inclusive results of this paper
recommended RF technique by providing the best results in
terms of reducing error rates as well as increasing accuracy
on five datasets that include AR3, PC1, PC2, PC3, and PC4,
where the accuracy rate for each of these datasets is
92.0635%, 93.688%, 99.5885%, 90.1472%, and 90.6722%,
respectively. However, CDT and DS are best in terms of
increasing accuracy on three individual datasets. CDT ac-
curacy outcomes are 92.562%, 81.9588%, and 99.5885%
correspondingly going on AR1, KC3, and PC2, while DS
shows an accuracy performance of 90.1606%, 81.9588%, and
99.5885% individually on CM1, KC3, and PC2.

(e outcomes obtainable in this research can be recycled as
a baseline for other studies and researchers so that the out-
comes of any projected technique, model, or framework can be
benchmarked and simply confirmed. For future work, class
imbalance matters ought to be committed to these datasets.
Furthermore, to increase the enactment, feature selection and
ensemble learning techniques should also be explored.
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