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*is article proposes a new problem which is called the Stochastic Travelling Advisor Problem (STAP) in network optimization,
and it is defined for an advisory group who wants to choose a subset of candidate workplaces comprising the most profitable route
within the time limit of day working hours. A nonlinear binary mathematical model is formulated and a real application case study
in the occupational health and safety field is presented. *e problem has a stochastic nature in travelling and advising times since
the deterministic models are not appropriate for such real-life problems. *e STAP is handled by proposing suitable probability
distributions for the time parameters and simulating the problem under such conditions. Many application problems like this one
are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large
dimensions. A novel binary version of the recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to
solve binary optimization problems is given. GSK algorithm is based on the concept of how humans acquire and share knowledge
during their life span. *e binary version of GSK (BGSK) depends mainly on two stages that enable BGSK for exploring and
exploitation of the search space efficiently and effectively to solve problems in binary space. *e generated simulation runs of the
example are solved using the BGSK, and the output histograms and the best-fitted distributions for the total profit and for the
route length are obtained.

1. Introduction

A new problem which we are going to call the Travelling
Advisor Problem (TAP) in network optimization is defined
for an advisor who wants to settle on the foremost profitable
route for visiting some or all candidate workplaces each
associated with a corresponding profit. He begins from a
predetermined starting location and next wants to visit each
chosen workplace exactly once within the day working

hours. *e target of the TAP is to select the route with
maximum profitability for the advisory company.

*e Travelling Advisor Problem is a new and different
version of the well-known Travelling Salesman Problem
(TSP) studied in operations research and theoretical com-
puter science. *e general idea of TSP is defined for a list of
cities (represented as nodes) and their pairwise distances,
and the task is to find the shortest possible tour that starts at
the hometown, visits each city exactly once, and returns back
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home. Droste [1] stated that the number of different tours is
very large, so one might not think to solve the problem by
simply calculating the length of each possible tour. *ere-
fore, suitable algorithms are needed to solve these situations.

Instead, in the Travelling Advisor Problem (TAP), nodes
represent a set of workplaces and an advisor’s job is to visit a
subset of the workplaces and spend some time in each for
giving his advice. In quite a nutshell, an advisor starts his
working day from his company’s headquarter, and then he
proceeds to travel to and advise a chosen workplace and then
transfers to a new one until his working hours are over.
During a workday of maximum eight hours, each travelling
time between one workplace and the next in addition to the
advising time spent at each visited workplace is considered
in addition to the travelling time spent from the headquarter
to the first visited workplace. Each workplace will yield a
different profit than the other, meaning that the goal is to
maximize the advisor’s total profit.

TAP differs from TSP in the following main points:

(i) In the TSP, the time is open till completing visiting
of all customers, while in the TAP, the available time
is limited by the day working hours

(ii) In the TSP, the salesman will visit all the customers,
while in the TAP, the advisor will determine a route
containing some or all the workplaces which op-
timizes the problem objective function within the
available limited day time

(iii) In the TSP, no time is consumed in customer places,
or it is immaterial, while in the TAP, the advising
time at a workplace is a basic factor in the day time
limit constraint, and hence, it directly affects the
choice of the optimum solution of the problem

(iv) In the TSP, the objective is to complete the route
while minimizing the total travelling time, while in
the TAP the objective function is to maximize the
total profit in the chosen route

In simple practical application problems where varia-
tions in travelling times and advising times are not so ef-
fective or the decision maker wants only to have a rough
picture of the considered problem, these parameters can be
considered as deterministic quantities. In general practice,
the travelling and advising times are random and very
difficult to be exactly measured or evaluated, considering
that both the travelling and advising times should be in-
dependent and continuously distributed random variables.

*e stochastic version of the Travelling Advisor Problem
has a wide range of real-life applications in various service
and advisory fields. Such fields show up in many consulting
domains such as health and safety, industry, agriculture,
business, education, telecommunications, investing, quality

assurance, social and community services, pollution, med-
ical, tourism, marketing, sales, advertising, sports, arts, and
cooking.

*e rest of this paper is organised as follows: Section 2
describes in detail the mathematical model of the Travelling
Advisor Problem (TAP) including the definition of problem
variables, constraints, and the objective function. *e pro-
posed model is a nonlinear binary model with a dimension
depending on the number of candidate workplaces.

*e Stochastic Travelling Advisor Problem (STAP)
simulation procedure is explained in detail in Section 3. *e
new problem proposes PERT-beta probability distributions
for the travelling and advising times and resolving the
problem under such conditions, and the steps of the sim-
ulation solution procedure are also explained.

A real practical application case study is explained in
Section 4; the case study is implemented in a very important
service sector which is the occupational health and safety.
*is section reveals also the role and advices offered by the
Occupational and Health Advisor to organizations and
workplaces.

In Section 5, a novel binary version of a recently de-
veloped gaining-sharing knowledge-based optimization al-
gorithm (GSK) is introduced to solve the TAP. GSK cannot
solve the problem with binary space; therefore, binary
gaining-sharing knowledge-based optimization algorithm
(BGSK) is proposed with two new binary junior and senior
stages. *ese stages allow BGSK to explore and exploit the
search space of the problem efficiently; an example of the
experimental results of one of the simulation runs of STAP is
also presented. Section 6 gives the conclusions and the
suggested points for future research studies, respectively.

2. Mathematical Model for the Travelling
Advisor Problem (TAP)

*e new Travelling Advisor Problem (TAP) is defined on a
graph G with a set of n nodes V representing the workplaces
(customers) and an additional node denoting the Health and
Safety Agency headquarter (HQ) where the advisor starts the
job and a set of arcs representing the travelling times be-
tween two distinct workplaces (Pinter [2]). *e time of
inspection in a workplace and the travelling time between
two workplaces are specified.

While the advisor should start his route at the head-
quarter (HQ), he ends his route at the last visited workplace.

*e mathematical model for such a deterministic TAP
with known and fixed parameters representing the travelling
and advising times is formulated as follows.

2.1. Decision Variables. Let

x
m
i �

1, if workplace i is visited by the advisor on positionm of his route, i andm � 1, 2, ..., n � total number of workplaces,

0, otherwise.
􏼨

(1)
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2.2. Constraints

2.2.1. Position Constraints. Each position m in the advisor
route has at most one workplace:

􏽘

n

i�1
x

m
i ≤ 1, m � 1, 2, ..., n. (2)

2.2.2. Workplace Constraints. Each workplace i can be in
one position of the advisor route or not visited:

􏽘

n

m�1
x

m
i ≤ 1, i � 1, 2, . . . , n. (3)

2.2.3. Consecutive Position Constraints. A position (m+1)
cannot exist in the advisor tour unless the preceding position
m exists, and this is achieved by the following set of
constraints:

􏽘
n

i�1
x

m+1
i ≤ 􏽘

n

i�1
x

m
i , m � 1, 2, . . . , n − 1. (4)

(i) If 􏽐
n
i�1 xm+1

i � 1, then 􏽐
n
i�1 xm

i � 1, m � 1, 2, ..., n − 1
(ii) If 􏽐

n
i�1 xm+1

i � 0, then there is no restriction on the
value of 􏽐

n
i�1 xm

i � 1, m � 1, 2, . . . , n − 1

2.2.4. Working Hours/Day Constraints. *e total time spent
by the advisor in travelling and site inspection should be
within the maximum working hours/day�T� 8 hours:

􏽘

n

i�1
t0,ix

1
i + 􏽘

n

m�1
􏽘

n

i�1
tix

m
i( 􏼁 + 􏽘

n

i�1
􏽘

n

j�1
j≠ i

ti,j. 􏽘
n−1

m�1
x

m
i .x

m+1
j

⎛⎝ ⎞⎠≤T,

(5)

where

(i) t0,i � transportation time between the headquarter
and workplace i, where i� 1, 2, . . ., n

(ii) ti,j � transportation time between the two adjacent
workplaces i and j, where i, j� 1, 2, . . ., n

(iii) ti � inspection time for workplace i, where i� 1, 2,
. . ., n

*is is a quadratic inequality in two variables, the first
part is for travelling from the headquarter to the first po-
sition in the route, and the second part is the inspection
times at workplaces, and the third part is the travelling time
between different positions in the route.

2.2.5. Binary Constraints. All the decision variables are 0-1:

x
m
i � 0 or 1, i, m � 1, 2, . . . , n. (6)

2.2.6. ;e Objective Function. It is formulated for maxi-
mizing the total profits of the Occupational Health and
Safety Agency gained by visiting the workplaces during the
working day time limit:

Max z � 􏽘
n

m�1
􏽘

n

i�1
pix

m
i , (7)

in which pi � profit of visiting workplace i, where i� 1, 2, . . .,
n.

*e optimum solution will produce two distinct
situations:

(1) If 􏽐
n
m�1 xm

i � 1 i� 1, 2, . . ., n, then all the n-work-
places are visited by the advisor in one working day
and the problem is completed.

(2) If 􏽐
n
m�1 xm

i � 0 for any i, then the corresponding
workplace i is not visited by the advisor in the first
working day. In this case, it is needed to eliminate the
visited workplaces, adding one more day and repeat
the procedure for another working day.

3. Stochastic Travelling Advisor Problem
Simulation Procedure

*e problem so far has been concerned with deterministic
travelling and advising times. However, solutions of the
deterministic models deteriorate once applied in real-life
problems where these times are stochastic [3]. In this sec-
tion, the Stochastic Travelling Advisor Problem (STAP) will
be handled, by proposing probability distributions for the
time constraints and resolving the problem under such
conditions.

*e probability distribution function (PDF) used for
time simulations should be continuous and limited between
two-time intercepts and have a unique mode in its defined
range therefore making it ideal to choose here, as the beta
PDF satisfies all the conditions stated [4]. Probability dis-
tribution of travelling times using beta distribution has been
proposed and validated by many researchers [5]. *e beta
distribution is very flexible and commonly used to represent
where the uncertain variable is a random value between zero
and a positive value [6]. *e beta distribution is flexibly
described over the interval [0, 1] and the beta density
function is a very flexible form to represent outcomes like
probabilities [7]. Applications include modelling random
variables that have a finite range a to b. *e most famous
application is the distribution of activity times in project
networks like that of the advising time in STAP [8].

*e probability density function of beta distribution is
given by

prob(x|αt, nβ) �
x
α−1 ∗ (1 − x)

β−1

B(α, β)
, (8)

where the beta function is given by

Beta(α, β) � 􏽚
1

0
t
α−1

(1 − t)
β−1dt. (9)
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Alpha (α) and beta (β) can be any positive value greater
than zero. *ey are called the shape parameters of the beta
distribution [6]. *ese two parameters work together to
determine whether the distribution is symmetrical, posi-
tively skewed, or negatively skewed. Depending on the
values of α and β, the beta distribution can take a variety of
shapes [9]. *ere are many graph packages that allow to
experiment with different values of α and β and visualize
how the shape changes (see, for example, Rosenmai [10]).

In PERT method, three-point estimate for activity du-
ration is an estimate that includes optimistic, most likely,
and pessimistic estimate. *is method is known as program
evaluation and review technique (PERT) analysis or PERT
method [11].*e PERTdistribution is a family of continuous
probability distributions defined by the minimum or best
(a), most likely (m), and maximum or worst (b) values that a
variable can take. It is a transformation of the four-pa-
rameter beta distribution with an additional assumption on
its expected value.

PERT introduces uncertainty into the estimates for ac-
tivity duration and is well suited for those situations where
there is insufficient background information to specify ac-
curately time. Its three-time estimates become the frame-
work on which the probability distribution curve for the
activity is erected [12]. *erefore, PERT has become a classic
tool for estimating uncertain activities durations [13].

*e three estimates of the activity duration enable the
expected mean time μ, as well as the standard deviation σ
and variance σ2 to be derived mathematically (Shankar et al.
[14] and Golpı̂ra [15]):

μ �
1
6

(a + 4m + b),

σ2 �
1
36

(b − a)
2
.

(10)

*e PDF of PERT distribution can be symmetric, right-
skewed, or left-skewed according to the values of the pa-
rameters a, m, and b [16]. *is is better clarified with visual
illustrations of the PERT Distribution using special com-
puter programs (for example, Rosenmai [10] and EasyFit
[17]).

3.1. PERT-BetaDistributions. *e built-in beta distributions
provided bymost software systems are parameterized by two
shape parameters (α and β) and two location parameters (a
and b). In the PERT context, the desired beta distributions
are specified by two statistics (mean and variance) and the
same two location parameters (a and b). Hence, in order to
carry out simulation with the software, one needs to first
convert the PERTmean and variance and the extreme values
a and b into the associated shape parameters α and β [18].
When these PERT mean and variance formulas are
substituted into beta formulas, one gets the unique beta
distribution parameters α and β needed for each time activity
as a beta distribution which varies between (a and b) and fits
for modelling the activity duration [13].

Beta distributions defined on the interval [a, b] in this
fashion are referred as PERT-beta distributions because they
exhibit means and variances as specified by the PERTmean
and variance formulas. PERT-beta distributions have the
following formulas for location parameters (a and b) and
shape parameters (α and β) [19]:

α �
μ − a

b − a
􏼒 􏼓

(μ − a)(b − μ)

σ2
􏼠 􏼡 − 1􏼢 􏼣,

β �
b − μ
b − a

􏼠 􏼡
(μ − a)(b − μ)

σ2
􏼠 􏼡 − 1􏼢 􏼣.

(11)

*e best, most likely, and worst travelling times are
estimated based on experience and with the help of Google
Maps to get traffic data from the starting position to each
candidate workplace and from each workplace to another in
any given day and time. *e minimum, most likely, and
maximum advising times are also estimated based on the
experience of the advising group.

PERT-beta distribution is used to generate random
values for the travelling and advising times using the
BETAINV(RAN D, α, β, a, b) function [19]. In Excel, the
RAND() function is used to obtain uniformly distributed
probability values. *e generated random values for the
travelling and advising times are introduced into the
mathematical model, the model is solved using an appro-
priate method, and the results are gathered including the
optimum solution, the route duration, and the expected total
profit. *e process of generating other random variables is
repeated many times while the corresponding run results are
gathered in each time. After enough number of runs, the
final concluded results are worked out. *e steps of the
solution procedure are shown in Figure 1.

4. Practical Application Case Study

One of the most important areas of the service sector is
chosen in this case study, which is the occupational health
and safety field.

Workers in all countries around the world are exposed to
many hazards while working in their workplaces [20].
Among these hazards are the chemical hazards [21] and the
biological hazards [22].

*e purpose of health and safety advisor is to facilitate
and promote safety, health, and wellness across all function
areas of organizations, to collaborate with both staff and
management to ensure regulatory compliance and to un-
dertake reviewing, audits, and developing strategies for best
practices [23].

Occupational Health and Safety (OH&S) Acts and
Regulations are laws that govern workplaces. *ey outline
the rights and responsibilities of the employer, the worker,
and the supervisor to ensure working environments are
healthy and safe [24]. Egyptian law regulations in this field
are enrolled under the International Labour Organization
and the World Health Organization (WHO) [25, 26].

It is the responsibility of the advising agency to check up
the risks at the workplace and those that can happen, and
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these inspections help distinguishing and preventing risk
[27]. Health and safety advisors make sure that people
comply with all rules of safety and health and that work
environments are not the source of illness, wounding, or
dying [28].

Advisors accomplish their work by visiting workplaces
to ensure that work is accurately performed in compliance
with regulations, Marriott et al. [29]. Other responsibilities
are to predict possible hazards, providing advices on health
and safety, recording violations of regulations, gathering
illegal evidence, follow-up evidence in court, writing re-
marks and reports, and providing training and educational
support to employers [30].

*e Faculty of Engineering, Cairo University, located in
Giza, Giza Governorate, is chosen as the starting position
where the advising group will start the route as one of its
research centers is responsible for this advising project. *e
five factories shown in Table 1 are the candidate workplaces
to be visited, and the table shows also the profit for the visit
of each workplace. Using a Google Maps tool “My Map,” a
location map is created to pinpoint the factory locations for
better illustration as shown in Figure 2.

4.1. Estimating the Probabilistic Times. *eminimum (best),
most likely, and maximum (worst) travelling times are
calculated using Google Maps and past practical experience
to get traffic data from the starting location to each

workplace and from each workplace to another. Figure 3
shows an illustrative example for estimating the parameters
(a and b) for the travelling time from the starting location to
Workplace number 3 (Eastern Company). *e most likely
timem is estimated using experience, and it is in the interval
[a and b] and depends mainly on the chosen day of the week
and time of the day. In the same manner, other time pa-
rameters are estimated for all the travelling times of the case
study. Table 2 shows the PERT-beta distribution parameters
of the travelling times from the starting location to the
workplaces.

Similarly, the parameters (a, m, and b) for PERT dis-
tribution of the advising time at each workplace are esti-
mated based on the experience of the advisory group. Table 3
represents the PERT-beta distribution parameters of the
advising times. Figure 4 expresses some examples of the beta
BDF and CDF for travelling and advising times [31]. *e
distributions are right-skewed for all the five stochastic
advising times, as m values are closer to the a values than
they are to the b values.

Using such PERT-beta distributions, 30 simulation
random values are generated using Excel software for all the
travelling and advising times. An example of the generated
values for the starting travelling and for the advising times is
shown in Table 4 and 10 examples of the generated travelling
times between workplaces are shown in Table 5.

*e simulation process is repeated 30 times, the gen-
erated random values for the used parameters according to

End

Start

Put day d = 1

Formulate mathematical model for the deterministic case

Solve the mathematical model

Are all 
runs performed?

Delete the visited workplaces

Put d = d + 1 

Yes

Input: n = number of workplaces, 
T = number of working hours/day,

Parameters for the stochastic travelling and advising times

Add new candidate workplaces and begin a new problem

Output: visited workplaces,
total profit,
routes details

Generate a random number for each stochastic parameter

Finalize: histograms, distributions, and basic 
statistics for the simulation outputs

No

Gather results: optimum solution, profit, and tour length

Figure 1: Steps of the simulation procedure of the stochastic TAP.
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the BERT-beta distribution for each simulation run are
substituted in the mathematical model described in Section
2, and the optimum solution is obtained for each case for
further evaluation.

5. Proposed Methodology

Metaheuristic algorithms have been developed to solve the
complex optimization problem with continuous variables.
Mohamed et al. [32] recently proposed a novel gaining-
sharing knowledge-based optimization algorithm (GSK),
which is based on the ideology of acquiring knowledge and
sharing it with others throughout their lifetime. *e original
GSK solves optimization problems over continuous space, but
it cannot solve the problem with binary space. So, a new
variant of GSK is introduced to solve the proposed TAP. A
novel binary gaining-sharing knowledge-based optimization
algorithm (BGSK) is proposed over discrete binary space with
new binary junior and senior gaining and sharing stages.

On the other hand, there are many constraint handling
techniques in the literature (Deb [33]; Cello [34]; Muangkote
et al. [35]. In this paper, the augmented Lagrangian method is
used to handle the constraints, in which a constrained op-
timization problem is converted into an unconstrained op-
timization problem (Long et al. [36]; Bahreininejad [37]). *e
proposed methodology is described as follows.

5.1. Gaining-Sharing Knowledge-Based Optimization Algo-
rithm (GSK). A constrained optimization problem can be
formulated mathematically as follows:

Table 1: Workplaces for the case study.

# Factory Address Profit
($)× (102)

1 El Nasr Co. For Intermediate
Chemicals

Km 28, Cairo Alex Desert Rd., Industrial Zone, Abou-Rawash, Giza. Beside Smart
Village 3.1

2 Eva Pharma El-Sadat, Zawya Abou Muslim, Giza Governorate 4.7
3 Eastern Company 450 Al Haram, Al Omraneyah Al-Sharqeyah, El-Omraniya, Giza Governorate 5.5
4 El Helal and Golden Star Industrial Zone A, 10th of Ramadan, Cairo Governorate 4.2
5 Juhayna Group Second 6th of October Industrial Zone, Giza Governorate 3.5

Figure 2: Location of the candidate workplaces.

Typically 6 – 12 min

Typically 6 – 12 min

Figure 3: Parameters of the stochastic travelling time.
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Min f(X); X � x1, x2, . . . , xDim􏼂 􏼃,

s.to. gi(X)≤ 0; i � 1, 2, . . . , m,

X ∈ αp, βp􏽨 􏽩; p � 1, 2, . . . ,Dim,

(12)

where f denotes the objective function;
X � [x1, x2, . . . , xDim] are the decision variables; gi(X) are
the inequality constraints, and αp and βp are the lower and
upper bounds of decision variables, respectively, and Dim
represents the dimension of individuals. If the problem is in
maximization form, then consider
minimization� −maximization.

*e human-based algorithm GSK is of two stages: junior
and senior gaining and sharing stages. All persons acquire
knowledge and share their views with others. *e people
from early-stage gain knowledge from their small networks
such as family members, relatives, and neighbours want to
share their opinions with others whomight not be from their
networks, due to curiosity of exploring others. *ese people
may not have the experience to categorize the people. In the
same way, the people from the middle or later age enhance
their knowledge by interacting with friends, colleagues,
social media friends, etc., and share their views with themost
suitable person, so that they can improve their knowledge.
*ese people have the experience to judge other people and
can categorize them (good or bad). *e process mentioned
above can be formulated mathematically in the following
steps:

Step 1: to obtain the starting solution of the optimi-
zation problem, the initial population must be ob-
tained. *e initial population is created randomly
within the boundary constraints as follows:

x
0
tp � αp + randp βp − αp􏼐 􏼑, (13)

where t is for the number of populations and randp

denotes uniformly distributed random number be-
tween 0 and 1.
Step 2: at the beginning, the dimensions of the junior
and senior stages should be computed through the
following formula:

DimJ � Dim ×
Genmax − G

Genmax􏼠 􏼡

k

,

DimS � Dim − DimJ,

(14)

where k(>0) denotes the knowledge rate that controls
the experience rate, DimJ and DimS represent the
dimension for the junior and senior stages, respectively,
Genmax is the maximum number of generations, and G
denotes the generation number.
Step 3: junior gaining-sharing knowledge stage: in this
stage, the early aged people gain knowledge from their
small networks and share their views with the other
people who may or may not belong to their group.
*us, individuals are updated as follows:
According to the objective function values, the indi-
viduals are arranged in ascending order. For every
xt(t � 1, 2, . . . ,NP), select the nearest best (xt−1) and
worst (xt−1) to gain knowledge and also choose ran-
domly (xr) to share knowledge. *erefore, to update
the individuals, the pseudocode is presented in
Figure 5.
Step 4: senior gaining-sharing knowledge stage: this
stage comprises the impact and effect of other people
(good or bad) on the individual.*e updated individual
can be determined as follows:
*e individuals are classified into three categories (best,
middle, and worst) after sorting individuals into as-
cending order (based on the objective function values).
Best individual� 100p% (xbest), middle
individual�Dim − 2∗100p% (xmiddle), and worst
individual� 100p% (xworst). For every individual xt,
choose two random vectors of the top and bottom
100p% individual for gaining part and the third one
(middle individual) is chosen for the sharing part.
*erefore, the new individual is updated through the
pseudocode presented in Figure 6.

5.2. Binary Gaining-Sharing Knowledge-Based Optimization
Algorithm (BGSK). To solve problems in discrete binary
space, a novel binary gaining-sharing knowledge-based
optimization algorithm (BGSK) was proposed. In BGSK, the
new initialization and the working mechanism of both stages
(junior and senior gaining-sharing stages) are introduced
over binary space, and the remaining algorithms remain the
same as the previous one. *e working mechanism of BGSK
is presented in the following sections.

Table 2: PERT-beta distribution parameters of the travelling times from the starting location.

t0,i a m b μ σ α β

t0,1 22 35 45 3.125 0.208 3.85 3.08
t0,2 22 40 45 2.1 0.15 4.32 1.41
t0,3 6 10 12 4.1667 0.25 4.23 2.33
t0,4 70 90 105 5.183 0.3167 3.88 3.03
t0,5 45 60 65 1.575 0.092 4.33 1.67

Table 3: PERT-beta distribution parameters of the advising times.

ti a m b μ σ α β

t1 2.75 3 4 3.13 0.04 1.27 4.29
t2 1.85 2 2.75 2.1 0.02 1.01 4.22
t3 3.75 4 5.25 4.17 0.06 1.01 4.22
t4 4.6 5 6.5 5.18 0.1 1.35 4.31
t5 1.45 1.5 2 1.58 0.01 0.44 3.89
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Figure 4: Examples of beta BDF and CDF for travelling and advising times. (a) BDF for t0,1; (b) BDF for t0,2; (c) BDF for t0,3; (d) BDF for t0,4;
(e) BDF for t0,5; (f ) CDF for t0,1 and t0,2; (g) BDF for t1; (h) CDF for t1.
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5.2.1. Binary Initialization. *e initial population is ob-
tained in GSK using equation (18) and it must be updated
using the following equation for binary population:

x
0
tp � round(rand(0, 1)), (15)

where the round operator is used to convert the decimal
number into the nearest binary number.

5.2.2. Binary Junior Gaining and Sharing Stage. *e binary
junior gaining and sharing stage is based on the original GSK
with kf � 1. *e individuals are updated in original GSK
using the pseudocode (Figure 2) which contains two cases.
*ese two cases are defined for binary stage as follows:

Case 1. When f(xr)<f(xt): there are three different
vectors (xt−1, xt+1, xr), which can take only two values
(0 and 1). *erefore, a total of 23 combinations are
possible, which are listed in Table 3. Furthermore, these
eight combinations can be categorized into two dif-
ferent subcases ((a) and (b)) and each subcase has four
combinations.*e results of each possible combination
are presented in Table 6.

Subcase (a): if xt−1 is equal to xt+1, the result is equal to
xr

Subcase (b): when xt−1 is not equal to xt+1, then the
result is the same as xt−1 by taking −1 as 0 and 2 as 1

*e mathematical formulation of Case 1 is as follows:

x
new
tp �

xr; if xt−1 � xt+1,

xt−1; if xt−1 ≠ xt+1.
􏼨 (16)

Case 2. When f(xr)≥f(xt): there are four different
vectors (xt−1, xt, xt+1, xr), that consider only two values
(0 and 1). *us, there are 24 possible combinations that
are presented in Table 7. Moreover, the 16 combina-
tions can be divided into two subcases ((c) and (d)).
Subcases (c) and (d) have four and twelve combina-
tions, respectively.

Subcase (c): if xt−1 is not equal to xt+1, but xt+1 is equal
to xr, the result is equal to xt−1
Subcase (d): if any of the conditions arise
xt−1 � xt+1 ≠xr orxt−1 ≠xt+1 ≠ xr orxt−1 � xt+1 � xr,
the result is equal to xt by considering −1 and −2 as 0,
and 2 and 3 as 1

*e mathematical formulation of Case 2 is as follows:

x
new
tp �

xt−1; if xt−1 ≠xt+1 � xr,

xt; otherwise,
􏼨 (17)

5.2.3. Binary Senior Gaining and Sharing Stage. *eworking
mechanism of binary senior gaining and sharing stage is the
same as the binary junior gaining and sharing stage with
value of kf � 1. *e individuals are updated in the original
senior gaining-sharing stage using pseudocode (Figure 3)
that contains two cases. *e two cases were further modified

Table 4: An example of the generated random values for travelling
and advising times.

Workplace ti,j (hours)

1 2 3 4 5
ti (hours) 0 0.59 0.62 0.2 1.61 1.05
3.041 1 0.78 0.68 1.58 1.25
1.975 2 0.74 1.59 0.99
3.87 3 1.36 1.39
4.771 4 2.2
1.529 5

Table 5: Examples of generated travelling times between
workplaces.

# t1,2 t1,3 t1,4 t1,5 t2,3 t2,4 t2,5 t3,4 t3,5 t4,5
1 0.78 0.68 1.58 1.25 0.74 1.59 0.99 1.36 1.39 2.2
2 0.67 0.64 1.53 1.15 0.81 1.23 0.85 1.56 1.27 2.60
3 0.62 0.64 1.54 1.24 0.78 1.41 0.81 1.25 1.49 2.28
4 0.81 0.65 1.66 1.12 0.8 1.59 0.82 1.35 1.44 2.04
5 0.70 0.72 1.54 1.28 0.79 1.22 0.99 1.54 1.44 2.12
6 0.80 0.71 1.44 1.21 0.83 1.39 0.66 1.48 1.49 1.86
7 0.80 0.58 1.53 1.30 0.75 1.35 0.91 1.42 1.48 2.33
8 0.72 0.67 1.61 1.30 0.75 1.46 0.89 1.63 1.35 2.15
9 0.68 0.75 1.49 1.25 0.82 1.32 0.97 1.35 1.38 2.49
10 0.76 0.74 1.56 1.19 0.82 1.60 0.97 1.49 1.43 2.19

for t = 1:NP
for p = 1:Dim

if rand ≤ kr (knowledge ratio)
if f (xt) > f (xr) 

else 

end (if) 
else xnew = xold

xnew = (xt + kf ∗ ((xt–1 – xt+1) + (xt – xr)))

xnew = (xt + kf ∗ ((xt–1 – xt+1) + (xr – xt)))

end (if)
end (for p)

end (for t)

tp

tp

tp tp

Figure 5: Pseudocode for junior gaining-sharing knowledge stage.
Note: kf(> 0) is the knowledge factor.

for t = 1:NP
for p = 1:Dim

if rand ≤ (knowledge ratio)
if 

else
tp

tp

tp tp

end (if)
else

end (if)
end (for p)

end (for t)

xnew = (xt + kf ∗ ((xbest – xworst) + (xmiddle – xt)))

xnew = (xt + kf ∗ ((xbest – xworst) + (xt – xmiddle)))

xnew = xold

f (xt) > f (xmiddle)
kr

Figure 6: Pseudocode for senior gaining-sharing knowledge stage.
Note: p ∈ [0, 1] is the percentage of best and worst classes.
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for binary senior gaining-sharing stage in the following
manner:

Case 1. Whenf(xmiddle)<f(xt): it contains three
different vectors (xbest, xmiddle, xworst), and they can
assume only binary values (0 and 1), and thus a total of
eight combinations are possible to update the indi-
viduals. *ese total eight combinations can be classified
into two subcases ((a) and (b)) and each subcase
contains only four different combinations. *e ob-
tained results of this case are presented in Table 8.

Subcase (a): if xbest is equal to xworst, then the obtained
results are equal to xmiddle
Subcase (b): on the other hand, if xbest is not equal to
xworst, then the results are equal to xbest with assuming
−1 or 2 equivalent to their nearest binary value (0 and
1, respectively)

Case 1 can be mathematically formulated in the fol-
lowing way:

x
new
tp �

xmiddle; if xbest � xworst,

xbest; if xbest ≠xworst.
􏼨 (18)

Case 2. Whenf(xmiddle)<f(xt): it consists of four
different binary vectors (xbest, xmiddle, xworst, xt), and

with the values of each vector, a total of sixteen
combinations are presented. *e sixteen combinations
are also divided into two subcases ((c) and (d)). Sub-
cases (c) and (d) further contain four and twelve
combinations, respectively. *e subcases are explained
in detail in Table 9.

Subcase (c): when xbest is not equal to xworst and xworst
is equal to xmiddle, then the obtained results are equal
to xbest
Subcase (d): if any case arises other than (c), then the
obtained results are equal to xt by taking −2 and −1 as
0 and 2 and 3 as 1

*e mathematical formulation of Case 2 is given as
follows:

x
new
tp �

xbest; if xbest ≠xworst � xmiddle,

xt; otherwise.
􏼨 (19)

*e pseudocode of BGSK is presented in Figure 7.

5.3. Example of Results. *e STAP is solved using the
proposed novel BGSK algorithm and the values of param-
eters are presented in Table 10. BGSK runs over personal
computer Intel ® CoreTM i5-7200U CPU @ 2.50GHz and
4GB RAM and coded on MATLAB R2015a. To get the
optimal solutions, 30 independent runs are performed.

Table 6: Results of the binary junior gaining and sharing stage of
Case 1 with kf � 1.

xt−1 xt+1 xr Results Modified results

Subcase (a)

0 0 0 0 0
0 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Subcase (b)

1 0 0 1 1
1 0 1 2 1
0 1 0 −1 0
0 1 1 0 0

Table 7: Results of the binary junior gaining and sharing stage of
Case 2 with kf � 1.

xt−1 xt xt+1 xr Results Modified results

Subcase (c)

1 1 0 0 3 1
1 0 0 0 1 1
0 1 1 1 0 0
0 0 1 1 −2 0

Subcase (d)

0 0 0 0 0 0
0 1 0 0 2 1
0 0 1 0 −1 0
0 0 0 1 −1 0
1 0 1 0 0 0
1 0 0 1 0 0
0 1 1 0 1 1
0 1 0 1 1 1
1 1 1 0 2 1
1 0 1 1 −1 0
1 1 0 1 2 1
1 1 1 1 1 1

Table 8: Results of binary senior gaining and sharing stage of Case
1 with kf � 1.

xbest xworst xmiddle Results Modified results

Subcase (a)

0 0 0 0 0
0 0 1 1 1
1 1 0 0 0
1 1 1 1 1

Subcase (b)

1 0 0 1 1
1 0 1 2 1
0 1 0 −1 0
0 1 1 0 0

Table 9: Results of binary senior gaining and sharing stage of Case
2 with kf � 1.

xbest xt xworst xmiddle Results Modified results

Subcase (c)

1 1 0 0 3 1
1 0 0 0 1 1
0 1 1 1 0 0
0 0 1 1 −2 0

Subcase (d)

0 0 0 0 0 0
0 1 0 0 2 1
0 0 1 0 −1 0
0 0 0 1 −1 0
1 0 1 0 0 0
1 0 0 1 0 0
0 1 1 0 1 1
0 1 0 1 1 1
1 1 1 0 2 1
1 0 1 1 −1 0
1 1 0 1 2 1
1 1 1 1 1 1
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Moreover, Figure 8 shows the convergence graph of the
solutions of STAP using BGSK. From the figure, it can be
observed that after the 25th iteration, it converges to the
global optimal solution, which shows the robustness of the
BGSK.

*e obtained optimum solutions for each simulation run
including total profit, route length (hours), and visited
workplaces are presented in Table 11. Figure 9 illustrates the
histogram for the count of runs of the visited workplaces in
the optimum solutions.

From Figure 9, it is resulted that visiting workplace
numbers 3 and 2, respectively (Eastern Company and Eva
Pharma), is the most occurring solution in 40% of the cases.
*e second occurring solution is to visit workplaces 3 and 5
with a chance of 20% only.

Histogram, goodness of fit, graph fitting, and descriptive
statistics of the simulation results for the obtained are
instructed. *e histogram for the total profit and the route
length is obtained. Table 12 shows the goodness-of-fit
summary of the simulation results for the total profit and the
route length. From the table and the shape of the PDF of the
distributions, it is concluded that the goodness-of-fit test is
in favor of the normal distribution for the total profit and the
beta distribution for the route length.

*e histograms and the best-fitted distributions for total
profit and route length for the results are shown in Figure 10.

1. Begin

2. Initialize the value of parameters (Genmax, NP, kr , k, p) 
3. Initialize the generation (G = 0)

4. Create binary population using equation (23)

5. Evaluate f (xt).

6. For G = 1 to Genmax

7. Compute the dimensions of both stage (binary junior and senior gaining sharing stage)

8. Apply binary junior gaining sharing stage 

9. Apply binary senior gaining sharing stage

10. Update the population

11. Select the global best solution

12. End for NP
13. End for G
14. End for begin

Figure 7: Pseudocode for BGSK.
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Figure 8: Convergence graph of BGSK.

Table 10: Numerical values of parameters.

Parameters of BGSK Considered values
NP 200
k 10
kr 0.9
p 0.1
kf 1
Maximum number of iterations 100

Table 11: Optimum solutions for the 30 simulation runs.

# Total profit ($) Route length (hours) Visited workplaces
1 10.2 7.04 2, 3
2 10.2 7.74 5, 3
3 10.2 6.70 3, 2
4 9.00 7.21 1, 2
5 10.2 6.82 3, 2
6 9.00 7.01 3, 5
7 9.00 7.68 5, 3
8 9.00 6.93 3, 5
9 10.2 6.83 3, 2
10 10.2 6.71 3, 2
11 8.20 5.01 2, 5
12 10.2 7.33 3, 2
13 10.2 8.00 3, 2
14 8.20 5.29 5, 2
15 10.2 6.74 3, 2
16 9.00 7.23 3, 5
17 10.2 6.56 3, 2
18 9.00 7.11 3, 5
19 10.2 6.91 2, 3
20 8.60 7.71 3, 1
21 10.2 7.11 3, 2
22 10.2 7.17 2, 3
23 9.00 7.57 5, 3
24 9.00 7.52 3, 5
25 10.2 6.69 3, 2
26 10.2 6.81 3, 2
27 9.00 7.41 3, 5
28 9.00 7.85 5, 3
29 9.00 7.78 5, 3
30 10.2 7.43 3, 2
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A normal distribution is the most suitable to fit the total
profit with a mean of $957.33, a minimum of $820, and a
maximum of $1020. A beta distribution is the most suitable

to fit the route length with a mean of 7.0633, a minimum of
5.01, and a maximum of 8 in hours. *e descriptive statistics
for both distributions are presented in Table 13.

Table 12: Goodness-of-fit summary for the total profit and the route length.

Distribution Kolmogorov–Smirnov Anderson–Darling Chi-squared
Statistic Rank Statistic Rank Statistic Rank
Total profit
Beta 0.47633 3 11.884 3 1.0222 1
Normal 0.34462 2 3.7465 1 2.1289 2
Pert 0.53333 4 171.24 4 10.19 3
Uniform 0.28813 1 9.8021 2 N/A
Triangular No fit
Route length
Beta 0.14288 1 0.52661 1 0.60354 2
Normal 0.18449 3 1.0842 3 0.19006 1
Pert 0.17218 2 0.75239 2 1.0559 3
Triangular 0.26604 5 1.6744 4 5.0607 4
Uniform 0.23558 4 8.9251 5 N/A
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Figure 9: Histogram for the count of runs of the visited workplaces in the optimum solutions.
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Figure 10: Histogram and distribution fitting. (a) Total profit ($) and (b) route length (hours).
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6. Conclusions and Points for Future
Research Studies

*e main conclusions for this paper can be summarized as
follows:

(1) A new application problem called Stochastic Trav-
elling Advisor Problem (STAP), where an advisor is
likely to select the most profitable route for visiting a
subset of candidate workplaces. Continuous prob-
ability distributions are used to model the stochastic
variables for the problem in order to be a closer
representation of real-world applications.

(2) *e stochastic nature appears in the presentation of
the travelling and the advising times. *e simulation
procedure is used to generate stochastic parameters
following PERT-beta distribution and then gather
results obtained from the repeated simulation runs.

(3) *e problem arises extensively in the advising do-
main for the service sector. It differs from the de-
terministic version in the fact that the travelling and
advising times are stochastic in nature which is the
case in real-life problems.

(4) Travelling Advisor Problem (TDP) looks like the
famous Travelling Salesman Problem (TSP) but with
basic distinct differences, mainly, the limited avail-
able route time, visiting only a subset of the places,
considering the time consumed in customer places as
a basic component, and the objective of maximizing
the total profit.

(5) A nonlinear binary mathematical model is formu-
lated for the given stochastic problem. *e binary
decision variables represent the allocation of chosen
workplaces into the positions of the proposed route,
and the nonlinearity appears in the limited time
constraint. *e final objective is to maximize the
total profit of the chosen route.

(6) A real application case study in the field of occu-
pational health and safety as one of the very im-
portant fields of the service sectors is presented. *e
stochastic model is formulated and the simulation

run problems are solved, and the output histograms
and the best-fitted distributions for the total profit
and for the route length are obtained.

(7) To obtain the solution of the proposed STAP
nonlinear binary programming model, a novel
binary gaining-sharing knowledge-based optimi-
zation algorithm (BGSK) is introduced which
includes the two main binary junior and senior
gaining-sharing stages with the knowledge factor
kf � 1. *e BGSK is the first variant of the de-
veloped GSK, and the proposed algorithm is ap-
plied with an augmented Lagrangian method to
handle the constraints.

(8) *e nonlinear binary mathematical model and the
solution method are used to mimic and solve a real
case study example. *e optimal solution is obtained
which is more profitable by 10.8% than the solution
given by the management based on selecting
workplaces with the highest profit under the time
limit constraint.

(9) *e obtained results by BGSK show its robustness
and convergence and prove that it can find the global
optimal solution of STAP. BGSK gives better results
when compared to the health and safety agency
management.

*e points for future research studies can be stated as
follows:

(1) To propose other stochastic mathematical models’
formulations for the same problem starting with the
design of the decision variables and compare the
effectiveness of computations for each model

(2) To augment the proposed Stochastic Travelling
Advisor Problem (STAP) with its variations as
STAP with time window (STAPTW), STAP with
multiple advisors (mSTAP), Multiobjective Sto-
chastic Multiple Travelling Advisor Problem
(MOSmTAP), and other variations.

(3) To apply the same problem formulation to other similar
advisory fields that can show up in many other con-
sulting domains such as industry, agriculture, business,

Table 13: Descriptive statistics for the total profit and route length.

Statistic Total profit Route length
Distribution Normal Beta
Sample size 30 30
Range 2 2.99
Mean 9.5733 7.0633
Variance 0.50409 0.42964
Std. deviation 0.70999 0.65547
Coef. of variation 0.07416 0.0928
Std. error 0.12963 0.11967
Skewness −0.43748 −1.5419
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education, telecommunications, investing, quality as-
surance, social and community services, pollution,
medical, tourism, marketing, sales, advertising, sports,
arts, and cooking.

(4) To check the performance of the BGSK algorithm in
solving different types of complex optimization
problems, and further works can be investigated by
the extension of BGSK.
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Beta Distributions, San José State University, San Jose, CA,
USA, 2006, https://www.sjsu.edu/cob/docs/I-06-005.pdf.

[19] R. Davis, “Teaching note-teaching project simulation in Excel
using PERT-BetaDistributions,” INFORMS Transactions on
Education, vol. 8, no. 3, pp. 139–148, 2008.

[20] S. M. Salim, F. I. Romli, J. Besar, and N. O. Aminian, “A study
on potential physical hazards at construction sites,” Journal of
Mechanical Engineering, vol. 4, no. 1, pp. 207–222, 2017.

[21] O. G. Bhusnure, “Chemical hazards and safety management
in pharmaceutical industry,” Journal of Pharmacy Research,
vol. 12, no. 03, p. 2018, 2018.

[22] E. Sacadura-Leite, L. Mendonça-Galaio, O. Shapovalova,
I. Pereira, R. Rocha, and A. Sousa-Uva, “Biological hazards for
healthcare workers: occupational exposure to vancomycin-
resistant,” Portuguese Journal of Public Health, vol. 36,
pp. 26–31, 2018.

[23] M. Carnell and D. Nebosh, Preventing Harm in the Workplace
Workbook, Milton Keynes University Hospital, NHS Foun-
dation Trust, Eaglestone, UK, 2017, https://www.
mkuhworkforce.co.uk/sites/default/files/2017-12/Health%2C
%20Safety%20%26%20Welfare.pdf.

[24] C. Coady, D.A. Feltham-Scott, C. Fewer, C. Osborne, and
K. Taylor, Building a Safer Tomorrow, Workplace Health,
Safety and Compensation Commission of Newfoundland and
Labrador, WorkplaceNL), San Jose, CA, USA, 2015.

[25] M. S. G. Awad and A. A. Nour El-Din, “Egyptian law reg-
ulations in occupational safety and health,” 2018.

[26] International Labour Organization website, (2020), https://www.
ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=64693.

[27] Sika Group, “Occupational safety and health, sika egypt
website,” 2020, https://egy.sika.com/content/egypt/main/
en/group/Aboutus/sustainability/environment_and_safety/
Safety.html.

[28] L. Parker,;e Early Years Health and Safety Handbook, Taylor
and Francis Group, London, UK, 2012.

[29] Marriott, M. Cosman, and R. Schmidt-McCleave, Safeguard
Health and Safety Handbook 2019, *omson Reuters New
Zealand Limited, Wellington, New Zealand, 2018.

[30] þ P. Manu, F. Emuzeþ, T. A. Saurin, H.W. þ Bonaventura, and
Hadikusumo, Construction Health and Safety in Developing
Countries, Taylor and Francis Group, London, UK, 2020.

14 Complexity

http://eurekastatistics.com/beta-distribution-pdf-grapher/
http://eurekastatistics.com/beta-distribution-pdf-grapher/
https://qpdownload.com/easyfit/
https://www.sjsu.edu/cob/docs/I-06-005.pdf
https://www.mkuhworkforce.co.uk/sites/default/files/2017-12/Health%2C%20Safety%20%26%20Welfare.pdf
https://www.mkuhworkforce.co.uk/sites/default/files/2017-12/Health%2C%20Safety%20%26%20Welfare.pdf
https://www.mkuhworkforce.co.uk/sites/default/files/2017-12/Health%2C%20Safety%20%26%20Welfare.pdf
https://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=64693
https://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=64693
https://egy.sika.com/content/egypt/main/en/group/Aboutus/sustainability/environment_and_safety/Safety.html
https://egy.sika.com/content/egypt/main/en/group/Aboutus/sustainability/environment_and_safety/Safety.html
https://egy.sika.com/content/egypt/main/en/group/Aboutus/sustainability/environment_and_safety/Safety.html


[31] M. Bognar, “Probability distribution applets,” 2020, https://
homepage.divms.uiowa.edu/%7Embognar/.

[32] A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, “Gaining-
sharing knowledge based algorithm for solving optimization
problems: a novel nature-inspired algorithm,” International
Journal of Machine Learning and Cybernetics, vol. 11, no. 7,
pp. 1501–1529, 2020.

[33] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer Methods in Applied Mechanics and
Engineering, vol. 186, no. 2-4, pp. 311–338, 2000.

[34] C. A. C. Coello, “*eoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art,” Computer Methods in Applied
Mechanics and Engineering, vol. 191, no. 11-12, pp. 1245–1287,
2002.

[35] N. Muangkote, L. Photong, and A. Sukprasert, “Effectiveness
of constrained handling techniques of improved constrained
differential evolution algorithm applied to constrained opti-
mization problems in mechanical engineering,” ITMSOC
Transactions on Innovation & Business Engineering, vol. 4,
pp. 1–21, 2019.

[36] W. Long, X. Liang, Y. Huang, and Y. Chen, “A hybrid dif-
ferential evolution augmented lagrangian method for con-
strained numerical and engineering optimization,”Computer-
Aided Design, vol. 45, no. 12, pp. 1562–1574, 2013.

[37] A. Bahreininejad, “Improving the performance of water cycle
algorithm using augmented Lagrangian method,”Advances in
Engineering Software, vol. 132, pp. 55–64, 2019.

Complexity 15

https://homepage.divms.uiowa.edu/%7Embognar/
https://homepage.divms.uiowa.edu/%7Embognar/

