
Research Article
Smart City Landscape Design Based on Improved Particle Swarm
Optimization Algorithm

Wenting Yao 1 and Yongjun Ding2

1School of Art and Media, Xi’an Technological University, Xi’an, Shaanxi 710000, China
2School of Electronic and Information Engineering, Lanzhou City University, Lanzhou, Gansu 730030, China

Correspondence should be addressed to Wenting Yao; yaowenting@xatu.edu.cn

Received 16 October 2020; Revised 13 November 2020; Accepted 18 November 2020; Published 1 December 2020

Academic Editor: Wei Wang

Copyright © 2020 Wenting Yao and Yongjun Ding. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Aiming at the shortcomings of standard particle swarm optimization (PSO) algorithms that easily fall into local optimum, this
paper proposes an optimization algorithm (LTQPSO) that improves quantum behavioral particle swarms. Aiming at the problem
of premature convergence of the particle swarm algorithm, the evolution speed of individual particles and the population
dispersion are used to dynamically adjust the inertia weights to make them adaptive and controllable, thereby avoiding premature
convergence. At the same time, the natural selection method is introduced into the traditional position update formula to
maintain the diversity of the population, strengthen the global search ability of the LTQPSO algorithm, and accelerate the
convergence speed of the algorithm. +e improved LTQPSO algorithm is applied to landscape trail path planning, and the
research results prove the effectiveness and feasibility of the algorithm.

1. Introduction

On the premise of prioritizing environmental beautification,
the optimal path design of landscape trails in the green belt
should be people-oriented. Landscape trails are places for
people to take a leisurely stroll. +erefore, establishing an
optimal roadmodel is essential for designing landscape trails
that are convenient for pedestrians. People have carried out
many aspects of research on landscape trail design and
proposed some related optimization algorithms. Among
them, the particle swarm optimization algorithm (PSO al-
gorithm) was proposed by Russell Eberhart and James
Kennedy in 1995. +e algorithm is derived from the bird
predation behavior of the group [1–3]. +e PSO algorithm is
simple to operate and has the characteristics of portability,
easy implementation, fast convergence, and so forth and can
obtain satisfactory solutions through self-adjustment, so it
has received extensive attention from many scholars. At
present, the theoretical research on particle swarm opti-
mization algorithm is mainly to analyze the convergence of
the algorithm. Due to the randomness of the particle swarm

optimization algorithm, it is not very good to use some
mathematical methods to verify the convergence effect of the
algorithm.+erefore, it is particularly important to study the
trajectory of particles in the algorithm, the distribution of
particles in the group, and its mathematical theory. Rabanel
et al. [4] studied the trajectory of a single particle in the
population and related parameters in the algorithm. Xie et al.
[5] studied the convergence of the particle swarm optimi-
zation algorithm and gave the parameter value range to
improve the algorithm’s search ability. Cui et al. [6] in-
troduced a compression factor in the algorithm to control
the particle trajectory and ensure the convergence of the
algorithm. Qi et al. [7] analyzed the stability of the particle
swarm optimization algorithm from the perspective of dy-
namics by using the Lyapunov stability and passive system
theory in mathematics. Jatana and Suri [8] analyzed and
verified the convergence of the algorithm from the inter-
action between particles. Yadav [9] theoretically analyzed
the impact of speed on the convergence of the particle swarm
optimization algorithm and gave a concrete proof. Chen and
Li [10] usedMarkov’s related theories to derive the necessary

Hindawi
Complexity
Volume 2020, Article ID 6693411, 10 pages
https://doi.org/10.1155/2020/6693411

mailto:yaowenting@xatu.edu.cn
https://orcid.org/0000-0001-7551-8988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6693411

conditions for the convergence of the standard particle
swarm optimization algorithm.

+e research on the improvement of particle swarm
optimization algorithm is mainly in the following aspects:
the particle swarm optimization algorithm is improved from
the perspective of inertia weight, learning factor, position
and velocity update formula, and fusion with other algo-
rithms [11–14]. In terms of inertia weight improvement, Li
et al. [15] proposed a particle swarm optimization algorithm
with linearly decreasing inertia weight, which improved the
overall search ability of the algorithm. Nagra et al. [16] used
random strategies to improve inertia weights. +e improved
algorithm not only improved the accuracy of the solution
but also improved the solution speed of the algorithm. Elbaz
et al. [17] used the cosine function to make nonlinear ad-
justments to the inertia weight, which improved the search
efficiency of the algorithm and could effectively improve the
premature phenomenon. In terms of learning factors, Wang
et al. [18] proposed a particle swarm algorithm with variable
acceleration factor, which improved the overall search ability
of the algorithm. In terms of algorithm update formula
improvement, Wei et al. [19] removed the speed formula in
the algorithm and only the position update formula in the
algorithm and proved the convergence of the improved
algorithm; the algorithm became simpler and more efficient.
Xu et al. [20] used the linear combination of the individual
optimal position and the global optimal position to modify
the individual optimal position and the global optimal
position in the velocity formula, and the convergence speed
of the algorithm was greatly improved. Luo and Gao [21]
improved the location update formula, which effectively
improved the search efficiency of the algorithm. In terms of
fusion with other algorithms, Zheng et al. [22] added the
selection mechanism in the genetic algorithm to the particle
swarm optimization algorithm.+e improved algorithm has
an obvious optimization effect in solving the optimization
problem of high-dimensional complex functions. Meshkati
and Safi-Esfahani [23] merged the artificial bee colony al-
gorithm with the particle algorithm optimization algorithm
and successfully applied it to image segmentation. Che et al.
[2] introduced the ant colony algorithm, and the improved
particle swarm optimization algorithm has played a good
optimization effect on solving the multiprocessor scheduling
problem. Saffaran et al. [24] integrated the mechanism of the
simulated annealing algorithm into the particle swarm
optimization algorithm, thereby speeding up the algorithm’s
convergence speed and improving the algorithm’s solution
accuracy. Tang et al. [25] merged the differential evolution
algorithm with the particle swarm algorithm to speed up the
convergence speed of the algorithm. Wu et al. [26] designed
an improved quantum evolution algorithm IPOQEA based
on a niche coevolution strategy and enhanced particle
swarm optimization (PSO). A method of boarding gate
allocation based on IPOQEA is proposed, which allocates
flights to appropriate boarding gates in different time pe-
riods. Finally, the actual operation data of Baiyun Airport is
taken as an example to verify the effectiveness of the pro-
posed method. In order to solve these problems, Wu et al.
[27] designed an optimal mutation strategy based on the

complementary advantages of five mutation strategies to
develop a new improved DE algorithm WMSDE with
wavelet basis functions, which can improve search quality
and accelerate convergence to avoid falling into local optima
and stagnation.

Although the above algorithm has achieved good results,
the PSO algorithm is still easy to fall into the local optimum.
+is will not only not achieve better experimental results but
also increase time consumption. +erefore, this paper
proposes an optimization algorithm based on improved
particle swarms. +e contributions of this article are as
follows:

(1) Aiming at the problem of premature convergence of
the particle swarm algorithm, this paper uses the
evolution speed of individual particles and the
population dispersion to dynamically adjust the
inertia weights to make them adaptive and con-
trollable, thereby avoiding premature convergence.

(2) +is paper introduces the natural selection method
into the traditional location update formula to
maintain the diversity of the population, strengthen
the global search ability of the LTQPSO algorithm,
and accelerate the convergence speed of the
algorithm.

2. Particle Swarm Optimization Algorithm

2.1. Introduction to Particle Swarm Optimization Algorithm.
+e particle swarm optimization algorithm [28] is a
mathematical simulation model of the process of birds
looking for food. In particle swarm optimization (PSO), two
simple equations of motion are designed to guide particles to
find the global optimal solution in order to simulate the
predator-prey flight behavior of birds, thus realizing the
mathematical modelling of swarm behavior. At the same
time, as an iterative algorithm based on population, the
concept of PSO algorithm is simple and easy to implement.
In solving real engineering optimization problems, PSO
algorithm has been successfully applied in many fields [29].

In the basic particle swarm optimization algorithm, each
particle is regarded as a potential solution of the problem to
be optimized, and each particle has a fitness value deter-
mined by the optimization function. At the same time, each
particle continuously iteratively updates its own speed and
position, and the global optimal position finally found is the
optimal solution to the problem to be optimized found by
the algorithm.

2.2. Basic Principles of Particle Swarm Optimization
Algorithm. Assuming that, in an n1-dimensional target
search space, there are n2 particles in the population, the
position of the i-th particle can be expressed as
Ai � (ai1, ..., ain1

), and the velocity of the particle is
Bi � (bi1, ..., bin1

), where i � 1, ..., n2. +e optimal position
searched by the i-th particle itself so far is denoted as la, and
the optimal position found by the entire particle swarm is
denoted as lb. Equations (1) and (2) give the particle speed
and position update formulas:

2 Complexity

B
p+1
i � B

p
i + k1l1 la − A

p
i + k2l2 lb − A

p
i , (1)

A
p+1
i � A

p
i + B

p+1
i . (2)

Among them, Bp
i in formula (1) represents the velocity of

the i-th particle in the p-th iteration; A
p
i represents the

position of the i-th particle in the p-th iteration; k1 and k2 are
learning factors, and usually c1 � c2 � 2; l1 and l2 are two
random numbers with values within [0.1]; p represents the
current iteration number of the algorithm.

+e inertia weight f is introduced and formula (1) is
improved. +e revised speed update formula is as follows:

B
p+1
i � fB

p
i + k1l1 la − A

p
i + k2l2 lb − A

p
i . (3)

+e experimental results in [30] show that when the
inertia weight value f> 1.2, the particles can be developed in
a larger search space, thereby improving the accuracy of the
algorithm; when the inertia weight value f< 0.8, the particle
will quickly move closer to the global optimal solution, and
the algorithm can perform a fine search in a local area. +en
when the value range of the inertia weight is within [0.8, 1.2],
the algorithm may obtain the global optimal value, and it
also requires a suitable number of iterations. Reference [30]
also shows that introducing the inertia weight of the linear
decrement strategy in formula (3) can significantly improve
the performance of the algorithm.

2.3. Basic Steps and Flowchart of Particle SwarmOptimization
Algorithm. +e basic steps of the particle swarm optimi-
zation algorithm are as follows:

Step 1: Set relevant parameters in the particle swarm
algorithm
Step 2: Initialize the position and velocity of all particles
in the population
Step 3: Calculate the fitness value of each particle in the
particle swarm algorithm, and calculate the optimal
position of the particle and the optimal position of the
entire group at the same time
Step 4: Use formulas (2) and (3) to update the velocity
and position of the particles
Step 5: If the maximum number of iterations is reached,
the algorithm stops calculating and enters Step 6;
otherwise, it returns to Step 3
Step 6: Output the optimal value

+e flow chart of the particle swarm optimization al-
gorithm is shown in Figure 1.

2.4. Problems of Particle Swarm Optimization Algorithm.
Because the particle swarm optimization algorithm has the
advantages of simple concept, few adjustment parameters,
simple programming, and easy implementation, it has been
successfully applied in many practical engineering optimi-
zation fields, but the particle swarm optimization algorithm
itself still has the following problems [31, 32].

2.4.1. Improvement of Inertia Weight Strategy. +e im-
provement strategy of inertia weight has always been a hot
research topic of many scholars. +e general improvement
strategy is based on the following idea: in the early stage of
algorithm search, the inertia weight can obtain a larger
weight, and the algorithm’s global search ability is
strengthened. In the later stage of the algorithm search, the
inertia weight can obtain a smaller weight, which is bene-
ficial to the algorithm for local search. However, most of the
improved inertia weighting strategies based on this idea lack
rigorous theoretical proofs. Sometimes, the improved al-
gorithm based on this strategy will decrease particle velocity
in the late search period, leading to the tendency of particles
in the population to the optimal solution position, the di-
versity of the population will be gradually lost, and the
search efficiency of the algorithm will also be gradually
weakened, resulting in the inability of the algorithm to jump
out of the local optimum.

2.4.2. Parameter Setting. In the particle swarm optimization
algorithm, when different parameters are selected with
different values, the optimization results of the particle
swarm optimization algorithm are also different; for dif-
ferent improved algorithms, there is no specific parameter
setting standard to solve the problem. For particle swarm
optimization algorithm in specific practical applications, the
improved algorithm may not be able to achieve good op-
timization performance, and sometimes it is necessary to
combine the problem itself to make corresponding im-
provements to the algorithm.

2.4.3. Algorithm Convergence Speed and Solution Accuracy.
For most improved particle swarm optimization algorithms,
when solving multimodal function problems, the algorithm
may often fall into the local optimal value point. As a result,
the particles may not be able to escape the local optimum in
the subsequent search process and premature convergence
appears. +e accuracy of the solution is also difficult to
improve. For most improved particle swarm algorithms,
how to improve the convergence speed of the algorithm after
reaching the specified accuracy is also one of the main re-
search problems of the particle swarm algorithm.

3. Hybrid ImprovedQuantumBehaviorParticle
Swarm Optimization Algorithm

3.1. QPSO Algorithm. According to the basic convergence
properties of particle swarms and inspired by the basic
theories of quantum physics, Sun et al. proposed the
Quantum Particle Swarm Optimization (QPSO) algorithm.
+is algorithm improves the search strategy of the entire
PSO algorithm. Its evolution equation does not require a
velocity vector and has a simple form, fewer parameters, and
easier control. +e QPSO algorithm is superior to all de-
veloped PSO algorithms in terms of search capabilities.

To transform the PSO algorithm, the equation expres-
sion obtained is as follows:

Complexity 3

Aij(p + 1) � Cij(p) + λ|Dj(p) − Aij(p)| ln
1
y

 ,

(4)

Cij � ξlaij(p) +(1 − ξ)lbj(p), (5)

lm � D1(p), . . . , Dd(p)(

�
1
n

n

i�1
lai1(p), . . . ,

1
n

n

i�1
lai1(p)⎛⎝ ⎞⎠,

(6)

ξ �
k1l1

k1l1 + k2l2(
. (7)

Among them, the position of the i-th particle at time p is
Ai � (Ai, 1(p), . . . , ai, D(p)), the best position of the indi-
vidual is lai � (lai1(p), . . . , lai d(p)), the best position of the
group is lbi � (lbi1(p), . . . , lbi d(p)), the average best posi-
tion is lm � (D1(p), . . . , Dd(p)), the dimension and
number of particles are d and n, respectively, λ is expansion-
compression factor, k1 and k2 represent learning factors, and
l1 and l2 represent uniformly distributed values.

+e particle swarm algorithm of formula (5) is collec-
tively called the quantum behavior particle swarm optimi-
zation algorithm.

3.2. 6e Principle of Hybrid Improved Quantum Behavior
Particle SwarmOptimizationAlgorithm. In the evolutionary
algorithm, reasonable algorithm control parameters have a
greater impact on the performance of the algorithm. In order
to improve the convergence of the QPSO algorithm, its

evolutionary expressions (4) and (7) have been studied.
According to the attraction point of the particle Cij(p + 1),
formula (5) can be transformed into

Cij(p + 1) � lbij(p) + ξ lbij(p) − lbij(p) . (8)

From equations (4) and (8), we can see that there is a
certain relationship between the point of attraction Cij(p +

1) of the updated particle and the best position lb(p) of the
global population and the best position la(p) of the current
particle. Aij(p + 1) is also related to the difference between
the current particle’s average position lm and its own po-
sition A(p). At present, many researchers have studied the
influence of the average position lm of the entire group on
the search behavior of the particle group during the search
process. For the average position lm of the entire group,
many methods for controlling parameters have been pro-
posed. +e inertial weight is an important part of the ad-
justable parameters of QPSO. When the inertial weight
becomes larger, the global search performance of the al-
gorithm can be improved, and the little the inertial weight
can enhance the local search performance of the algorithm.
However, the inertia weight value of the QPSO algorithm
will decrease linearly as the evolutionary algebra becomes
larger. If this method is used to describe the actual nonlinear
and complex search process, the algorithm is more likely to
fall into the local optimization extremum prematurely. As a
result, the convergence speed of the algorithm also slows
down.

In the selection of algorithm parameters, this paper uses
the evolution speed of individual particles and the dispersion
of the group to dynamically adjust the weight of inertia, so
that the weight of inertia is adaptive, so as to avoid falling

Global optimum

Mutant particles

Local optimum

Regular particles

Start

Population initialization

Example fitness value evaluation

Calculate the optimal position of the
individual particle and the optimal

position of the population

Update particle velocity formula and
position formula

Meet the conditions

End

Figure 1: Flow chart of particle swarm optimization algorithm.

4 Complexity

into the local optimum; at the same time, natural selection is
introduced into the optimal position postprocessing. +e
advantage of this method is to maintain the diversity and
stability of the population, strengthen the global search ability
of the QPSO algorithm, and improve the convergence speed
of the algorithm.

Assuming that F(lb(p)) and F(Ci(p)), respectively,
represent the fitness value of the global optimal position and
the fitness value of the current optimal position, the evo-
lution speed of individual particles is defined as

gi(p) �
F(lb(p))

F Ci(p)(
. (9)

In the range of 0<g≤ 1, the smaller the value of g is, the
faster the evolution speed will be. +e particle position is
consistent with its historical optimal position, and the current
fitness value is compared with the changed particle fitness value.
When the value of g remains at 1, it can be determined that the
algorithm has obtained the optimal solution of the particle.

Suppose that the standard deviation of the best position
of the particle in the dimension of the particle is
A(p) �(C1(lai, 1(p)), ..., Cd(lai, d(p))), and, at the same
time, the separation of the particle population in the evo-
lution process is

Hi(p) � Hi1(p), ..., Hi d(p)(�
zD1

lai1(p)(

zA1
Ai1(p)(

, . . . ,
zDd

laic(p)(

zAd
Aic(p)(

 .

(10)

It can be seen from formula (10) that H can describe the
degree of discretization of particles and the diversity of the
population. If the value of H increases, the degree of dis-
cretization of particles increases, but the diversity of particle
populations will decrease. WhenH� 1, the best position la is
exactly the same as the current position A, but the value ofH
will continue to change.

We use standard functions to test the proposed inertia
weights. +e selected test functions are two nonlinear
unimodal functions Sphere and two nonlinear multimodal
raster functions. +e number of test particles is 20, the
maximum number of iterations is 100, and the particle
dimension is 4. In the QPSO algorithm, k1 � 1, k2 � 2.1, and
the expansion-contraction coefficient decreases from 1.0 to
0.5 in turn. In the maximum number of iterations, the
floating range of individual particle evolution velocity is 0 ∼ 1,
and the degree of population dispersion approximates 1 after
constant oscillation, so it can be seen that the inertia weight
can maintain the stability and diversity of the population.
Using the above-mentioned transformation equation based
on inertia weight to improve the QPSO algorithm, the
equation for the improved QPSO algorithm is

Cij(p + 1) � lbij(p) + ξgi(p) lbij(p) − lbij(p) , (11)

Aij(p + 1) � Cij(p) + λ(p)

 lm − Hjj(p)Aij(p)

 ln
1
y

 .

(12)

It can be seen from equations (11) and (12) that the
velocity parameters of individual particles have a greater
impact on the changes in the best position of the particles
and the optimal position of the global population. In the
process of adjusting the particle position of the population
dispersion, these parameters are dynamic control
parameters.

In order to improve the accuracy and stability of the
algorithm in this paper, the natural selection algorithm is
used to select the position of the particles. In the iterative
process, the particles are arranged according to the function
value from good to bad, and the state quantity of the best
particle is selected according to the selection rule. +e worst
particle is finally sorted with the changed particle pop-
ulation. Equation (12) sorts the previous particle population
and saves the historical optimal solution of each individual.
Figure 2 shows the basic flow of the LTQPSO algorithm.

4. Results and Discussion

4.1. LTQPSO Algorithm Parameters. For the path planning
of the particle swarm algorithm, repeated simulation ex-
periments are usually required. In the evolutionary algo-
rithm, the number of particles, the particle dimension, and
the maximum number of iterations are three crucial pa-
rameters. When planning the optimal path, first determine
the basic parameters and then consider the working envi-
ronment and establish an estimation method for the rela-
tionship between the parameters to realize the connection
path planning. In this paper, through a convergent and
feasible parameter simulation experiment based on the
LTQPSO algorithm in a barrier-free environment, a linear
regression equation of the basic parameters is obtained.

In order to further analyze the relationship between the
change of particle dimension and the number of iterations,
this paper uses Matlab 2014a for simulation, the particle
dimension is d (5≤d≤ 20), the learning factors k1 � 2 and
k2 � 2.1, and expansion-contraction coefficient is succes-
sively decreased from 1.0 to 0.5. Using the method where the
values of k1 and k2 are fixed and λ decreases in sequence, the
optimal path using polar coordinates and rectangular co-
ordinates in a barrier-free environment is 14.14m. Because
the initial distribution has an effect on the convergence
speed, the initial distribution is set to a uniform distribution
and a normal distribution.

+e specific method of the simulation experiment is as
follows: according to the order of the particle dimensions,
the number of particles and the number of iterations are
sequentially increased to repeat the experiment, and the
average value of the optimal solution is obtained by per-
forming 100 experiments and recording the largest and
smallest values when the standard deviation is less than 0.05.
+e feasible convergence interval can be represented by the
maximum value and theminimum value. For the parameters
of the algorithm in this paper, the regression analysis of the
two initial distributions is performed, respectively. Figure 3
shows the maximum and minimum number of particles and

Complexity 5

the number of iterations of 100 experimental results ob-
tained by averaging the initial distribution of LTQPSO
under the change of particle dimensions.

From Figure 3, we can see the change characteristics of the
number of particles and the number of iterations. +e change
of its parameters is similar to that of the exponential function,
so a one-variable linear regression equation can be used to
express the basic parameters of path planning. Table 1 lists the
regression analysis results of the basic parameters obtained by
using the Matlab regression analysis “Regress” command.

From the experimental results of the parameter re-
gression analysis in Table 1, it can be seen that the regression
variation difference of the maximum value of the basic
parameters of the LTQPSO algorithm is better than the
minimum value. +e unary linear regression equation of the
basic parameters is

S � round 0.4123L
1.7091

 . (13)

+e number of particles that converged in the average
initial distribution and the number of iterations can be
calculated by formula (13) according to the change of the
number of particles in the LTQPSO algorithm.

According to the above method, using the LTQPSO
algorithm to perform 100 experiments on the particle di-
mensions under a normal distribution, the maximum
number of particles, the minimum number of particles, and
the number of iterations obtained are shown in Figure 4.

+e change characteristics of the number of particles and
the number of iterations can be seen in Figure 4. +e change
of parameters is similar to that of the exponential function,
so a linear regression equation can be used to express the
basic parameters of path planning.

Start

Initialization example location: la, lb

Set basic parameters: d, n1, n2, n

i = 1

Contraction-expansion coefficient: 1–
(1–0.5)∗(k/n)

Average position: lm = mean (la)

The evolution speed of individual
particles: g(i) = std(la(:;i))/std(A(:;i))

j = 1

j < d

j = j + 1

F(Ai) < F(la)

i < n

la = Ai

Yes
No

No

F(la) < F(lb)

la = lbYes

i = i + 1

Yes

Natural selection process:
sort(F);
s = round(n–1)/p;
A(sort(n–s+1); n) = A(sort(1:s))

No

Example location update:
Cij (p + 1) =lbij(p) + ξgi(p)(lbij(p) – lbij(p))

Aij(p + 1) = Cij(p) + λ(p) | lm – Hij(p)
Aij(p) | ln(1 + y)

Group dispersion: gi(p) = F(lb(p))/F(Ci(p))

Figure 2: Flow chart of LTQPSO algorithm.

5
21 28 31

47

93

126

152
170

178 185

15
29 32 36

58

88

132

158

178 182
192

0

20

40

60

80

100

120

140

160

180

200

0 2 3 6 8 10 12 14 16 18 20

G
en

er
at

io
ns

Iteration times

Min value
Max value2

Min value
Max value

5

15

27
33

38
42

57
62

68 71

83

5

21
27

38
46

53
62

75

87
91

95

0

10

20

30

40

50

60

70

80

90

100

0 2 3 6 8 10 12 14 16 18 20

G
en

er
at

io
ns

Number of particles

Figure 3: Simulation results of uniform distribution.

6 Complexity

Table 2 lists the regression analysis results of the basic
parameters obtained by using the Matlab regression analysis
“Regress” command. According to the experimental results
of parameter regression analysis in Table 2, the regression
variation difference of the maximum value of the basic
parameters of the LTQPSO algorithm is better than the
minimum value. +e unary linear regression equation of the
basic parameters is

S � round 0.3107L
1.0865

 . (14)

In summary, in the path planning of mobile robots based
on the LQPSO algorithm proposed in this paper, the
LTQPSO algorithm can use equations (13) and (14) to de-
termine the basic parameters, so it can be used for path
planning of landscape trails.

4.2. Comparison Algorithm. Using the adaptive BP algo-
rithm with momentum term, basic particle swarm optimi-
zation (BPSO) algorithm and improved particle swarm
optimization (LTQPSO) algorithm’s error curve is shown in
Figure 5.

It can be seen from Figure 5 that the improved particle
swarm optimization algorithm achieves the given error

accuracy at about 260 steps, while the basic particle swarm
optimization algorithm and the adaptive BP algorithm with
momentum term use about 880 steps and 1,900 steps, re-
spectively. By comparing the optimization error curves of
different algorithms, the results show that the improved PSO
has a much faster convergence rate, and the proposed al-
gorithm has a smaller error.

Using improved particle swarm optimization to ap-
proximate the given function, the curve obtained is shown in
Figure 6. Linear regression analysis is performed on the
optimized simulation output results and target results, and
the analysis results are shown in Figure 7. It can be seen from
Figure 7 that the correlation coefficient between the opti-
mized output result and the target result reaches 0.999.

In order to verify the effectiveness of the proposed
improved particle swarm algorithm, the above test function
was optimized with 200 steps, and the test was repeated 30
times. +e test results of the network mean square error
obtained by the optimization of the three algorithms are
shown in Table 3.

+e test results in Table 3 show that the optimal MSE and
the worst MSE of the proposed algorithm are the lowest, and
the variance is also the smallest, which shows that the al-
gorithm proposed in this paper has strong stability. It can be

Min value
Max value

5
10

19
26 28 31

37
42

58

71

83

5

15

27
33

38
43

58
63

77
81

92

0

10

20

30

40

50

60

70

80

90

100

0 2 3 6 8 10 12 14 16 18 20

G
en

er
at

io
ns

Number of particles

1
11

19 21 28 31
47

93

126

152
170

5
15

23 29 32 36

58

88

135

158

178

0

20

40

60

80

100

120

140

160

180

200

0 2 3 6 8 10 12 14 16 18 20

G
en

er
at

io
ns

Iteration times

Min value
Max value

Figure 4: Simulation results of normal distribution.

Table 1: Parametric regression analysis results for uniform distribution.

Parameter Min Max

Regression coefficients b0 −1.4432 −0.8512
b1 1.8701 1.7805

Coefficient area b0 (−1.71, −1.13) (−1.06, −0.58)
b1 (1.78, 1.87) (1.52, 1.79)

Statistics

R2 1 1
F 1478.1 1385.9
P 0 0
α 0 0

Complexity 7

known from the experimental results that the improved
particle swarm optimization algorithm effectively improves
the optimization accuracy and efficiency compared with the
BP algorithm and the basic particle swarm algorithm.

4.3. Comparison of Algorithm Running Time and Number of
Iterations. +e traditional design method consumes huge
computing resources and wastes time. +e design of the
optimization algorithm in this paper solves this problem
well. +e genetic algorithm has the best effect at present. +e
biggest feature of particle swarm optimization algorithm is
that it can save time and computing resources more than
genetic algorithm. +e comparison result is shown in
Figure 8.

It can be seen from Figure 8 that the algorithm in this
paper can complete convergence in about 500 generations,
while the genetic algorithm needs 1100 generations, and
other algorithms need more than that. At the same time,
comparing the running times of the algorithms, the running
time of the genetic algorithm is 369.43 s, and the particle
swarm optimization algorithm only takes 146.97 s. It is
shown that the particle swarm optimization algorithm is
faster than the genetic algorithm in design. Combined with
the performance comparison in Table 3, it can be seen that
the particle swarm optimization algorithm has improved the
design efficiency of landscape trail path planning.

Table 4 shows the running time results of different al-
gorithms. +e computational complexity of the algorithm is
proportional to the running time. It can be seen from Table 4
that the complexity of the algorithm in this paper is the
lowest, and the corresponding running time is also the
lowest.

–1.5

-1

–0.5

0

0.5

1

1.5

0.
01

0.
09

0.
17

0.
25

0.
33

0.
41

0.
49

0.
57

0.
65

0.
73

0.
81

0.
89

0.
97

1.
05

1.
13

1.
21

1.
29

1.
37

1.
45

1.
53

1.
61

1.
69

1.
77

1.
85

1.
93

2.
01

2.
09

2.
17

2.
25

2.
33

2.
41

2.
49

2.
57

2.
65

2.
73

2.
81

2.
89

2.
97

D
ep

en
de

nt
 v

ar
ia

bl
e

Independent variable

Original curve
Approximation curve

Figure 6: Optimized function approximation effect diagram.

0

0.5

1

1.5

2

2.5

3

3.5

0.
01

0.
09

0.
17

0.
25

0.
33

0.
41

0.
49

0.
57

0.
65

0.
73

0.
81

0.
89

0.
97

1.
05

1.
13

1.
21

1.
29

1.
37

1.
45

1.
53

1.
61

1.
69

1.
77

1.
85

1.
93

2.
01

2.
09

2.
17

2.
25

2.
33

2.
41

2.
49

2.
57

2.
65

2.
73

2.
81

2.
89

2.
97

D
ep

en
de

nt
 v

ar
ia

bl
e Y

Independent variable X

Best linear fit: Y = 0.995∗X + 0.006

Data points

Best linear fit
Y = X

Figure 7: Regression analysis results after optimization.

Table 3: Comparison of the mean square error results of the three
algorithms on the test function.

Methods BP BPSO LTQPSO
Optimal MSE 0.0018 0.0037 0.0009
Worst MSE 0.0321 0.0978 0.0015
Mean 0.0187 0.0265 0.0018
Variance 0.0012 0.0024 0.0006

Table 2: Parameter regression analysis results of normal
distribution.

Parameter Min Max

Regression coefficients b0 −1.7086 −1.1562
b1 1.9906 1.8865

Coefficient area b0 (−2.11, −1.33) (−1.76, −0.98)
b1 (1.98, 2.17) (1.72, 1.99)

Statistics

R2 0.988 1
F 778.1 1125.9
P 0 0
α 0.011 0

0

0.5

1

1.5

2

2.5

3

3.5

0 80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

80
0

88
0

96
0

10
40

11
20

12
00

12
80

13
60

14
40

15
20

16
00

16
80

17
60

18
40

19
20

20
00

Er
ro

r v
al

ue
s

Iteration times

LTQPSO
BPSO
BP

Figure 5: Error curve of particle swarm optimization algorithm.

8 Complexity

5. Conclusion

+e landscape trail optimization model designed by the
improved particle swarm algorithm is feasible and effective
and can reduce the construction cost of landscape trails.+is
paper proposes an optimization algorithm for improving
quantum behavioral particle swarms (LTQPSO). Aiming at
the problem of premature convergence of the particle swarm
algorithm, the evolution speed of individual particles and the
population dispersion are used to dynamically adjust the
inertia weights to make them adaptive and controllable,
thereby avoiding premature convergence. At the same time,
the natural selection method is introduced into the tradi-
tional position update formula to maintain the diversity of
the population, strengthen the global search ability of the
LTQPSO algorithm, and accelerate the convergence speed of
the algorithm. +e improved LTQPSO algorithm is applied
to landscape trail path planning. +e research results prove
that the algorithm is easier to guide and has a more efficient
global search capability, showing higher efficiency and
robustness.

Data Availability

+e data used to support the findings of this study are
available upon request from the corresponding author.

Conflicts of Interest

+e authors declare that they have no known conflicts of
interest or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Z. Cui, J. Zhang, D.Wu et al., “Hybrid many-objective particle
swarm optimization algorithm for green coal production
problem,” Information Sciences, vol. 518, pp. 256–271, 2020.

[2] G. Che, L. Liu, and Z. Yu, “An improved ant colony opti-
mization algorithm based on particle swarm optimization
algorithm for path planning of autonomous underwater,”
Journal of Ambient Intelligence and Humanized Computing,
vol. 11, no. 8, pp. 3349–3354, 2020.

[3] X. Zhang, X. Wang, Q. Kang, and J. Cheng, “Differential
mutation and novel social learning particle swarm optimi-
zation algorithm,” Information Sciences, vol. 480, pp. 109–129,
2019.

[4] J.-M. Rabanel, V. Adibnia, S. F. Tehrani et al., “Nanoparticle
heterogeneity: an emerging structural parameter influencing
particle fate in biological media?” Nanoscale, vol. 11, no. 2,
pp. 383–406, 2019.

[5] Y. Xie, Y. Zhu, Y. Wang et al., “A novel directional and non-
local-convergent particle swarm optimization based workflow
scheduling in cloud-edge environment,” Future Generation
Computer Systems, vol. 97, pp. 361–378, 2019.

[6] J. Cui, Q. Jiang, S. Li, X. Feng, Y. Zhang, and Y.-E. Shi,
“Numerical study of anisotropic weakening mechanism and
degree of non-persistent open joint set on rock strength with
particle flow code,” KSCE Journal of Civil Engineering, vol. 24,
no. 3, pp. 988–1009, 2020.

[7] Z. Qi, Q. Shi, and H. Zhang, “Tuning of digital PID controllers
using particle swarm optimization algorithm for a CAN-based
DC motor subject to stochastic delays,” IEEE Transactions on
Industrial Electronics, vol. 67, no. 7, pp. 5637–5646, 2019.

[8] N. Jatana and B. Suri, “Particle swarm and genetic algorithm
applied to mutation testing for test data generation: a com-
parative evaluation,” Journal of King Saud University-Com-
puter and Information Sciences, vol. 32, no. 4, pp. 514–521,
2020.

[9] A. Yadav, “AEFA: artificial electric field algorithm for global
optimization,” Swarm and Evolutionary Computation, vol. 48,
pp. 93–108, 2019.

[10] G. Chen and S. Li, “Markov and improved particle swarm
optimization-based privacy preservation algorithm for user
space geographical location,” European Journal of Remote
Sensing, vol. 53, no. 1, pp. 31–40, 2020.

[11] H. Zhengtong, G. Zhengqi, M. Xiaokui, and C. Wanglin,
“Multimaterial layout optimization of truss structures via an
improved particle swarm optimization algorithm,” Computers
& Structures, vol. 222, pp. 10–24, 2019.

[12] W. Ji, G. Chen, B. Xu, X. Meng, and D. Zhao, “Recognition
method of green pepper in greenhouse based on least-squares
support vector machine optimized by the improved particle
swarm optimization,” IEEE Access, vol. 7, pp. 119742–119754,
2019.

[13] Z. Ouyang, Y. Liu, S.-J. Ruan, and T. Jiang, “An improved
particle swarm optimization algorithm for reliability-redun-
dancy allocation problem with mixed redundancy strategy
and heterogeneous components,” Reliability Engineering &
System Safety, vol. 181, pp. 62–74, 2019.

[14] Q.-B. Zhang, P. Wang, and Z.-H. Chen, “An improved
particle filter for mobile robot localization based on particle
swarm optimization,” Expert Systems with Applications,
vol. 135, pp. 181–193, 2019.

[15] M. Li, H. Chen, X. Wang, N. Zhong, and S. Lu, “An improved
particle swarm optimization algorithm with adaptive inertia

35 38 46
78 98 110 126 139 151 167

37 41 52
67

89
118 131

156 167
188

45
69 78

87
99

127
139

151
172

192

56
72

81
92

106

131
142

155
179

197

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1600 1800 2000

Fi
tn

es
s f

un
ct

io
n

va
lu

es

Iteration times

BP
BPSO

GA
LTQPSO

Figure 8: Comparison of fitness function values and iteration times
of the four algorithms.

Table 4: Comparison of the running time results of the four
algorithms.

Methods BP (s) BPSO (s) GA (s) LTQPSO (s)
Time 0.115 0.137 1.002 0.019

Complexity 9

weights,” International Journal of Information Technology &
Decision Making, vol. 18, no. 3, pp. 833–866, 2019.

[16] A. A. Nagra, F. Han, and Q. H. Ling, “An improved hybrid
self-inertia weight adaptive particle swarm optimization al-
gorithm with local search,” Engineering Optimization, vol. 51,
no. 7, pp. 1115–1132, 2019.

[17] K. Elbaz, S.-L. Shen, W.-J. Sun, Z.-Y. Yin, and A. Zhou,
“Prediction model of shield performance during tunneling via
incorporating improved particle swarm optimization into
ANFIS,” IEEE Access, vol. 8, pp. 39659–39671, 2020.

[18] Q. Wang, S. Chen, and X. Luo, “An adaptive latent factor
model via particle swarm optimization,” Neurocomputing,
vol. 369, pp. 176–184, 2019.

[19] L. Wei, X. Li, and R. Fan, “A new multi-objective particle
swarm optimisation algorithm based on R2 indicator selection
mechanism,” International Journal of Systems Science, vol. 50,
no. 10, pp. 1920–1932, 2019.

[20] G. Xu, Q. Cui, X. Shi et al., “Particle swarm optimization based
on dimensional learning strategy,” Swarm and Evolutionary
Computation, vol. 45, pp. 33–51, 2019.

[21] J. Luo and Y. Gao, “Cooperative particle swarm optimization
algorithm with cloud mutation operator based on normal
cloud model,” International Journal of Machine Learning and
Computing, vol. 9, no. 5, pp. 554–560, 2019.

[22] T. Zheng, Y. Liang, B. Wang et al., “A two-stage improved
genetic algorithm-particle swarm optimization algorithm for
optimizing the pressurization scheme of coal bed methane
gathering networks,” Journal of Cleaner Production, vol. 229,
pp. 941–955, 2019.

[23] J. Meshkati and F. Safi-Esfahani, “Energy-aware resource
utilization based on particle swarm optimization and artificial
bee colony algorithms in cloud computing,” 6e Journal of
Supercomputing, vol. 75, no. 5, pp. 2455–2496, 2019.

[24] A. Saffaran, M. A. Moghaddam, and F. Kolahan, “Optimi-
zation of backpropagation neural network-based models in
EDM process using particle swarm optimization and simu-
lated annealing algorithms,” Journal of the Brazilian Society of
Mechanical Sciences and Engineering, vol. 42, no. 1, pp. 1–14,
2020.

[25] B. Tang, K. Xiang, andM. Pang, “An integrated particle swarm
optimization approach hybridizing a new self-adaptive par-
ticle swarm optimization with a modified differential evolu-
tion,” Neural Computing and Applications, vol. 32, no. 9,
pp. 4849–4883, 2020.

[26] D. Wu, J. Xu, and H. Zhao, “A novel gate resource allocation
method using improved PSO-based QEA,” IEEE Transactions
on Intelligent Transportation Systems, pp. 1–9, 2020.

[27] D. Wu, J. Xu, and Y. Song, “Differential evolution algorithm
with wavelet basis function and optimal mutation strategy for
complex optimization problem,” Applied Soft Computing,
vol. 2020, Article ID 106724, 2020.

[28] K. Gholami and E. Dehnavi, “A modified particle swarm
optimization algorithm for scheduling renewable generation
in a micro-grid under load uncertainty,” Applied Soft Com-
puting, vol. 78, pp. 496–514, 2019.

[29] B.-h. Zhou, X.-m. Liao, and K. Wang, “Kalman filter and
multi-stage learning-based hybrid differential evolution al-
gorithm with particle swarm for a two-stage flow shops
scheduling problem,” Soft Computing, vol. 23, no. 24,
pp. 13067–13083, 2019.

[30] T. Khurshaid, A.Wadood, S. G. Farkoush, C.-H. Kim, N. Cho,
and S.-B. Rhee, “Modified particle swarm optimizer as op-
timization of time dial settings for coordination of directional

overcurrent relay,” Journal of Electrical Engineering & Tech-
nology, vol. 14, no. 1, pp. 55–68, 2019.

[31] İ. B. Aydilek, “A hybrid firefly and particle swarm optimi-
zation algorithm for computationally expensive numerical
problems,” Applied Soft Computing, vol. 66, pp. 232–249,
2018.

[32] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization
algorithm: an overview,” Soft Computing, vol. 22, no. 2,
pp. 387–408, 2018.

10 Complexity

