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In this paper, we investigate the finite-time synchronization control for a class of nonlinear coupled multiweighted complex
networks (NCMWCNs) with Markovian switching and time-varying delay analytically and quantitatively. .e value of this study
lies in four aspects: First, it designs the finite-time synchronization controller to make the NCMWCNs with Markovian switching
and time-varying delay achieve global synchronization in finite time. Second, it derives two kinds of finite-time estimation
approaches by analyzing the impact of the nonlinearity of nonlinear coupled function on synchronization dynamics and
synchronization convergence time. .ird, it presents the relationship between Markovian switching parameters and synchro-
nization problems of subsystems and the overall system. Fourth, it provides some numerical examples to demonstrate the
effectiveness of the theoretical results.

1. Introduction

In the past several decades, since the pioneer work of Watts
and Strogatz [1], complex networks have received extensive
concern in various fields of science and engineering [2–5].
As a matter of fact, complex networks are composed of lots
of interconnected nodes, in which each node is a funda-
mental unit and may have specific dynamics [6–11], and
exist everywhere in the real world, such as sensor networks,
smartphone networks, industrial control system networks,
neural networks, and communication networks [12–16].
.erefore, the research of complex networks can help us to
further comprehend the functions and effects of the real-
world networks.

It is worthy to note that the applications of complex
networks heavily depend on the dynamics of them, for
example, passivity dynamics [17, 18], synchronization dy-
namics [19–22], and stabilization dynamics [23, 24], and
hence, exploring dynamics of complex networks is necessary

and significant. Especially, synchronization, as one of the
most collective dynamics of complex networks, has gained
widespread concern, and many valuable theoretical results
have been obtained [23–31]. And numerous studies have
been conducted to establish some feasible control methods
such as event-triggered sliding mode control [32], adaptive
sliding mode fault-tolerant control [33], and finite-time
control [34, 35], to make the addressed systems get the
desired dynamics behaviors.

Furthermore, in some practical engineering fields, the
desired dynamic behavior is often required to be achieved in
finite time interval [36, 37]. .erefore, recently, more re-
searchers have increasingly drawn attention to finite-time
synchronization dynamics control problem for complex
networks [38–44]. In [38], an asynchronous switching
feedback controller based on the derived sufficient conditions
was designed to realize finite-time synchronization for a class
of uncertain coupled switched networks. In [39], the authors
gave some sufficient conditions which ensure finite-time
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synchronization for a class of switched coupled neural net-
works with discontinuous or continuous activations. In [40],
under the framework of Filippov solution, the authors studied
finite-time synchronization for two classes of coupled Mar-
kovian discontinuous neural networks with mixed delays. It
should be noted that in [38–42, 44], the proposed complex
networks were entangled by linear coupling. In fact, many
physical networks are entangled by nonlinear coupling. For
example, in Kuramoto oscillator network, there exist non-
linear interactions among different oscillators [45]. In elec-
trical gird dynamical networks, different electrical elements
are coupled by nonlinear interactions [46]. Obviously, linear
function is a special case of nonlinear function, and nonlinear
coupled complex networks are more general and their syn-
chronization dynamics may be more complicated and un-
predictable [2, 6, 25, 47–51]. In [47], under finite-time pinning
control, the authors investigated the finite-time cluster syn-
chronization problem of nonlinearly coupled and discon-
tinuous Lur’e networks. In [48], the authors derived some
sufficient conditions to ensure finite-time synchronization of
the considered linear coupled and nonlinear coupled complex
networks. Unfortunately, there are merely a few results on
finite-time synchronization control of nonlinear coupled
complex networks. And the impact of the nonlinearity of the
coupled function on synchronization dynamics cannot be
reflected by the derived settling finite time t∗ [47, 48]. .is is
because that the finite-time control method cannot process
how nonlinearity of nonlinear coupled function impacts
synchronization dynamics of the addressed complex net-
works. So, there was no function relationship between t∗ and
the nonlinearity of the coupled function. Actually, every el-
ement attribute in a dynamical system may impact syn-
chronization dynamics and synchronization convergence
time, which means that nonlinearity of the coupled function,
as one of the coupling function attributes, may affect syn-
chronization dynamics and synchronization convergence
time of the considered nonlinear coupled complex networks.
.erefore, it is important to further design more reasonable
and feasible finite-time control method to deal with the
existing issue.

It should be mentioned that most of existing research
results on synchronization control problems of complex
networks focused on synchronization dynamics of complex
networks with single weight (for example, [42, 44–47, 49–52]
and references therein). But in reality, for example, people
can contact each other by mail, telephone, MSN, e-mail, and
so on; suppose every piece of contact information is of
different weight, so human connection network is a complex
network with multiweights, where the nodes are connected
by more than one weight [53]. Indeed, this is a well-
established way of introducing environmental noise into
dynamic networks. Recently, synchronization dynamics of
complex networks with multiweights have increasingly
attracted interests [17, 18, 31, 34, 41–43, 48, 52–58]. Of them,
Huang et al. [17] established several finite-time passivity
criteria for several classes of linear coupled MWCNs
(LCMWNCs). Qiu et al. [41] proposed finite-time syn-
chronization control methods to make the addressed
LCMWNCs. He et al. [52] considered four classes of

LCMWNCs and investigated the global synchronization of
them. Particularly, in [48, 55], the authors studied the finite-
time synchronization control of nonlinear coupled MWCNs
(NCMWCNs) and analyzed how the nonlinearity of non-
linear coupled function impacts synchronization dynamics
and synchronization convergence time.

Motivated by the above discussion and analysis, in this
paper, we will focus on the finite-time synchronization
control for a class of NCMWCNs with Markovian switching
and time-varying delay and propose that the finite-time
estimation approaches based on the designed controllers can
reflect how nonlinearity of nonlinear coupled function
impacts synchronization dynamics and synchronization
convergence time of the addressed network.

.e rest of this paper is organized as follows. In Section
2, we present the model derivations and preliminaries. In
Section 3, we provide the main results of the present paper.
In Section 4, we give some numerical results to show the
complicated dynamics of the system. In Section 5, we
provide a brief discussion and summarize our main results.

2. Problem Description and Preliminaries

For any vector x(t) ∈ Rn and matrix A ∈ Rn×m, we denote
the following:

‖x(t)‖1 � 􏽘
n

i�1
xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

‖A‖2 �

���������

λmax ATA( )

􏽱

,

(1)

where λmax(ATA) denotes the maximal eigenvalue of ATA

and T represents the matrix transposition. diag(·) represents
a block diagonal matrix. .e number N represents a positive
integer. .e Kronecker product of matrices A ∈ Rm×n and
B ∈ RM×N is a matrix in RmM×nN denoted as A⊗B.
In ∈ Rn×n means an n-dimensional identity matrix. Let
(Ω,F, Ft􏼈 􏼉t≥0, P) be a complete probability space with a
filtration Ft􏼈 􏼉t≥0 satisfying the usual conditions (i.e., the
filtration contains all P-null and is right continuous). E(x)

means the expectation of the random variable x.
Consider the following NCMWCNs with Markovian

switching and time-varying delay:

_􏽥yi(t) � 􏽥A􏽥f 􏽥yi(t)( 􏼁 + 􏽐
m

k�1
􏽐
N

j�1
􏽥ak􏽥gk

ij(􏽥r(t))􏽥Γk􏽥h 􏽥yj(t)􏼐 􏼑

+ 􏽐
m

k�1
􏽐
N

j�1
􏽢ak􏽥gk

ij(􏽥r(t))􏽢Γk􏽥h 􏽥yj(t − τ(t))􏼐 􏼑,

(2)

where 􏽥yi(t) � [􏽥yi1(t), 􏽥yi2(t), . . . , 􏽥yin(t)]T ∈ Rn, 􏽥f(yi(t)) �

[􏽥f(􏽥yi1(t)), 􏽥f(􏽥yi2(t)), . . . , 􏽥f(􏽥yin(t))]T ∈ Rn denotes the
activation function of the i th node 􏽥yi(t), 􏽥h(·): Rn⟶ Rn

represents nonlinear coupled function, 􏽥A ∈ Rn×n, 􏽥ak > 0 and
􏽢ak > 0(k � 1, 2, . . . , m) are coupled strength, 􏽥Gk(􏽥r(t)) �

(􏽥gk
ij(􏽥r(t)))N×N stands for the k th outer-coupled weight

matrix, 􏽥Γk > 0 and 􏽢Γk > 0 are the inner-coupledmatrix, τ(t) is
the coupled time-varying delay, and 􏽥r(t) is a right-con-
tinuous Markov chain with known transition rate on the
probability space (Ω,F, Ft􏼈 􏼉t≥0, P) taking values in a finite
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state space 􏽢S � 1, 2, . . . ,􏽢s{ } with a generator Υ �

(δpq)
􏽢s×􏽢s(p,q ∈􏽢S)

given by

P 􏽥r(t + Δt) � q | 􏽥r(t) � p􏼈 􏼉 �
δpqΔt + o(Δt), p≠ q,

1 + δpqΔt + o(Δt), p � q,

⎧⎨

⎩

(3)

where Δt> 0, limΔt⟶0(o(Δt)/Δt) � 0, δpq > 0 (∀p≠ q) is the
transition rate from mode p at time t to mode q at time t + Δt,
and δpp � − 􏽐

􏽢s
q�1,p≠ q δpq < 0. For notation simplicity, we denote

􏽥Gk(􏽥r(t)), 􏽥gk
ij(􏽥r(t)), and 􏽥r(t) as 􏽥G

􏽥r
k, 􏽥gk,􏽥r

ij , and 􏽥r, respectively.

Remark 1. From the discussion in Section 1 about multi-
weighted complex networks (MWCNs) and their synchro-
nization dynamics, it can be seen that many real-world
networks can be more accurately modeled by some classes of
MWCNs; some potential applications ofMWCNs are closely
related to their dynamics such as passivity dynamics and
synchronization dynamics. And dynamics problems of
MWCNs have witnessed an increasing interest
[17, 18, 31, 34, 41, 48, 53–58]. It needs to be pointed out in
[17, 18, 31, 34, 41, 48, 53–58]; the addressed MWCNs are
LCMWNCs. And there are few research results about finite-
time synchronization control of MWCNs [41, 48, 55].

Remark 2. In [48, 55], the authors investigated finite-time
synchronization control of NCMWCNs and analyzed how
the nonlinearity of nonlinear coupled function impacts
synchronization dynamics and synchronization conver-
gence time. However, in [48], the derived settling finite-time
t∗ based on the designed finite-time control scheme cannot
reflect how the nonlinearity of nonlinear coupled function
affects synchronization dynamics in finite time and syn-
chronization convergence time. In [55], though the derived
settling finite time t∗ can reflect the impact of the nonlin-
earity of nonlinear coupled function on synchronization
dynamics in finite time and synchronization convergence
time of the proposed NCMWCNs with switching topology,
the designed finite-time control method cannot process

time-varying delay. .at is, in [55], if time-varying delay is
considered into the addressed NCMWCNs with switching
topology, the derived finite-time control method is invalid.
In the present paper, we will establish the finite-time control
method which can effectively process time-varying delay of
the addressed network. Furthermore, we will show that the
impact of synchronization dynamics in finite time and
synchronization convergence time can be reflected by the
obtained settling finite time t∗.

Remark 3. In network (2), there is no diffusive coupling
condition restriction: 􏽥gk,􏽥r

ii � − 􏽐
N
j�1,j≠i 􏽥gk,􏽥r

ij . .erefore, com-
pared with the existing multiweighted diffusive coupling
complex networks [18, 31, 34, 41, 53–58], the coupled
method among different nodes of network (2) is more
flexible. Actually, the coupled method of the network (2) has
been adopted in [17, 48, 55].

From network (2), we can get

_s(t) � 􏽥A􏽥f(s(t)) + 􏽐
m

k�1
􏽐
N

j�1
􏽥ak􏽥gk,􏽥r

ij
􏽥Γk􏽥h(s(t))

+ 􏽐
m

k�1
􏽐
N

j�1
􏽢ak􏽥gk,􏽥r

ij
􏽢Γk􏽥h(s(t − τ(t))),

(4)

where s(t) is the synchronization state of network (2).
Subtracting (4) from (2), we can get the error system of

network (2):

_􏽥ei(t) � 􏽥A􏽥F 􏽥ei(t)( 􏼁 + 􏽐
m

k�1
􏽐
N

j�1
􏽥ak􏽥gk,􏽥r

ij
􏽥Γk 􏽥H 􏽥ej(t)􏼐 􏼑

+ 􏽐
m

k�1
􏽐
N

j�1
􏽢ak􏽥gk,􏽥r

ij
􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑,

(5)

where 􏽥ei(t) � 􏽥yi(t) − s(t), 􏽥F(􏽥ei(t)) � 􏽥f(􏽥yi(t)) − 􏽥f(s(t)),
􏽥H(􏽥ej(t)) � 􏽥h(􏽥yj(t)) − 􏽥h(s(t)), and 􏽥H(􏽥ej(t − τ(t))) �
􏽥h􏽥yj(t − τ(t)) − 􏽥h(s(t − τ(t))).

In order to make network (2) realize finite-time syn-
chronization, we take the finite-time controller ui(t, 􏽥r) as
follows:

ui(t, 􏽥r) �

− 􏽘

m

k�1
ιk,􏽥r
i 􏽥ei(t) − 􏽘

m

k�1

􏽥β(χ(􏽥h))η̂
k,􏽥r
i Q̂

(􏽥α− 1/2)
diag sgn 􏽥ei(t)􏼒 􏼓􏼒 􏼓 􏽥ei(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

􏽥α
,

− mQ̂
− 1

􏽐
m

k�1

􏽥β(χ(􏽥h))η̂k,􏽥r
i

âk
􏽢θ
􏽥r

1− ρ 􏽚
t

t− τ(t)
􏽥e

T

i (s)F̂
k

i 􏽥ei(s)ds⎛⎝ ⎞⎠

((􏽥α+1)/2)

􏽥ei(t)

􏽥ei(t)
����

����
2
1

, if 􏽥ei(t)
�����

�����1
≠ 0

0, if 􏽥ei(t)
�����

�����1
� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where ιk,􏽥r
i , 􏽢ηk,􏽥r

i , 􏽢θ
􏽥r
, 􏽥β(χ(􏽥h))> 0, 0< 􏽥α< 1, 0≤ ρ< 1,

􏽢Q � diag(􏽢q1, 􏽢q2, . . . , 􏽢qn)> 0, 􏽢F
k

i ∈ Rn×n > 0, sgn(·) is the sign
function, diag(sgn(􏽥ei (t))) � diag(sgn(􏽥ei1(t)), sgn(􏽥ei2(t)),

. . . , sgn(􏽥ein(t))), 􏽥ei(t) � (􏽥ei1(t), 􏽥ei2(t), . . . , 􏽥ein(t))T, and
|􏽥ei(t)|􏽥α � (|􏽥ei1t)|

􏽥α, |􏽥ei2(t)|􏽥α, . . . , |􏽥ein(t)|􏽥α)T.

Next, we give some definitions, assumptions, and
lemmas, which are used in the analysis of main results.

Definition 1 (see [19, 20]). Network (2) with controller (6) is
said to be synchronized in finite time if there exists a
constant t∗ > 0 which depends on the initial state vector
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value 􏽥y(0) � (􏽥yT
1 (0), 􏽥yT

2 (0), . . . , 􏽥yT
N(0))T and 􏽥yi(0) � (􏽥yi1

(0), 􏽥y2(0), . . . , 􏽥yn(0))T, such that

lim
t⟶t∗

􏽘

N

i�1
􏽥yi(t) − s(t)

����
����1 � 0,

􏽘

N

i�1
􏽥yi(t) − s(t)

����
����1 � 0,

(7)

for t≥ t∗, where 􏽥yi(t) � (􏽥yi1(t), 􏽥y2(t), . . . , 􏽥yn(t))T and
s(t) � (s1(t), s2(t), . . . , sn(t))T.

Definition 2 (see [47, 48]). .e nonlinearity of 􏽥h(·) is defined
as follows:

χ(􏽥h) �
‖􏽥h(x) − 􏽥h(y)‖1

‖x − y‖1
, (8)

where x, y ∈ Rn.
In order to study the finite-time synchronization control

for NCMWCNs with Markovian switching and time-vary-
ing delay, the following assumptions are needed.

Assumption 1. 􏽥f(·) and 􏽥h(·) of network (2) satisfy the
Lipschitz conditions, i.e., there exist constants L> 0 and
􏽥L> 0, such that ‖f(x) − f(y)‖1 ≤L‖x − y‖1 and
‖􏽥h(x) − 􏽥h(y)‖1 ≤ 􏽥L‖x − y‖1.

Remark 4. From Definition 2, there is
χ(􏽥h) � (‖􏽥h(x) − 􏽥h(y)‖1/‖x − y‖1)≥ 0. When x and y are
fixed, χ(􏽥h) is a positive proportion function with
‖􏽥h(x) − 􏽥h(y)‖1. Hence, let 􏽥H(Δe) � 􏽥h(x) − 􏽥h(y), where
Δe � x − y; then, χ(􏽥h) decreases as ‖􏽥h(x) − 􏽥h(y)‖1 de-
creases, and hence, ‖ 􏽥H(Δe)‖1 decreases as χ(􏽥h) decreases.
And we can conclude that χ(􏽥h) can reflect the amplitude
variation of the nonlinear function 􏽥h(·).

Remark 5. In the finite-time controller ui(t, 􏽥r) (6), there is a
sign function sgn. It is well known that traditional finite-time
control techniques are based on sliding mode controllers,
which utilize sign function and give rise to the phenomenon
of chattering. How can we avoid this phenomenon in (6)?
From [6–9], chatting will occur when the control in the
addressed system adopts switching function. In [6], although
the sign function in the switching control term was used, the
switching control term can be softened to be a smooth signal
by using low-pass filter technique. In [7], Tang addressed
that some “smooth” functions must be used instead of the
sign function in order to eliminate chatting of the sliding
mode control system. Despite there is the sign function in the
controller (6), the phenomenon of chatting cannot occur
because the switching control term 􏽥β(χ(􏽥h))

􏽢ηk,􏽥r
i

􏽢Q
(􏽥α− 1)/2diag(sgn(􏽥ei(t)))|􏽥ei(t)|􏽥α is a smooth function

when 􏽥ei(t)> 0 and 􏽥ei(t)< 0. .e analysis is as follows: As-
sume that 􏽥ei(t) satisfies ‖lim△⟶0(􏽥ei(t +△) − 􏽥ei(t))‖ � Ci

and Ci > 0; then, ‖(d􏽥ei(t)/ dt)‖ � ‖lim△⟶0􏽥ei (t +△) − 􏽥ei(t)/
△‖ � ‖lim△⟶0Ci/△‖ � +∞. Because functions 􏽥F(􏽥ei(t))

and 􏽥H(􏽥ej(t − τ(t))) satisfy Assumption 1, these two

functions are bounded. .us, combining (5), we can know

that ‖ − 􏽐
m
k�1 ι

k,􏽥r
i 􏽥ei(t) − 􏽐k � 1m􏽥β(χ(􏽥h))􏽢ηk,􏽥r

i
􏽢Q

(􏽥α− 1)/2 diag(sgn
(􏽥ei (t)))|􏽥ei(t)|􏽥α‖⟶ +∞, which shows that |􏽥ei(t)|⟶ +

∞ and |􏽥ei(t)|􏽥α⟶ +∞. Obviously, this is wrong. In order
to make ‖(d􏽥ei(t)/dt)‖ bounded, we have ‖(d􏽥ei(t)/dt)‖ �

‖lim△⟶0(􏽥ei(t +△) − 􏽥ei(t)/△)‖ � ‖lim△⟶0(Ci/△)‖≤ χ <+

∞. .us, ‖lim△⟶0(􏽥ei(t +△) − 􏽥ei(t))‖ � 0. .is shows that
􏽥ei(t) is a smooth function. .erefore, 􏽥ei(t)􏽥α (in the case of
􏽥ei(t)> 0 and sgn(􏽥ei(t)) � 1) and − 􏽥ei(t)􏽥α (in the case of
􏽥ei(t)< 0 and sgn(􏽥ei(t)) � − 1) are smooth functions. .us,
when 􏽥ei(t)> 0 and 􏽥ei(t)< 0, we can conclude that
􏽥β(χ(􏽥h))􏽢ηk,􏽥r

i
􏽢Q

(􏽥α− 1)/2diag(sgn(􏽥ei(t)))|􏽥ei(t)|􏽥α is a smooth
function. Simply speaking, in the finite-time controller
ui(t, 􏽥r) (6), there is no phenomenon of chattering.

Assumption 2. τ(t) satisfies 0≤ τ(t)≤ τM and
0≤ _τ(t)≤ ρ< 1.

Lemma 1 (see [59]). Let x(t) be an n-dimensional It 􏽢o

process on t≥ 0 with the following stochastic differential:

dx(t) � f(x(t), t, 􏽥r(t))dt + g(x(t), t, 􏽥r(t))dB(t), (9)

where f: Rn × R+ × 􏽢S⟶ Rn and g: Rn × R+ × 􏽢S

⟶ Rn×m are continuous differentiable functions. Let B(t) �

(B1
t , B2

t , . . . , Bm
t )T be an m-dimensional Brownian motion

defined on the probability space. According to It 􏽢o formula, if
V(x(t), t, p) ∈ C2,1(Rn × R+ × 􏽢S;R+), we define an operator
LV from Rn × R+ × 􏽢S to R by
LV(x(t), t, p) � Vt(x(t), t, p) + Vx(x(t), t, r(t))f(x(t), t, p)

+
1
2
trace g

T
(x(t), t, p)Vxxg(x(t), t, p)􏽨 􏽩

+ 􏽘

􏽢s

q�1
δpqV(x(t), t, p),

(10)

where p, q ∈ 􏽢S, 􏽥r(t) is a right-continuousMarkov chain which
is given in formula (3), Vt(x(t), t, p) � (zV(x(t), t, p)/zt),
Vxx(x(t), t, p) � (z2V(x(t), t, p)/zxizxj)n×n, and Vx(x(t),

t, p) � ((z V(x(t), t, p)/zx1), . . . , (zV(x(t), t, p)/zxn)).

Lemma 2 (see [60]). Let ]1, ]2, . . . , ]n ≥ 0 and 0<p≤ 1; then,

􏽘

n

i�1
]i

⎛⎝ ⎞⎠

p

≤ 􏽘
n

i�1
]p

i . (11)

Lemma 3 (see [61]). For ∀x, y ∈ Rn and ψ ∈ Rn×n > 0, then

2x
T
y≤ x

Tψ− 1
x + y

Tψy. (12)

Lemma 4 (see [62]). If a Lyapunov function
V(t): [0,∞)⟶ [0,∞) is differentiable (i.e., right deriva-
tive) and
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dV(t)

dt
≤ − κV

ς
(t), (13)

where κ> 0 and 0< ς< 1, V(t) will reach zero at finite time
t∗ ≤V1− ς(0)/κ(1 − ς) and V(t)� 0 for all t≥ t∗.

3. Main Results

In this section, we will focus on the sufficient conditions for
ensuring that network (2) with controller (6) is finite-time
synchronized. Furthermore, based on the designed con-
troller (6), we will refine more feasible controllers.

Theorem 1. Network (2) with controller (6) can achieve
synchronization within finite-time t∗ if Assumptions 1 and 2
and the following conditions hold:

(i) If q≠p, then (􏽥υq
􏽢θ

q
/1 − ρ) − 􏽢ϱp ≤ 0; if q � p, then

(􏽥υq
􏽢θ

q
/1 − ρ) − 􏽢ϱp ≥ 0, where p, q ∈ 􏽢S, 􏽢ϱq > 0, 􏽥υq ≥ 1,

􏽢θ
q
> 0, and 0≤ ρ< 1.

(ii) Ge following inequalities are satisfied:

􏽥Θ(1)

p � L
2
‖ψ‖2 + 􏽥L

2
􏽥ψp

�����

�����2
􏽘

m

k�1
􏽥ak

⎛⎝ ⎞⎠IN ⊗ IN +
􏽢θ

p

1 − ρ
􏽘

m

k�1
􏽢ak

􏽢F
k

+ IN ⊗ ( 􏽢Q􏽥A)ψ− 1
( 􏽢Q􏽥A)

T

+ 􏽘

􏽢s

q�1

δpq􏽥υq

􏽥υp

IN ⊗ 􏽢Q + 􏽘
m

k�1
􏽥ak

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑􏽥ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑
T

+ 􏽘
m

k�1
􏽢ak

􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑􏽢ψ− 1
p

· 􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑
T

− 2 􏽘
m

k�1
Ξkp ⊗ 􏽢Q≤ 0,

(14)

􏽥Θ(2)

p � 􏽘
m

k�1
􏽢ak

􏽥L
2

􏽢ψp

�����

�����2
IN ⊗ IN( 􏼁 − 􏽢θ

p
􏽢F

k
􏼒 􏼓≤ 0, (15)

where p � 1, 2, . . . ,􏽢s, ψ ∈ Rn×n > 0, 􏽥ψp ∈ RNn×Nn >
0, 􏽢ψp ∈ RNn×Nn > 0, Γk

p � diag(ιk,p
1 , ιk,p

2 , . . . , ιk,p
N ),

􏽢Q � diag(􏽢q1, 􏽢q2, . . . , 􏽢qn)> 0, and 􏽢F
k

� diag(􏽢F
k

1,
􏽢F

k

2,

. . . , 􏽢F
k

N) ∈ RNn×Nn > 0.

(iii) Ge settling finite time t∗ satisfies t∗ ≤ ([V

(􏽥e(0), 0, 􏽥r(0))](1− 􏽥α)/2/􏽥β(χ(􏽥h))m􏽢η(1 − 􏽥α)), where
0< 􏽥α< 1, 􏽥β(χ(􏽥h))> 0, 􏽢ηk,p � mini∈ 1,2,...,N{ } 􏽢ηk,p

i􏽮 􏽯> 0,

􏽢ηp � mink∈ 1,2,...,m{ } 􏽢ηk,p􏽮 􏽯, 􏽢η � min 􏽢η1, . . . , 􏽢η􏽥s􏼚 􏼛, V(􏽥e

(0), 0, 􏽥r(0)) � 􏽥υ􏽥r(0) 􏽐
N
i�1 􏽥eT

i (0) 􏽢Qei(0), and 􏽥υ􏽥r(0) ≥ 1.

Proof. Construct a Lyapunov functional for network (2)
with controller (6) as follows:

V(􏽥e(t), t, p) � 􏽥υp 􏽐
N

i�1
􏽥eT

i (t) 􏽢Q􏽥ei(t) +
􏽢θ

p

1 − ρ
􏽘

m

k�1
􏽢ak

⎡⎣

􏽚
t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds],

(16)

where p ∈ 􏽢S, 􏽢ak > 0, 􏽥υp ≥ 1, 􏽢θ
p
> 0, 􏽢Q � diag(􏽢q1, 􏽢q2, . . . ,

􏽢qn)> 0, and 􏽢F
k

� diag(Fk
1, Fk

2, . . . , Fk
N) ∈ RNn×Nn > 0.

Substituting (6) into error system (5) of network (2), we
can obtain the closed-loop system of error system (5) as
follows:

E 􏽥ei(t)( 􏼁 ≔ 􏽥A􏽥F 􏽥ei(t)( 􏼁 + 􏽘
m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p
ij

􏽥Γk 􏽥H 􏽥ej(t)􏼐 􏼑

+ 􏽘
m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑 − 􏽘
m

k�1
ιk,p
i 􏽥ei(t)

− 􏽘
m

k�1

􏽥β(􏽥L)􏽢ηk,p
i

􏽢Q
(􏽥α− 1/2)diag sgn 􏽥ei(t)( 􏼁( 􏼁 􏽥ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽥α

− m􏽢Q
− 1

􏽘

m

k�1

􏽥β(􏽥L)􏽢ηk,p

i

·
􏽢ak

􏽢θ
p

1 − ρ
􏽚

t

t− τ(t)
􏽥e

T
i (s)􏽢F

k

i 􏽥ei(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

􏽥ei(t)

􏽥ei(t)
����

����
2
1

.

(17)

.en, from Lemma 1, we can compute the derivative
LV(􏽥e(t), t, p) along the trajectory of closed-loop system
(17) as follows:

LV(􏽥e(t), t, p) � Vt(􏽥e(t), t, p) + V􏽥e(t)(􏽥e(t), t, p) 􏽥A􏽥F 􏽥ei(t)( 􏼁 + 􏽘
m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p
ij

􏽥Γk 􏽥H 􏽥ej(t)􏼐 􏼑⎡⎢⎢⎣

+ 􏽘
m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑 − 􏽘
m

k�1
ιk,p
i 􏽥ei(t) − 􏽘

m

k�1

􏽥β(􏽥L)􏽢ηk,p
i

􏽢Q
(􏽥α− 1/2)diag sgn 􏽥ei(t)( 􏼁( 􏼁 􏽥ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽥α

− m􏽢Q
− 1

􏽘

m

k�1

􏽥β(􏽥L)􏽢ηk,p
i

􏽢ak
􏽢θ

p

1 − ρ
􏽚

t

t− τ(t)
􏽥e

T
i (s)􏽢F

k

i 􏽥ei(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

􏽥ei(t)

􏽥ei(t)
����

����
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 􏽘

􏽢s

q�1
δpq(V􏽥e(t), t, q).

(18)
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From Assumption 2, we have

Vt(􏽥e(t), t, p) �
􏽥υp

􏽢θ
p

1 − ρ
􏽘

m

k�1
􏽢ak 􏽥e

T
(t)􏽢F

k
􏽥e(t) − (1 − _τ(t))􏽥e

T
(t − τ(t))􏽢F

k
􏽥e(t − τ(t))􏼔 􏼕

≤
􏽥υp

􏽢θ
p

1 − ρ
􏽘

m

k�1
􏽢ak􏽥e

T
(t)􏽢F

k
􏽥e(t) − 􏽥υp

􏽢θ
p

􏽘

m

k�1
􏽢ak􏽥e

T
(t − τ(t))􏽢F

k
􏽥e(t − τ(t)).

(19)

By Lemma 3 and Assumption 1, we obtain

V􏽥e(t)(􏽥e(t), t, p)􏽥A􏽥F 􏽥ei(t)( 􏼁 � 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥A􏽥F 􏽥ei(t)( 􏼁

≤ 􏽥υp 􏽘

N

i�1
􏽥e

T
i (t)( 􏽢Q􏽥A)ψ− 1

( 􏽢Q􏽥A)
T
􏽥ei(t) + 􏽥F

T
􏽥ei(t)( 􏼁ψ􏽥F 􏽥ei(t)( 􏼁􏼔 􏼕

≤ 􏽥υp 􏽘

N

i�1
􏽥e

T
i (t)( 􏽢Q􏽥A)ψ− 1

( 􏽢Q􏽥A)
T
􏽥ei(t) + L

2
‖ψ‖2􏽥e

T
i (t)􏽥ei(t)􏽨 􏽩,

(20)

V􏽥e(t)(􏽥e(t), t, p) 􏽘
m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p

ij
􏽥Γk 􏽥H 􏽥ej(t)􏼐 􏼑 � 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p

ij
􏽥Γk 􏽥H 􏽥ej(t)􏼐 􏼑

� 2􏽥υp 􏽘

m

k�1
􏽥ak

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑
T
􏽥e(t)􏼔 􏼕

T
􏽥H(􏽥e(t))

≤ 􏽥υp 􏽘

m

k�1
􏽥ak 􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑􏽥ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑
T
􏽥e(t) + 􏽥H

T
(􏽥e(t))􏽥ψp

􏽥H(􏽥e(t))􏼔 􏼕

≤ 􏽥υp 􏽘

m

k�1
􏽥ak 􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑􏽥ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑
T
􏽥e(t) + 􏽥L

2
􏽥ψp

�����

�����2
􏽥e

T
(t)􏽥e(t)􏼔 􏼕,

(21)

V􏽥e(t)(􏽥e(t), t, p) 􏽘
m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑 � 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑

� 2􏽥υp 􏽘

m

k�1
􏽢ak

􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑
T
􏽥e(t)􏼔 􏼕

T
􏽥H(􏽥e(t − τ(t)))

≤ 􏽥υp 􏽘

m

k�1
􏽢ak 􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑􏽢ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑
T
􏽥e(t) + 􏽥H

T
(􏽥e(t − τ(t)))􏽢ψp

􏽥H(􏽥e(t − τ(t)))􏼔 􏼕

≤ 􏽥υp 􏽘

m

k�1
􏽢ak 􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑􏽢ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑
T
􏽥e(t) + 􏽥L

2
􏽢ψp

�����

�����2
􏽥e

T
(t − τ(t))􏽥e(t − τ(t))􏼔 􏼕,

(22)

where
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􏽥e(t) � 􏽥e
T
1 (t), 􏽥e

T
2 (t), . . . , 􏽥e

T
N(t)􏽨 􏽩

T
,

􏽥ei(t) � 􏽥e1(t), 􏽥e2(t), . . . , 􏽥en(t)􏼂 􏼃
T
,

􏽥H(􏽥e(t)) � 􏽥H
T

􏽥e1(t)( 􏼁, 􏽥H
T

􏽥e2(t)( 􏼁, . . . , 􏽥H
T

􏽥eN(t)( 􏼁􏼔 􏼕
T

,

􏽥H 􏽥ei(t)( 􏼁 � 􏽥H 􏽥e1(t)( 􏼁, 􏽥H 􏽥e2(t)( 􏼁, . . . , 􏽥H 􏽥en(t)( 􏼁􏼂 􏼃
T
,

􏽥H(􏽥e(t − τ(t))) � 􏽥H
T

􏽥e1(t − τ(t))( 􏼁,􏼔 􏽥H
T

􏽥e2(t − τ(t))( 􏼁, . . . , 􏽥H
T

􏽥eN(t − τ(t))( 􏼁􏼕
T

,

􏽥H 􏽥ei(t − τ(t))( 􏼁 � 􏽥H 􏽥e1(t − τ(t))( 􏼁, 􏽥H 􏽥e2(t − τ(t))( 􏼁, . . . , 􏽥H 􏽥en(t − τ(t))( 􏼁􏼃
T
,􏼔

− V􏽥e(t)(􏽥e(t), t, p) 􏽘
m

k�1
ιk,p
i 􏽥ei(t) � − 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
ιk,p
i 􏽥ei(t) � − 􏽥υp􏽥e

T
(t) 2 􏽘

m

k�1
Ξkp ⊗ 􏽢Q⎛⎝ ⎞⎠􏽥e(t),

(23)

where Ξkp � diag(ιk,p
1 , ιk,p

2 , . . . , ιk,p
N ).

Because 􏽐
􏽢s
p ∈􏽢S,q�1,2,...,􏽢s

δpq � 0, then􏽐
􏽢s
p ∈􏽢S,q�1,2,...,􏽢s

δpq � 0,
where 􏽢ϱp > 0. .us, by condition (I) of .eorem 1, we get

􏽘

􏽢s

q�1
δpqV(􏽥e(t), t, q) � 􏽘

􏽢s

q�1
δpq􏽥υq 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t) +

􏽢θ
q

1 − ρ
􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds⎡⎣ ⎤⎦

� 􏽘

􏽢s

q�1
δpq􏽥υq 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t) + 􏽘

􏽢s

q�1
δpq

􏽥υq
􏽢θ

q

1 − ρ
− 􏽢ϱp⎛⎝ ⎞⎠ 􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds

≤ 􏽘

􏽢s

q�1
δpq􏽥υq 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t).

(24)

Let 􏽢ηk,p � mini∈ 1,2,...,N{ } 􏽢ηk,p
i􏽮 􏽯 and 􏽢ηp � mink∈ 1,2,...,m{ }

􏽢ηk,p􏽮 􏽯; then, according to Lemma 2, we can obtain

− V􏽥e(t)(􏽥e(t), t, p) 􏽘
m

k�1

􏽥β(χ(􏽥h))􏽢ηk,p

i
􏽢Q

(􏽥α− 1/2)diag sgn 􏽥ei(t)( 􏼁( 􏼁 􏽥ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽥α

� − 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1

􏽥β(χ(􏽥h))􏽢ηk,p
i

􏽢Q
(􏽥α− 1/2)diag sgn 􏽥ei(t)( 􏼁( 􏼁 􏽥ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽥α

≤ − 2􏽥υp 􏽘

m

k�1

􏽥β(χ(􏽥h))􏽢ηk,p
􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q

(1+􏽥α/2)diag sgn 􏽥ei(t)( 􏼁( 􏼁 􏽥ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽥α

− 2􏽥β(χ(􏽥h)) 􏽘
m

k�1
􏽢ηk,p

􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t)⎛⎝ ⎞⎠

(1+􏽥α/2)

≤ − 2􏽥β(χ(􏽥h))m􏽢ηp
􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t)⎛⎝ ⎞⎠

(1+􏽥α/2)

,

(25)
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− V􏽥e(t)(􏽥e(t), t, p)m 􏽢Q
− 1

􏽘

m

k�1

􏽥β(χ(􏽥h))􏽢ηk,p
i

􏽢ak
􏽢θ

p

1 − ρ
􏽚

t

t− τ(t)
􏽥e

T
i (s)􏽢F

k

i 􏽥ei(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

􏽥ei(t)

􏽥ei(t)
����

����
2
1

≤ − 2􏽥β(χ(􏽥h))m 􏽘
m

k�1
􏽢ηk,p

􏽘

N

i�1

􏽥υp􏽢ak
􏽢θ

p

1 − ρ
􏽚

t

t− τ(t)
􏽥e

T
i (s)􏽢F

k

i 􏽥ei(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ − 2􏽥β(χ(􏽥h))m􏽢ηp
􏽘

m

k�1

􏽥υp􏽢ak
􏽢θ

p

1 − ρ
􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

≤ − 2􏽥β(χ(􏽥h))m􏽢ηp
􏽥υp

􏽢θ
p

1 − ρ
􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

.

(26)

Combining Lemma 2 and inequalities (25) and (26), we
can obtain

− 2􏽥β(χ(􏽥h))m􏽢ηp
􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t)⎛⎝ ⎞⎠

(1+􏽥α/2)

+
􏽥υp

􏽢θ
p

1 − ρ
􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds⎛⎝ ⎞⎠

(1+􏽥α/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ − 2􏽥β(χ(􏽥h))m􏽢ηp
􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥ei(t) +

􏽥υp
􏽢θ

p

1 − ρ
􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds⎛⎝ ⎞⎠

(1+􏽥α/2)

≤ − 2􏽥β(χ(􏽥h))m􏽢η(V(􏽥e(t), t, p))
(1+􏽥α/2)

,

(27)

where 􏽢η � min 􏽢η1, . . . , 􏽢η􏽥s􏼚 􏼛.
Substituting (19)–(24) and (27) into (18), we can get

LV(􏽥e(t), t, p)≤LV
(1)

(􏽥e(t), t, p) + LV
(2)

(􏽥e(t), t, p),

(28)

where

LV
(1)

(􏽥e(t), t, p) � 􏽥υp 􏽥e
T
(t) 􏽥Θ(1)

p 􏽥e(t) + 􏽥e
T
(t − τ(t)) 􏽥Θ(2)

p 􏽥e(t − τ(t))􏼔 􏼕, (29)

􏽥Θ(1)

p � L
2
‖ψ‖2 + 􏽥L

2
􏽥ψp

�����

�����2
􏽘

m

k�1
􏽥ak

⎛⎝ ⎞⎠IN ⊗ IN +
􏽢θ

p

1 − ρ
􏽘

m

k�1
􏽢ak

􏽢F
k

+ IN ⊗ ( 􏽢Q􏽥A)ψ− 1
( 􏽢Q􏽥A)

T

+ 􏽘

􏽢s

q�1

δpq􏽥υq

􏽥υp

IN ⊗ 􏽢Q 􏽘
m

k�1
􏽥ak

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑􏽥ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑
T

+ 􏽘
m

k�1
􏽢ak

􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑􏽢ψ− 1
p

􏽥G
p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑
T

− 2 􏽘
m

k�1
Ξkp ⊗ 􏽢Q,

(30)

􏽥Θ(2)

p � 􏽘
m

k�1
􏽢ak

􏽥L
2

􏽢ψp

�����

�����2
IN ⊗ IN( 􏼁 − 􏽢θ

p
􏽢F

k
􏼒 􏼓, (31)

LV
(2)

(􏽥e(t), t, p) � − 2􏽥β(χ(􏽥h))m􏽢η(V(􏽥e(t)), t, p))
(􏽥α+1/2)

. (32)
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.us, taking the expectation on both sides of (28) and
using condition (II) of .eorem 1, we have

E[LV(􏽥e(t), t, 􏽥r)]≤E LV
(1)

(􏽥e(t), t, 􏽥r)􏽨 􏽩

+ E LV
(2)

(􏽥e(t), t, 􏽥r)􏽨 􏽩

≤E − 2􏽥β(χ(􏽥h))m􏽢η(V(􏽥e(t), t, 􏽥r))
(􏽥α+1/2)

􏼔 􏼕,

(33)

where 􏽥r is a right-continuous Markov chain with known
transition rate δpq which is located in formula (3) above.

According to Lemma 2 and inequality (33), we get

E[LV(􏽥e(t), t, 􏽥r)]≤E − 2􏽥β(χ(􏽥h))m􏽢η(V(􏽥e(t), t, 􏽥r))
(􏽥α+1/2)

􏼔 􏼕

≤ − 2􏽥β(χ(􏽥h))m􏽢η E[V(􏽥e(t), t, 􏽥r)]{ }
(􏽥α+1/2)

.

(34)

.en, there is a real number T> 0 such that

V(􏽥e(t), t, 􏽥r)≤ V(􏽥e(0), 0, 􏽥r(0))
(1− 􏽥α/2)

− 2􏽥β(χ(􏽥h))m􏽢η
1 − 􏽥α
2

t􏼔 􏼕
(2/1− 􏽥α)

,

∀t ∈ [0, T].

(35)

Moreover, by Lemma 4 and inequality (35), T can be
chosen as

T ≔ t
∗ ≤

[V(􏽥e(0), 0, 􏽥r(0))](1− 􏽥α/2)

􏽥β(χ(􏽥h))m􏽢η(1 − 􏽥α)
≔ T0. (36)

Indeed, it is obvious that V(􏽥e(t), t, 􏽥r) � 0 at t � T0. If
t∗ >T0, then V(􏽥e(t), t∗, 􏽥r) � 0 from the definition of t∗ in
(35), which contradicts (34) because V(􏽥e(t), T0, 􏽥r) � 0.

.erefore, if t≥ t∗, then E(V(􏽥e(t), t, 􏽥r)) � 0. Combining
equality (16) and Definition 1, we can know that if t≥ t∗,
then ‖􏽥yi(t) − s(t)‖1 � 0, where i � 1, 2, . . . , N. Hence,
within finite time t∗, network (2) with controller (6) can
achieve synchronization. □

Remark 6. From the proof of.eorem 1 and inequality (26),
we can obtain

􏽘

􏽢s

q�1
δpq

􏽥υq
􏽢θ

q

1 − ρ
− 􏽢ϱp⎛⎝ ⎞⎠ 􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds≤ 0,

(37)

by condition (I). Here, p, q ∈ 1, 2, . . . ,􏽢s{ }, 􏽥υq ≥ 1, 􏽢θ
q
> 0,

􏽢ak > 0, and 􏽢F
k > 0.

.us, the item

􏽘

􏽢s

q�1

δpq􏽥υq
􏽢θ

q

1 − ρ
􏽘

m

k�1
􏽢ak 􏽚

t

t− τ(t)
􏽥e

T
(s)􏽢F

k
􏽥e(s)ds. (38)

in 􏽐
􏽢s
q�1 δpqV(􏽥e(t), t, q) can be removed. Otherwise, if

condition (I) in .eorem 1 is invalid, there must exist
􏽐

􏽢s
q�1(δpq􏽥υq

􏽢θ
q
/1 − ρ) 􏽐

m
k�1 􏽢ak 􏽒

t

t− τ(t)
􏽥eT(s)􏽢F

k
􏽥e(s)ds in LV(􏽥e

(t), t, p), which makes it difficult to obtain the settling finite
time t∗ given in condition (III) of .eorem 1.

According to condition (II) of .eorem 1, parameter
ιk,􏽥r
i > 0 and the matrices 􏽢F

k

i > 0 and 􏽢Q> 0 of controller (6) are
designed, where 􏽥r � 1, 2, . . . ,􏽢s, k � 1, 2, . . . , m and
i � 1, 2, . . . , N. .e settling finite time t∗ can be obtained
from condition (III) of .eorem 1, where 0< 􏽥α< 1,
􏽥β(χ(􏽥h))> 0, and 􏽢ηk,p � mini∈ 1,2,...,N{ } 􏽢ηk,p

i􏽮 􏽯> 0.
In addition, it is worthy to point out that when condition

(I) of .eorem 1 is used to process the item
􏽐

􏽢s
q�1(δpq􏽥υq

􏽢θ
q
/1 − ρ) 􏽐

m
k�1 􏽢ak 􏽒

t

t− τ(t)
􏽥eT(s)􏽢F

k
􏽥e(s)ds, 0≤ ρ< 1,

􏽢θ
q
> 0, and 􏽥υq ≥ 1 must hold.

Remark 7. How to eliminate the synchronization error 􏽥e(t)?
Actually, if the synchronization error 􏽥e(t) is eliminated, then
􏽥e(t) � 0. According to the proof of .eorem 1, we can use the
following four steps to derive the synchronization error 􏽥e(t):

(i) Step 1: the Lyapunov functional V(􏽥e(t), t, p) for
network (2) with controller (6) is constructed,
where V(􏽥e(t), t, p)≥ 0, p ∈ 1, 2, . . . ,􏽢s{ }

(ii) Step 2: by using generalised Itô formula,
LV(􏽥e(t), t, p) is derived

(iii) Step 3: some inequality techniques are utilized to
make

LV(􏽥e(t), t, p)≤ − 2􏽥β(χ(􏽥h))m􏽢η(V(􏽥e(t), t, p)
(􏽥α+1/2)

E[LV(􏽥e(t), t, p)]≤ − 2􏽥β(χ(􏽥h))m􏽢η E(V(􏽥e(t), t, p)􏼈 􏼉
(􏽥α+1/2)

,

(39)

hold, where 􏽥r � 1, 2, . . . ,􏽢s, 􏽥β(χ(􏽥h))> 0, m> 0, and
􏽢η> 0.

(iv) Step 4: according to finite-time stability theory given
in Lemma 4, the settling finite time t∗ can be
obtained.

Remark 8. In the design procedure of controller (6), there
exist some constraints which include ιk,􏽥r

i > 0, 􏽢ηk,􏽥r
i > 0, 􏽢θ

􏽥r
> 0,

􏽥β(χ(􏽥h))> 0, 􏽢Q � diag(􏽢q1, 􏽢q2, . . . , 􏽢qn)> 0, 􏽢F
k

i ∈ Rn×n > 0,
0< 􏽥α< 1, 0≤ ρ< 1, 􏽢ak > 0, and m is a positive integer. If
0≤ t< τ(t) and ‖􏽥ei(t)‖1 � 0 hold, there exist
􏽒

t

t− τ(t)
􏽥eT

i (s)􏽢F
k

i 􏽥ei(s)ds � 0 and ui(t, r) � 0.
It should be noted that the constraints above in

controller (6) are necessary. If not, .eorem 1 may not
hold. For example, in order to use Lemma 4 to derive the
settling finite time t∗, there must be 0< 􏽥α< 1. If the pa-
rameter 􏽥α does not satisfy 0< 􏽥α< 1, it is obvious that t∗

located in inequality (36) cannot be derived by Lemma 4.
In addition, according to .eorem 1, the control pa-
rameters of controller (6) can be chosen and designed. For
instance, for the given network (2), by choosing the
control parameters ιk,􏽥r

i > 0, 􏽢ηk,􏽥r
i > 0, 􏽢θ

􏽥r
> 0,

􏽢Q � diag(􏽢q1, 􏽢q2, . . . , 􏽢qn)> 0, 􏽢F
k

i ∈ Rn×n > 0, 0≤ ρ< 1, and
􏽥r � 1, 2, . . . ,􏽢s, it is easy to realize conditions (I) and (II) of
.eorem 1. Furthermore, it can also be seen that for
network (2), there exist many solutions of controller (6)
designed by .eorem 1 and these solutions can make
conditions (I)–(III) hold.
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Remark 9. In controller (6), if .eorem 1 holds, there must
be LV(1)(􏽥e(t), t, p)≤ 0 and

LV(􏽥e(t), t, p)≤LV
(1)

(􏽥e(t), t, p) + LV
(2)

(􏽥e(t), t, p)≤ − 2􏽥β(χ(􏽥h))m􏽢η V(􏽥e(t), t, p)􏼈 􏼉
(􏽥α+1/2)

, (40)

where p ∈ 1, 2, . . . ,􏽢s{ }. .us, it is derived that

E LV
(1)

(􏽥e(t), t, 􏽥r)􏽨 􏽩≤ 0

E[LV(􏽥e(t), t, p)]≤ − 2􏽥β(χ(􏽥h))m􏽢η E[V(􏽥e(t), t, p)]􏼈 􏼉
(􏽥α+1/2)

.

(41)

Considering .eorem 1 together with equalities
(29)–(32) and (36), we can draw the following results:

(i) .e term − 􏽐
m
k�1 ι

k,􏽥r
i 􏽥ei(t) is a global synchronization

negative feedback control term, where 􏽥r � 1, 2, . . . ,􏽢s.
(ii) .e terms

− 􏽘
m

k�1

􏽥β(χ(􏽥h))􏽢ηk,􏽥r
i

􏽢Q
(􏽥α− 1/2)diag sgn 􏽥ei(t)( 􏼁( 􏼁 􏽥ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽥α

− m 􏽢Q
− 1

􏽐
m

k�1

􏽥β(χ(􏽥h))􏽢ηk,􏽥r
i

􏽢ak
􏽢θ
􏽥r

1− ρ 􏽚
t

t− τ(t)
􏽥e

T
i (s)􏽢F

k

i 􏽥ei(s)ds⎛⎝ ⎞⎠

(􏽥α+1/2)

􏽥ei(t)

􏽥ei(t)
����

����
2
1

,

(42)

represent finite-time synchronization negative
feedback control term, where 0≤ _τ(t)≤ ρ< 1 and
the matrix 􏽢Q is a positive definite matrix of network
(2).

(iii) Parameters ιk,􏽥r
i > 0 and 􏽢θ

􏽥r
> 0 and matrix

􏽢F
k

i ∈ R
n×n > 0 are global synchronization negative

feedback control parameter and matrix.
(iv) Parameter 􏽢θ

􏽥r
> 0 and matrix 􏽢F

k

i ∈ R
n×n > 0 are the

global synchronization positive feedback control
parameter. From (14) and (15), we can obtain that
the designed parameter 􏽢θ

􏽥r
andmatrix 􏽢F

k

i should first
make inequality (15) hold. .en, some feasible
values of parameter ιk,􏽥r

i are chosen to make (14)
hold.

(v) Parameters 􏽥β(χ(􏽥h))> 0, 􏽢ηk,􏽥r
i > 0, and 0< 􏽥α< 1 are

finite-time synchronization negative feedback
control parameters.

Remark 10. Now we give the steps of designing controller
(6) as follows:

(i) Step 1: according to Markov chain with the known
transition rate and network (2), one can obtain the
values of 􏽢s, δpq, m, 􏽥ak, 􏽢ak, 􏽥gk,􏽥r

ij τ(t), 􏽥A, 􏽥Γk, and 􏽢Γk
(ii) Step 2: the values of 􏽥υp ≥ 1 and 􏽢Q> 0 are chosen
(iii) Step 3: combining Assumptions 1 and 2 and net-

work (2), one has the values of L, 􏽥L, ψ, 􏽥ψp, τM, and
0≤ _τ(t)≤ ρ< 1

(iv) Step 4: by inequality (15) of condition (II) in
.eorem 1, 􏽢θ

p
> 0 and 􏽢F

k

i > 0 are designed
(v) Step 5: from inequality (14) of condition (I) in

.eorem 1, one gets the value of ιk,􏽥r
i > 0

(vi) Step 6: combining steps 2–4 and condition (I) of
.eorem 1, one can obtain the value of 􏽢ϱp

(vii) Step 7: combined with condition (III) of.eorem 1,
t∗ is estimated, where the values of 0< 􏽥α< 1 and
􏽢ηk,􏽥p

i > 0 are chosen. .us, the design of controller
(6) is completed

In the steps above, there is p � 1, 2, . . . ,􏽢s.

Remark 11. .e nonlinearity of nonlinear coupling function
may impact synchronization dynamics and synchronization
convergence time of the considered nonlinear coupled
complex network [2, 48, 55]. As discussed in Section 1, the
nonlinearity of nonlinear coupled function 􏽥h(·) in network
(2) will make χ(􏽥h) become more complex and lead to the
following two questions:

(i) If the nonlinearity of 􏽥h(·) is more serious, does
synchronization dynamics in finite time for network
(2) become poorer or does synchronization con-
vergence time of network (2) become longer?

(ii) How can we use the settling finite time t∗ to reflect
the impact of the nonlinearity of 􏽥h(·) on finite-time
synchronization dynamics and synchronization
convergence time of network (2)?

It is a pity that controller (6) designed by .eorem 1
cannot answer the two questions above. Next, we give the
answer to the two questions above in Corollaries 1 and 2,
respectively.

Corollary 1. Let 􏽥β(χ(􏽥h))> 0 be a decreasing function. Under
Georem 1, before network (2) with controller (6) achieves
global synchronization in finite time t∗C1 if
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􏽥e
T
(t) 􏽥G

􏽥r
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓 􏽥H(􏽥e(t)) > 0, (43)

􏽥e
T
(t) 􏽥G

􏽥r
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓 􏽥H(􏽥e(t − τ(t))) > 0, (44)

V(􏽥e(0), 0, 􏽥r(0)) � 􏽥υ􏽥r(0) 􏽘

N

i�1
􏽥e

T
i (0) 􏽢Q􏽥ei(0)> 0, (45)

where 􏽥υ􏽥r(0) ≥ 1, 􏽥H(􏽥ej(t)) � 􏽥h(􏽥yj(t)) − 􏽥h(s(t)), 􏽥H(􏽥ej(t − τ

(t))) � 􏽥h􏽥yj(t − τ(t)) − 􏽥h(s(t − τ(t))), and 􏽥G
􏽥r
k > 0 or 􏽥G

􏽥r
k < 0,

with the increase of χ(􏽥h) of nonlinear coupled function 􏽥h(·) in

network (2), synchronization dynamics of network (2) with
controller (6) within finite time t∗C1 becomes poorer and
synchronization convergence time of network (2) with con-
troller (6) becomes longer.

Proof. If network (2) with controller (6) satisfies.eorem 1,
it must achieve finite-time synchronization. .us, under
.eorem 1, we can analyze the impact of χ(􏽥h) of 􏽥h(·) on
finite-time synchronization dynamics and synchronization
convergence time of network (2) with controller (6).

Assume that inequalities (43) and (44) of Corollary 1
hold; then, combining inequalities (21) and (22) in the proof
of .eorem 1, we can get

V􏽥e(t)(􏽥e(t), t, p) 􏽘
m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p

ij
􏽥Γk 􏽥H(􏽥e(t)) � 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p

ij
􏽥Γk 􏽥H(􏽥e(t))

� 2􏽥υp 􏽘

m

k�1
􏽥ak􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑 􏽥H(􏽥e(t))> 0,

(46)

V􏽥e(t)(􏽥e(t), t, p) 􏽘
m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑 � 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑

� 2􏽥υp 􏽘

m

k�1
􏽢ak􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑 􏽥H(􏽥e(t − τ(t)))> 0,

(47)

where 􏽥Γk > 0, 􏽢Q> 0, 􏽥υp ≥ 1, 􏽢ak > 0, ei(t) � 􏽥yi(t) − s(t),
􏽥H(􏽥ej(t)) � 􏽥h(􏽥yj(t)) − 􏽥h(s(t)), 􏽥H(􏽥ej(t − τ(t))) � 􏽥h(􏽥yj

(t − τ(t))) − 􏽥h(s(t − τ(t))), 􏽥H(􏽥e(t)) � [ 􏽥H
T
(􏽥ej(t)), . . . , 􏽥H

T

(􏽥ej(t))]T, 􏽥H(􏽥e(t − τ(t))) � [ 􏽥H
T
(􏽥ej(t − τ(t))), . . . , 􏽥H

T
(􏽥ej

(t − τ(t)))]T, and i, j � 1, 2, . . . , N V(􏽥e(0), 0, 􏽥r(0)) �

􏽥υ􏽥r(0) 􏽐
N
i�1 􏽥eT

i (0)􏽢Q􏽥ei(0)> 0.
If 􏽥υ􏽥r(0) ≥ 1 holds, where 􏽢Q> 0 and 􏽥e(t)≠ 0, there must be

􏽥e(t)≠ 0. It is obvious that if 􏽥e(t − τ(t))≠ 0, there is
t≥ τ(t)≥ 0, where 􏽥G

􏽥r
k > 0.

.us, under 􏽥G
􏽥r
k < 0 or 􏽥G

􏽥r
k > 0, in order to verify in-

equalities (46) and (47), we have the following four cases:

(i) Case 1: e(t)> 0, (􏽥e(t − τ(t)))> 0, 􏽥H(􏽥e(t))> 0,
􏽥H(􏽥e(t − τ(t))) > 0, and 􏽥G

􏽥r
k > 0

(ii) Case 2: 􏽥e(t)< 0, 􏽥e(t − τ(t))< 0, 􏽥H(􏽥e(t)) < 0, and
􏽥H(􏽥e(t − τ(t))) < 0

(iii) Case 3: 􏽥G
􏽥r
k < 0, e(t)> 0, (􏽥e(t − τ(t)))> 0,

􏽥H(􏽥e(t))< 0, and 􏽥H(􏽥e(t − τ(t))) < 0
(iv) Case 4: 􏽥G

􏽥r
k < 0, 􏽥e(t)< 0, 􏽥e(t − τ(t))< 0, 􏽥H(􏽥e(t))> 0,

and 􏽥H(􏽥e(t − τ(t)))> 0

Combined with the results in Remark 11, it can be seen
that if the nonlinearity χ(􏽥h) of 􏽥h(·) increases, ‖ 􏽥H(􏽥e(t))‖1 and
‖ 􏽥H(􏽥e(t − τ(t)))‖1 increase..erefore, it is not hard to derive
that if χ(􏽥h) increases, 2􏽥υp 􏽐

m
k�1 􏽢ak􏽥eT(t)(􏽥G

p

k ⊗ 􏽢Q􏽢Γk) 􏽥H (􏽥e(t −

τ(t))) > 0 and 2􏽥υp 􏽐
m
k�1 􏽢ak􏽥eT(t)(􏽥G

p

k ⊗ 􏽢Q􏽢Γk) 􏽥H(􏽥e(t− τ(t)))> 0

become larger. For example, in Case 1, there are 􏽥G
􏽥r
k > 0,

􏽥e(t)> 0, 􏽥e(t − τ(t))> 0, 􏽥H(􏽥e(t)) > 0, and 􏽥H(􏽥e(t − τ(t))) > 0.
.erefore, we have

2􏽥υp 􏽘

m

k�1
􏽢ak􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑 􏽥H(􏽥e(t))≥ 2􏽥υpλmin

· 􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑􏽮 􏽯 􏽘

m

k�1
􏽥ak􏽥e

T
(t) 􏽥H(􏽥e(t))> 0,

(48)

2􏽥υp 􏽘
m
k�1􏽢ak􏽥e

T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑 􏽥H(􏽥e(t

− τ(t)))≥ 2􏽥υpλmin
􏽥G

p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑􏽮 􏽯 􏽘

m

k�1
􏽥ak􏽥e

T
(t) 􏽥H(􏽥e(t

− τ(t)))> 0, (49)

where 􏽥ak > 0, 􏽢Q> 0, and 􏽥Γk > 0.
Because 􏽥G

p

k > 0, 􏽢Q> 0, and 􏽥Γk > 0, λmin (􏽥G
p

k ⊗ 􏽢Q􏽥Γk)􏽮 􏽯> 0.
.us, combining (45) and (46), we derive that

􏽥e
T
(t) 􏽥H(􏽥e(t)) � 􏽘

N

i�1
􏽘

n

j�1
􏽥eij(t)H 􏽥eij(t)􏼐 􏼑> 0, (50)

􏽥e
T
(t) 􏽥H(􏽥e(t − τ(t))) � 􏽘

N

i�1
􏽘

n

j�1
􏽥eij(t)H 􏽥eij(t − τ(t))􏼐 􏼑> 0.

(51)
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It is clear that if H(􏽥eij(t))> 0 increases, 􏽥eT(t) 􏽥H(􏽥e(t))

and 􏽥eT(t) 􏽥H(􏽥e(t − τ(t))) > 0 also increase. .e analyses of
Cases 2–4 are similar to that of case 1. .erefore, before
network (2) with controller (6) achieves global synchro-
nization, if conditions (43)–(45) of Corollary 1 hold, with
the increase of the nonlinearity χ(􏽥h) of 􏽥h(·), synchroni-
zation dynamics of network (2) with controller (6) in
finite time t∗ given by condition (III) of .eorem 1 be-
comes poorer. .is makes synchronization convergence
time of network (2) with controller (6) become longer. In
order to more accurately describe synchronization con-
vergence time of network (2) with controller (6), let
􏽥β(χ(􏽥h))> 0 be a decreasing function. .at is to say, if χ(􏽥h)

becomes larger, 􏽥β(χ(􏽥h))> 0 also becomes smaller. .us, by
using condition (III) of .eorem 1, we can obtain t∗C1. And
if 􏽥β(χ(􏽥h))> 0 becomes smaller, t∗C1 becomes longer. .is
completes the proof. □

Corollary 2. Let 􏽥β(χ(􏽥h))> 0 be an increasing function.
Under Georem 1, before network (2) with controller (6)
achieve global synchronization in finite time t∗C2, if

􏽥e
T

(t) 􏽥G
􏽥r
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓 􏽥H(􏽥e(t))< 0,

􏽥e
T
(t) 􏽥G

􏽥r
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓 􏽥H(􏽥e(t − τ(t))) < 0,

V(􏽥e(0), 0, 􏽥r(0)) � 􏽥υ􏽥r(0) 􏽘

N

i�1
􏽥e

T
i (0) 􏽢Q􏽥ei(0)> 0,

(52)

where 􏽥υ􏽥r(0) ≥ 1, 􏽥H(􏽥ej(t)) � 􏽥h(􏽥yj(t)) − 􏽥h(s(t)), 􏽥H(􏽥ej(t −

τ(t))) � 􏽥h(􏽥yj(t − τ(t))) − 􏽥h(s(t − τ(t))), and 􏽥G
􏽥r
k > 0 or

􏽥G
􏽥r
k < 0, with the increase of χ(􏽥h) of nonlinear coupled function

􏽥h(·) in network (2), synchronization dynamics of network (2)
with controller (6) within finite time t∗C2 becomes better and
synchronization convergence time of network (2) with con-
troller (6) becomes shorter.

Proof. .e proof is similar to that of Corollary 1, and hence,
we omit it here. □

Remark 12. From Corollaries 1 and 2, we can observe that
with the increase of the nonlinearity χ(􏽥h) of nonlinear
coupled function 􏽥h(·) in network (2), synchronization dy-
namic of network (2) in Corollaries 1 and 2 become poorer
and better, respectively. Meanwhile, if χ(􏽥h) increases, syn-
chronization convergence time and the derived settling finite
time t∗C1 and t∗C2 of network (2) with controller (6) in
Corollaries 1 and 2, respectively, become longer and shorter.
It is obvious that compared with t∗, t∗C1and t∗C2 can more
effectively reflect and accurately describe the impact of χ(􏽥h)

of 􏽥h(·) on finite-time synchronization dynamics and syn-
chronization convergence time of network (2) with con-
troller (6).

Besides this, from the proofs of Corollaries 1 and 2, it can
also be obtained that the impact of the nonlinearity of

nonlinear coupled function 􏽥h(·) on synchronization dy-
namics and synchronization convergence time of network
(2) with controller (6) is not only related to χ(􏽥h) of 􏽥h(·) but
also closely connected with the synchronization state s(t)

and the initial conditions.

Remark 13. Due to some factors such as limited commu-
nications and environmental changes, parameter switching
in a dynamic system is usually inevitable [63, 64]. Parameter
switching may add some interesting dynamic behaviors to a
dynamic system, which reveals that it is essential to inves-
tigate dynamic problems of systems with switching pa-
rameters. During the past decades, many researchers began
to explore dynamic problems of some classes of systems with
switching parameters [10, 65–73]. For instance, based on the
Lyapunov function method and inequality technology, Mao
et al. [69] studied the stability problem of switched con-
tinuous-time systems with all subsystems unstable. In [70],
Xu et al. derived a sufficient condition to ensure global
synchronization of a class of complex networks with
switched adjacent matrices. Regrettably, up to now, although
a great deal of valuable and meaningful results on dynamic
problems for some classes of systems with switching pa-
rameters have been obtained [10, 63–73], to the best of our
knowledge, there are still no literature studies to discuss the
following two problems:

(i) If the overall system consists of a subsystem
achieving synchronization within finite time t1 and
subsystems not achieving synchronization, can the
overall system achieve synchronization?

(ii) If the overall system consists of a subsystem
achieving synchronization within finite time t1 and
subsystems achieving synchronization within finite
time t2, can the overall system achieve finite-time
synchronization? If yes, what is the finite time?

In the next two remarks, we will focus on the two
questions above.

Remark 14. In network (2), the switching signal 􏽥r(t) sat-
isfying the rule given by formula (3) has 􏽢s finite state, which
shows that overall network (2) has 􏽢s subsystems. Assume
that the 􏽢pth subsystem with controller (6) can achieve
synchronization within finite time t∗ and the 􏽢qth subsystem
without controller (6) cannot achieve synchronization,
where 􏽢p � 1 and 􏽢q � 2, . . . ,􏽢s. In this situation, can overall
network (2) achieve the synchronization?

First, combining formula (3) and finite state space 􏽢S, we
suppose the following switching sequence:

S � t1, 1( 􏼁, t2, 2( 􏼁, . . . , t􏽢s,􏽢s􏼐 􏼑, t􏽢s+1, 1􏼐 􏼑, t􏽢s+2, 2􏼐 􏼑, . . .􏽮 􏽯,

(53)

where t1 ∈ [0,Δt]􏼈 , t2 ∈ [Δt, 2Δt], . . . , t􏽢s ∈ [(􏽢s − 1)Δt,
􏽢sΔt], t􏽢s+1 ∈ [􏽢sΔt, (􏽢s + 1)Δt], . . .}. In error system (5) of
network (2), 􏽥ei(t) ∈ Rn, 􏽥F(􏽥yi(t)) ∈ Rn, 􏽥A ∈ Rn×n, 􏽥ak > 0 and
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􏽢ak > 0, and 􏽥Γk ∈ Rn×n > 0 and 􏽢Γk ∈ Rn×n > 0, which reveal that
there must exist the solutions 􏽥e

(􏽢p)
i (t􏽢k

) and 􏽥e
(􏽢q)
i (t􏽢m) in the

error system of the 􏽢p subsystem with controller (6) and the
error system of the 􏽢q subsystemwithout controller (6), where
􏽢k � 1,􏽢s + 1, . . . and 􏽢m � 2, 3, . . . ,􏽢s,􏽢s + 2, . . .;

Second, according to formula (17), one can obtain that
L􏽢pV(􏽥e(􏽢p)(t􏽢k

), t􏽢k
, 􏽢p), L􏽢qV(􏽥e(􏽢q)(t􏽢m), t􏽢m, 􏽢q), and LV(􏽥e

(t), t, 􏽢r), where 􏽢r stands for the switching sequence S, and
L􏽢pV(􏽥e(􏽢p)(t􏽢k

), t􏽢k
, 􏽢p), L􏽢qV(􏽥e(􏽢q)(t􏽢m), t􏽢m, 􏽢q), and LV(􏽥e

(t), t, 􏽢r), respectively, represent the derivative of the Lya-
punov functional (16) for the 􏽢p subsystem with controller
(6), the 􏽢qth subsystem without controller (6), and overall
network (2) which consists of a 􏽢p subsystem with controller
(6) and 􏽢s − 1 subsystems without controller (6).

In fact, it can be derived that E[LV(􏽥e(t), t, 􏽢r)] �

E[L􏽢pV(􏽥e(p)(t􏽢r1
), t􏽢r1

, 􏽢r1) + L􏽢qV(􏽥e(􏽢q)(tr2
), t􏽢r2

, 􏽢r2)] and E[

LV(􏽥e(t), t, 􏽢r)] is a smooth function, where 􏽢r � 􏽢r1 ∪ 􏽢r2, 􏽢r1 �

(t1, 1), (t􏽢s+1, 1), . . .􏽮 􏽯 and 􏽢r2 � (t2, 2), (t3, 3)􏼈 , . . . , (t􏽢s,􏽢s),

(t􏽢s+2, 2), . . .}. .is can be obtained as follows.
Markovian switching usually models random abrupt

variations which are often caused by random failures and
repairs of the components [59]. .is means that network
(2) with Markovian switching parameter 􏽥gk

ij(􏽥r(t)) which
consists of 􏽢s subsystems actually originates from a
subsystem of network (2). For example, due to noise
perturbations and some other elements [59], the pa-
rameter 􏽥gk

ij(􏽥r(t1)) of the 1st subsystem is randomly
switched to 􏽥gk

ij(􏽥r(t2)). .us, the 2nd subsystem is pro-
duced. By the similar rule, the 3rd. . . and the 􏽢sth sub-
system are also produced. .erefore, the overall network
(2) with a Markovian switching parameter actually is one
dynamical system and the number of the solution 􏽥y

i􏽥j(t)

of the overall network (2) is N × n, instead of 􏽢s × N × n,
where i � 1, 2, . . . , N and 􏽥j � 1, 2, . . . , n.

Moreover, the solution 􏽥y
i􏽥j(t) of the overall network (2)

with or without controller (6) is a smooth function.
In fact, let 􏽥yi(t) � (􏽥yi1(t), 􏽥yi2(t), . . . , 􏽥yin(t))T and as-

sume that 􏽥yi(t) is not a smooth function; then, there exists
‖lim△⟶0(􏽥yi(t +△) − 􏽥yi(t))‖1 � 􏽢η, where 􏽢η> 0 is a con-
stant. .is leads to ‖ _􏽥yi (t)‖1 � ‖lim△⟶0((􏽥yi

(t +△) − 􏽥yi(t))/△)‖1 � ‖lim△⟶0(􏽢η/△)‖1⟶ +∞. Com-
bining network (2) with or without controller (6), one can
obtain that if ‖ _􏽥yi(t)‖1⟶ +∞, there must be
‖􏽥yi(t)‖1⟶ +∞. Obviously, this is wrong. .erefore,
there must be ‖lim△⟶0(􏽥yi(t +△) − 􏽥yi(t))‖1 � 0, which
means that 􏽥yi(t) is a smooth function.

From (4)–(6), one can obtain that 􏽥ei(t) is also a smooth
function. Combining (16) with (17), one can obtain that
E[LV(􏽥e(t), t, 􏽢r)] is also a smooth function.

.erefore, though LV(􏽥e(t), t, 􏽢r) is divided into

L􏽢pV 􏽥e
(􏽢p)

t􏽢r1
􏼒 􏼓, t􏽢r1

, 􏽢r1􏼒 􏼓,

L􏽢qV 􏽥e
(􏽢q)

t􏽢r2
􏼒 􏼓, t􏽢r2

, 􏽢r2􏼒 􏼓,

(54)

by the switching sequence S, because E[LV(􏽥e(t), t, 􏽢r)] is a
smooth function, then

E L􏽢pV 􏽥e
(􏽢p)

t􏽢r1
􏼒 􏼓, t􏽢r1

, 􏽢r1􏼒 􏼓 + L􏽢qV 􏽥e
(􏽢q)

t􏽢r2
􏼒 􏼓, t􏽢r2

, 􏽢r2􏼒 􏼓􏼔 􏼕,

(55)

must be a smooth function. It is clear that

E[LV(􏽥e(t), t, 􏽢r)] � E L􏽢pV 􏽥e
(􏽢p)

t􏽢r1
􏼒 􏼓, t􏽢r1

, 􏽢r1􏼒 􏼓􏼔

+L􏽢qV 􏽥e
(􏽢q)

t􏽢r2
􏼒 􏼓, t􏽢r2

, 􏽢r2􏼒 􏼓􏼕.

(56)

.en, we can conclude that although network (2) is
composed by 􏽢s subsystems which are coupled by Markovian
switching parameter 􏽥gk

ij(􏽥r(t)), the overall network (2) is
actually a dynamical system..is reflects that in network (2),
there does not exist independent subsystems.

And if subsystems in network (2) are independent, every
subsystem may exhibit different synchronization dynamical
behaviors. All these testify that if every subsystem of network
(2) is independent, it may be realized that the 􏽢pth subsystem
with controller (6) can achieve synchronization within finite
time t∗ and the 􏽢qth subsystem without controller (6) cannot
achieve synchronization, where 􏽢p � 1 and 􏽢q � 2, . . . ,􏽢s.
Otherwise, if every subsystem of network (2) is coupled by
Markovian switching parameter 􏽥gk

ij(􏽥r(t)), the above
addressed synchronization dynamic behaviors of subsystems
in network (2) cannot be realized. .erefore, every sub-
system of overall network (2) is independent.

Similar to the proof of .eorem 1, we can get
LV􏽢q(􏽥e(t), t)< 0 and LV􏽢q(􏽥e(t), t)> 0, where LV􏽢q(􏽥e(t), t)

and LV􏽢q(􏽥e(t), t) are with respect to the 􏽢pth independent
subsystem with controller (6) and the 􏽢qth independent
subsystem without controller (6), respectively. Here,
LV􏽢q(􏽥e(t), t) and LV􏽢q(􏽥e(t), t) replace LV􏽢p(􏽥e(t), t, 􏽢p) and
LV􏽢q(􏽥e(t), t). Because in the independent 􏽢pth subsystem
with controller (6) and the independent 􏽢qth subsystem
without controller (6), there is no Markovian switching
phenomenon; thus, ifLV􏽢q(􏽥e(t), t)≤ 0 andLV􏽢q(􏽥e(t), t)> 0,
then E[LV(􏽥e(t), t, 􏽢r)]≤ 0, the overall network (2) can
achieve global synchronization within infinite time interval
or finite time interval.

Remark 15. If the 􏽢pth subsystem with controller (6) can
achieve synchronization within finite time t∗(1) and the 􏽢qth
subsystem with controller (6) can achieve synchronization
within finite time t∗(2), can overall network (2) achieve
synchronization? If yes, what type of finite-time synchro-
nization is the obtained finite-time synchronization? By the
similar analysis of Remark 14, one can get the following
conclusion: if LV􏽢q(􏽥e(t), t)≤ − 􏽥ϑ1V

ς1
􏽢q

(􏽥e(t), t) and LV􏽢q

(􏽥e(t), t)≤ − 􏽥ϑ2V
ς2
􏽢q

(􏽥e(t), t) can make E[LV(􏽥e(t), t, 􏽢r)]≤ −

􏽥ϑ3 E[V(􏽥e(t), t, 􏽢r)]{ }
ς3 hold, overall network (2) can achieve

synchronization, where 􏽥ϑ1 > 0, 􏽥ϑ2 > 0, 􏽥ϑ3 > 0, 0< ς1 < 1, 0< ς2
< 1, 0< ς3 < 1, t∗1 ≤V

1− ς1
􏽢p

(0)/􏽥ϑ1(1 − ς1), t∗2 ≤V
1− ς2
􏽢q

(0)/􏽥ϑ2(1 −

ς2), and T∗ ≤ [V(􏽥e(0), 0, 􏽥r(0))]1− ς3 /􏽥ϑ3(1 − ς3). For overall
network (2), the obtained finite-time synchronization is
global synchronization within finite time interval.

Complexity 13



4. Numerical Examples

In order to illustrate the effectiveness of the obtained results,
this section gives four numerical examples. And synchro-
nization total error of the addressed network is defined as
e(t) � 􏽐

N
i�1 􏽐

n
j�1 eij(t), where eij(t) is synchronization error

of the addressed network. For a given rate transition matrix,
the right-continuous Markov chain 􏽥r(t) can be generated.
As an example, we adopt 􏽢S � 1, 2, 3{ } and the rate transition
matrix as follows:

Υ �

− 2 1 1

1 − 2 1

1 1 − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (57)

Example 1. Consider the following network with sixty
coupling nodes:

_􏽥yi(t) � 􏽥A􏽥f 􏽥yi(t)( 􏼁 + 􏽘
2

k�1
􏽘

60

j�1
􏽥ak􏽥g

k
ij(􏽥r(t))􏽥Γk􏽥h 􏽥yj(t)􏼐 􏼑

+ 􏽘
2

k�1
􏽘

60

j�1
􏽢ak􏽥g

k
ij(􏽥r(t))􏽢Γk􏽥h 􏽥yj(t − τ(t))􏼐 􏼑,

(58)

where i � 1, 2, . . . , 60, 􏽥A � diag 1, 1{ }, 􏽥Γk � 􏽢Γk � diag 1, 1{ },
􏽥f(􏽥yi) � [− 􏽥yi1, − 􏽥yi2]

T, 􏽥ak � 􏽢ak � 1, τ(t) � 0.1 − 0.1e− t,
􏽥h(􏽥yj(t)) � [tanh(􏽥yj1(t)), tanh(􏽥yj2(t))]T, and 􏽥h(􏽥yj(t −

τ(t))) � [tanh(􏽥yj1(t − τ(t))), tanh(􏽥yj2(t − τ(t)))]T.
.e coupling matrix 􏽥G

􏽥r
k is as follows:

􏽥G
1
k � I20 ⊗

1.5 0.3 0.6

0.3 1.6 0.5

0.6 0.5 1.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥G
2
k � I20 ⊗

1.4 0.2 0.5

0.2 1.5 0.3

0.5 0.3 1.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥G
3
k � I20 ⊗

1.3 0.2 0.4

0.2 1.5 0.5

0.4 0.5 1.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(59)

By using the steps in Remark 14, we can design controller
(6):

(i) Let 􏽥υp � 1 and 􏽢Q � I2, where p � 1, 2, 3.
(ii) Combining Assumptions 1 and 2, 􏽥f(·), and 􏽥h(·), we

have L � 􏽥L � 1.2, ψ � I2, 􏽥ψp � I120, and
τM ≐ ρ � 0.1.

(iii) From inequality (15) of condition (II) of.eorem 1,
we obtain that 􏽢θp � 1 and 􏽢F

k
� 1.5⊗ I120.

(iv) According to inequality (14) of condition (II) of
.eorem 1, we get Ξkp � 4.5I60. .us, combining
condition (I) of .eorem 1, there is 􏽢ϱp≐1.11.

(v) Let the initial state vector value 􏽥y(0) �

2(1, 1.1, + . . . , 1 + 0.1􏽥k, . . . , 12.9)T, 􏽥k � 0, 1, . . . ,

119, 􏽥β(χ(􏽥h)) � 1, 􏽥α � 0.5, and 􏽢ηk,p
i � 4, then by

condition (III) of .eorem 1, t∗ satisfies t∗ ≤ 2.74,
where V(e(0), 0, 􏽥r(0)) � 14472, e(0) � 1668, and
m � 2.

.us, the design of controller (6) is completed and the
finite time t∗ is successfully estimated.

Actually, from Definition 1 and the derived t∗ in con-
dition (III) of .eorem 1, it can be seen that finite time t∗

heavily depends on the initial state value 􏽥y(0) of network
(58)..is shows that the initial value of the addressed system
can affect the simulation result.

In order to further test the result, let
􏽥y(1)(0) � 3(1, 1.1, + . . . , 1 + 0.1􏽥k, . . . , 12.9)T. We still
choose the designed controller (6). .us, one can obtain that
t∗(1) ≤ 3.04, where V(1)(e(1)(0), 0, 􏽥r(0)) � 21709 and
e(1)(0) � 2502.

In the simulation results of Figure 1, the trajectories
marked by red and blue are with respect to the initial
conditions 􏽥y(0) and 􏽥y(1)(0), respectively. From Figure 1, we
can see that within finite time t∗ � 2.74 and t∗(1) � 3.04,
synchronization errors eij(t) and e

(1)
ij (t) and synchroniza-

tion total errors e(t) and e(1)(t) gradually tend to zero,
where i � 1, 2, . . . , 60 and j � 1, 2. .is means that network
(58) with designed controller (6) can achieve global syn-
chronization in finite time t∗ and t∗(1), respectively.

Moreover, compared with the simulation results in
Figure 1, we can find that under the same control rule, if the
initial state value of network (58) becomes larger, syn-
chronization convergence time of network (58) becomes
longer. .e obtained t∗ and t∗(1) can also reflect the results.

Example 2. In this example, we consider network (2) with
eighteen coupling nodes presented by

_􏽥yi(t) � 􏽥A􏽥f 􏽥yi(t)( 􏼁 + 􏽘
2

k�1
􏽘

18

j�1
􏽥ak􏽥g

k
ij(􏽥r(t))􏽥Γk􏽥h 􏽥yj(t)􏼐 􏼑

+ 􏽘
2

k�1
􏽘

18

j�1
􏽢ak􏽥g

k
ij(􏽥r(t))􏽢Γk􏽥h 􏽥yj(t − τ(t))􏼐 􏼑.

(60)

From Corollary 1, it can be seen that there are

􏽥e
T
(t) 􏽥G

􏽥r
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓 􏽥H(􏽥e(t))> 0,

􏽥e
T
(t) 􏽥G

􏽥r
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓 􏽥H(􏽥e(t − τ(t)))> 0,

(61)

where

􏽥H(􏽥e(t)) � 􏽥h 􏽥yj(t)􏼐 􏼑 − 􏽥h(s(t)), 􏽥H(􏽥e(t − τ(t))) � 􏽥h 􏽥yj(t − τ(t))􏼐 􏼑 − 􏽥h(s(t − τ(t)))

􏽥G
􏽥r
k > 0 or 􏽥G

􏽥r
k < 0, 􏽢Q> 0, 􏽢Γk > 0.

(62)
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.us, there exist the following four cases if
􏽥eT(t)(􏽥G

􏽥r
k ⊗ 􏽢Q􏽥Γk)H(􏽥e(t))> 0 and 􏽥eT(t)(􏽥G

􏽥r
k ⊗ 􏽢Q􏽢Γk) 􏽥H (􏽥e(t −

τ(t))) > 0 hold.

Case 1: 􏽥G
􏽥r
k > 0, 􏽥e(t)> 0, (􏽥e(t − τ(t)))> 0, 􏽥H(􏽥e(t))> 0,

and 􏽥H(􏽥e(t − τ(t))) > 0. We choose

􏽥G
p

k � I6 ⊗ [1.3, 0.3, 0.6; 0.3, 1.5, 0.5; 0.6, 0.5, 1.4],

􏽥y(0) � 2(1, 1.1, . . . , 1 + 0.1􏽥k, . . . , 4.5)
T
,

(63)

where 􏽥k � 0, 1, . . . , 35.
First, let 􏽥h(1)(􏽥yj(t)) � [tanh(􏽥yj1(t)), tanh(􏽥yj2(t))]T

and 􏽥h(1)(􏽥yj (t − τ(t))) � [tanh(􏽥yj1(t − τ(t))), tanh
(􏽥yj2(t − τ(t)))]T. .e other parameters of network
(60) are the same as those of network (58). Using the
similar steps of Example 1, we can design the pa-
rameters of controller (6) and these parameters are
Ξkp � 4.5I18, 􏽢Q � I2, 􏽢θp � 1 and 􏽢F

k
� 1.5⊗ I36,

τM � ρ � 0.1, 􏽥β(χ(􏽥h(1))) � 1, 􏽥α � 0.5, and 􏽢ηk,p
i � 4.

Besides these, from Example 1, we have 􏽢ϱp≐1.11. From
the simulation results in Figure 2, we can derive that
before network (60) with controller (6) achieves finite-
time synchronization, there must be 􏽥e(t)> 0,
􏽥e(t − τ(t))> 0, 􏽥H(􏽥e(t))> 0, and 􏽥H(􏽥e(t − τ(t)))> 0,
where 􏽥e(t) is with respect to e(t) of Figure 2. .is
means that condition (III) of Corollary 1 holds. From
condition (III) of .eorem 1, we have t∗(1) ≤ 1.25, where
V(e(0), 0, 􏽥r(0)) � 622.2, e(0) � 198, and 􏽥υp � 1.
Second, in order to test the impact of the nonlinearity
χ(􏽥h) of nonlinear coupled function 􏽥h(·) on synchro-
nization dynamics and synchronization convergence
time of network (60) with controller (6), let nonlinear
coupled function 􏽥h(·) be

􏽥h(2) 􏽥yj(t)􏼐 􏼑 �
0.7 tanh 0.7􏽥yj1(t)􏼐 􏼑

0.7 tanh 0.7􏽥yj2(t)􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

􏽥h(2) 􏽥yj(t − τ(t))􏼐 􏼑 �
0.7 tanh 0.7􏽥yj1(t − τ(t))􏼐 􏼑

0.7 tanh 0.7􏽥yj2(t − τ(t))􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

􏽥h(3) 􏽥yj(t)􏼐 􏼑 �
0.2 tanh 0.2􏽥yj1(t)􏼐 􏼑

0.2 tanh 0.2􏽥yj2(t)􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

􏽥h(3) 􏽥yj(t − τ(t))􏼐 􏼑 �
0.2 tanh 0.2􏽥yj1(t − τ(t))􏼐 􏼑

0.2 tanh 0.2􏽥yj2(t − τ(t))􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(64)

It is clear that χ(􏽥h(1))> χ(􏽥h(2))> χ(􏽥h(3))> 0. We still
choose Ξkp � 4.5∗ I18, 􏽢Q � I2, 􏽢θp � 1, 􏽢F

k
� 1.5⊗ I36,

τM � ρ � 0.1, 􏽥β(χ(􏽥h(2))) � 􏽥β(χ(􏽥h(2))) � 􏽥β(χ(􏽥h(1))) �

1, 􏽥α � 0.5, and 􏽢ηk,p
i � 4. Combining 􏽥h(2)(·) and 􏽥h(1)(·),

we easily testify that condition (II) of .eorem 1 holds.
Besides this, it can also be derived that there are
t∗(2) ≤ 1.25 and t∗(3) ≤ 1.25. In Figure 2, the trajectories
marked by green, black, and red are with respect to
􏽥h(1)(·), 􏽥h(2)(·), and 􏽥h(3)(·), respectively.
From Figure 2, we can observe that with the decrease of
χ(􏽥h), synchronization dynamics of network (60) with
controller (6) in finite time t∗

(􏽢])
� 1.25 becomes better

and synchronization convergence of network (60) with
controller (6) becomes shorter, where 􏽢] � 1, 2, 3. In
Corollary 1, because 􏽥β(χ(􏽥h)) is a decreasing function;
let 􏽥βnew(χ(􏽥h(2))) � 1.1 and 􏽥βnew(χ(􏽥h(3))) � 1.2. .us,
combining condition (III) of .eorem 1, we can obtain
that t∗new(2) ≤ 1.14 and t∗new(3) ≤ 1.04. It is obvious that
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Figure 1: Synchronization error trajectories and synchronization total error trajectories of network (58) with controller (6) for Example 1.
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compared with t∗(2) ≤ 1.58 and t∗(3) ≤ 1.58, t∗new(2) ≤ 1.14
and t∗new(3) ≤ 1.04 canmore accurately reflect the impact
of nonlinear coupled function 􏽥h(·) on synchronization
dynamics and synchronization convergence time of
network (60) with the same designed controller (6).
Case 2: 􏽥G

􏽥r
k > 0, 􏽥e(t)< 0, 􏽥e(t − τ(t))< 0, 􏽥H(􏽥e(t))< 0, and

􏽥H(􏽥e(t − τ(t)))< 0. Let
􏽥G

p

k � I6 ⊗ [1.3, 0.3, 0.6; 0.3, 1.5, 0.5; 0.6, 0.5, 1.4],

􏽥h
II

(􏽥l)(·) � 􏽥h
(􏽥l)

(·),

􏽥y(0) � 2∗ (− 1, − 1.1, . . . , − (1 + 0.1∗ 􏽥k), . . . , − 4.5)T,

(65)

where 􏽥l � 1, 2, 3, 􏽥k � 0, 1, . . . , 35 and 􏽥h
(􏽥l)

(·) is 􏽥h(1)(·),
􏽥h(2)(·), and 􏽥h(3)(·) in Case 1, respectively.
Case 3: 􏽥G

􏽥r
k < 0, 􏽥e(t)> 0, 􏽥e(t − τ(t))> 0, 􏽥H(􏽥e(t))< 0, and

􏽥H(􏽥e(t − τ(t)))< 0. Let
􏽥G

p

k � I6 ⊗ [− 1.3, − 0.3, − 0.6; − 0.3, − 1.5, − 0.5; − 0.6, − 0.5, − 1.4],

􏽥h
III

(􏽥l) (·) � − 􏽥h
II

(􏽥l)(·),

􏽥y(0) � 2∗(1, 1.1, . . . , 1 + 0.1∗ 􏽥k, . . . , 4.5)T,

(66)

where 􏽥l � 1, 2, 3 and 􏽥k � 0, 1, . . . , 35.
Case 4: 􏽥G

􏽥r
k < 0, 􏽥e(t)< 0, 􏽥e(t − τ(t))< 0, 􏽥H(􏽥e(t))> 0, and

􏽥H(􏽥e(t − τ(t)))> 0. Let
􏽥G

p

k � I6 ⊗ [− 1.3, − 0.3, − 0.6; − 0.3, − 1.5, − 0.5; − 0.6, − 0.5, − 1.4],

􏽥h
IV

(􏽥l)(·) � 􏽥h
III

(􏽥l) (·),

􏽥y(0) � 2∗ (− 1, − 1.1, . . . , − (1 + 0.1∗ 􏽥k), . . . , − 4.5)T,

(67)

where 􏽥l � 1, 2, 3 and 􏽥k � 0, 1, . . . , 35.
.e other parameters of Cases 2–4 are same as that of Case

1. Similar to Case 1, we can obtain that in Cases 2–4, finite time
t∗(1) ≤ 1.58, t∗new(2) ≤ 1.14, and t∗new(3) ≤ 1.04. .e simulation
trajectories are shown in Figures 2–5, which further testify that
the obtained results of Corollary 1 are reasonable.

Example 3. Network (60) is still chosen in this example.
According to Corollary 2, there exist the following four
cases:

Case I: 􏽥G
􏽥r
k > 0, 􏽥e(t)> 0, 􏽥e(t − τ(t))> 0, 􏽥H(􏽥e(t)) < 0, and

􏽥H(􏽥e(t − τ(t)))< 0. Let

􏽥G
p

k � I6 ⊗ [1.3, 0.3, 0.6; 0.3, 1.5, 0.5; 0.6, 0.5, 1.4],

􏽥y(0) � 2(1, 1.1, . . . , 1 + 0.1􏽥k, . . . , 4.5)T,

􏽥h
I

(􏽥l)(·) � − 􏽥h
(􏽥l)

(·),

(68)

where 􏽥k � 0, 1, . . . , 35, 􏽥h
(􏽥l)

(·) is a nonlinear coupled
function in Case I of Example 2 and 􏽥l � 1, 2, 3.
Case II: 􏽥G

􏽥r
k > 0, 􏽥e(t)< 0, 􏽥e(t − τ(t))< 0, 􏽥H(􏽥e(t))> 0,

and 􏽥H(􏽥e(t − τ(t)))> 0. Let

􏽥G
p

k � I6 ⊗ [1.3, 0.3, 0.6; 0.3, 1.5, 0.5; 0.6, 0.5, 1.4],

􏽥y(0) � 2(− 1, − 1.1, . . . , − (1 + 0.1∗ 􏽥k), . . . , − 4.5)T,

􏽥h
II

(􏽥l)(·) � − 􏽥h
(􏽥l)

(·).

(69)

Case III: 􏽥G
􏽥r
k < 0, 􏽥e(t)> 0, 􏽥e(t − τ(t))> 0, 􏽥H(􏽥e(t))> 0,

and 􏽥H(􏽥e(t − τ(t)))> 0. Let
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Figure 2: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case 1 of
Example 2.
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􏽥G
p

k � I6 ⊗ [− 1.3, − 0.3, − 0.6; − 0.3, − 1.5, − 0.5; − 0.6, − 0.5, − 1.4],

􏽥y(0) � 2(1, 1.1, . . . , 1 + 0.1􏽥k, . . . , 4.5)T,

􏽥h
III

(􏽥l) (·) � 􏽥h
(􏽥l)

(·).

(70)

Case IV: 􏽥G
􏽥r
k < 0, 􏽥e(t)< 0, 􏽥e(t − τ(t))< 0, 􏽥H(􏽥e(t))< 0,

and 􏽥H(􏽥e(t − τ(t))) < 0. Let
􏽥G

p

k � I6 ⊗ [− 1.3, − 0.3, − 0.6; − 0.3, − 1.5, − 0.5; − 0.6, − 0.5, − 1.4],

􏽥y(0) � 2(− 1, − 1.1, . . . , − (1 + 0.1􏽥k), . . . , − 4.5)T,

􏽥h
IV

(􏽥l)(·) � 􏽥h
(􏽥l)

(·).

(71)

In Cases I–IV, according to .eorem 1, let
􏽥β(χ(􏽥h(1))) � 􏽥β(χ(􏽥h(2))) � 􏽥β(χ(􏽥h(2))) � 1; then, we have
Ξkp � 4.5∗ I18, 􏽢Q � I2, 􏽢θp � 1, 􏽢F

k
� 1.5⊗ I36, τM � ρ � 0.1,

􏽥α � 0.5, 􏽢ηk,p
i � 2, 􏽥υp � 1, V(􏽥e(0), 0, 􏽥r(0)) � 99, t∗(1) ≤ 1.58,

t∗(2) ≤ 1.58, and t∗(3) ≤ 1.58. .e simulation trajectories are
shown in Figures 6–9, and we can observe that with the
increase of χ(􏽥h), synchronization dynamics of network (60)
with controller (6) becomes better and synchronization
convergence time becomes shorter.

It is a pity that t∗(1) and t∗(2) above cannot reflect the fact.
In order to more accurately estimate synchronization
convergence time, according to Corollary 2, let
􏽥βnew(χ(􏽥h(1))) � 1.2 and 􏽥βnew(χ(􏽥h(2))) � 1.1, where
χ(􏽥h(1))> χ(􏽥h(2))> 0. .us, t∗new(1) ≤ 1.32, t∗new(2) ≤ 1.44, and
t∗new(3) ≤ 1.58. It is clear that t∗new(1) < t∗new(2) < t∗new(3), which
shows that for addressed network (60) with controller (6),

the settling finite time t∗C2 given by Corollary 2 can more
accurately estimate synchronization convergence time.

Example 4. In network (60) above, 􏽢s � 3..erefore, network
(52) includes three subsystems. Assume that the 1st sub-
system with controller (6) can achieve synchronization in
finite time t∗(1) and the other two subsystems without
controller (6) cannot achieve synchronization, where 􏽥r � 1.
.at is, in controller (6), 􏽥r � 1.

Next, we design controller (6) to make the overall
network (60) realize synchronization as follows. Let

􏽥G
1
k � I6 ⊗ [1.5, 0.3, 0.6; 0.3, 1.6, 0.5; 0.6, 0.5, 1.4],

􏽥G
2
k � I6 ⊗ [1.4, 0.2, 0.5; 0.2, 1.5, 0.3; 0.5, 0.3, 1.6],

􏽥G
3
k � I6 ⊗ [1.3, 0.2, 0.4; 0.2, 1.5, 0.5; 0.4, 0.5, 1.4],

􏽥h 􏽥yj(t)􏼐 􏼑 � tanh 􏽥yj1(t)􏼐 􏼑, tanh 􏽥yj2(t)􏼐 􏼑􏽨 􏽩
T
,

􏽥h 􏽥yj(t − τ(t))􏼐 􏼑 � tanh 􏽥yj1(t − τ(t))􏼐 􏼑􏽨 ,

tanh 􏽥yj2(t − τ(t))􏼐 􏼑􏽩
T
,

􏽢Q � I2,

􏽢θ
p

� 1,

􏽢F
k

� 0.8⊗ I36.

(72)
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Figure 3: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case 2 of
Example 2.
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Figure 4: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case 3 of
Example 2.
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Figure 5: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case 4 of
Example 2.
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Figure 7: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case II of
Example 3.
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Figure 6: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case I of
Example 3.
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Figure 8: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case III of
Example 3.
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Figure 9: Synchronization error trajectories and synchronization total error trajectories of network (60) with controller (6) for Case IV of
Example 3.
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According to the analysis of Remark 14, we know the
following:

(a) If LV􏽢p(􏽥e(t), t)≤ 0 and LV􏽢q(􏽥e(t), t)> 0 can make
E[LV(􏽥e((t)), t, 􏽢r)]≤ 0 hold, where 􏽢p � 1, 􏽢q � 2, 3,
and

E[LV(􏽥e(t), t, 􏽢r)] � E L􏽢pV 􏽥e(􏽢p) t􏽢r1
􏼒 􏼓, t􏽢r1

, 􏽢r1􏼒 􏼓 + L􏽢qV 􏽥e(􏽢q) t􏽢r2
􏼒 􏼓, t􏽢r2

, 􏽢r2􏼒 􏼓􏼔 􏼕,

􏽢r � 􏽢r1 ∪ 􏽢r2, 􏽢r1 � t1, 1( 􏼁, t􏽢s+1, 1􏼐 􏼑, . . .􏽮 􏽯,

􏽢r2 � t2, 2( 􏼁, t3, 3( 􏼁, . . . , t􏽢s,􏽢s􏼐 􏼑, t􏽢s+2, 2􏼐 􏼑, . . .􏽮 􏽯,

t1 ∈ [0,Δt], t2 ∈ [Δt, 2Δt], . . . , t􏽢s ∈ [(􏽢s − 1)Δt,􏽢sΔt], t􏽢s+1 ∈ [􏽢sΔt, (􏽢s + 1)Δt], . . .􏽮 􏽯,

S � t1, 1( 􏼁, t2, 2( 􏼁, . . . , t􏽢s,􏽢s􏼐 􏼑, t􏽢s+1, 1􏼐 􏼑, t􏽢s+2, 2􏼐 􏼑, . . .􏽮 􏽯,

(73)

overall network (60) can achieve synchronization
(b) In order to make every subsystem of network (60)

have different synchronization dynamic behaviors,
every subsystem is an independent subsystem

(c) In every subsystem, there is no Markovian switching
phenomenon

(d) If 􏽢s subsystems are coupled by Markovian switching
parameter 􏽥gk

ij(r(t)), the overall network (60) is
actually one dynamical system

(e) Although there exists Markovian switching param-
eter 􏽥gk

ij(r(t)), synchronization error 􏽥eij(t) of the
error system of the overall network (60) is a smooth
function, where i � 1, 2, . . . , 18 and j � 1, 2

Actually, according to the principles above, it is very
difficult to design controller (6) to make addressed overall
network (60) achieve synchronization. Next, we will focus
on the synchronization of the overall network (60) by the
following steps:

Step 1: combining LV􏽢p(􏽥e(t), t)≤ 0 and the proof of
.eorem 1, we have

LV􏽢p(􏽥e(t), t)≤ 􏽥e
T
(t) 􏽢Θ(1)

1 􏽥e(t) + 􏽥e
T
(t − τ(t)) 􏽢Θ(2)

1 􏽥e(t − τ(t))≤ 0,

(74)

where 􏽢p � 1 and

􏽢Θ(1)

1 � L
2
‖ψ‖2 + 􏽥L

2
􏽥ψ1

����
����2 􏽘

m

k�1
􏽥ak

⎛⎝ ⎞⎠IN ⊗ IN +
􏽢θ
1

1 − ρ
􏽘

m

k�1
􏽢ak

􏽢F
k

+ IN ⊗ ( 􏽢Q􏽥A)ψ− 1
( 􏽢Q􏽥A)

T⎡⎢⎢⎣

+ 􏽘
m

k�1
􏽥ak

􏽥G
1
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓􏽥ψ− 1

1
􏽥G
1
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓

T

+ 􏽘
m

k�1
􏽢ak

􏽥G
1
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓􏽢ψ− 1

1
􏽥G
1
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓

T

− 2 􏽘
m

k�1
Ξk1 ⊗ 􏽢Q⎤⎦≤ 0,

􏽢Θ(2)

1 � 􏽘

m

k�1
􏽢ak

􏽥L
2

􏽢ψ1
����

����2 IN ⊗ IN( 􏼁 − 􏽢θ
1
􏽢F

k
􏼒 􏼓⎡⎣ ⎤⎦≤ 0.

(75)

.us, we can design Ξk1, 􏽢θ
1
, and 􏽢F

k to make the 1st
subsystem of overall network (60) achieve global
synchronization.

Step 2: if the 􏽢q subsystem of overall network (60) cannot
achieve synchronization, then LV􏽢q(􏽥e(t), t)> 0. .us,
similar to the proof of .eorem 1, it can be derived that

Complexity 21



LV􏽢q(􏽥e(t), t) � Vt(􏽥e(t), t) + V􏽥e(t)(􏽥e(t), t) 􏽥A􏽥F 􏽥ei(t)( 􏼁 + 􏽘
m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p
ij

􏽥Γk 􏽥H 􏽥ei(t)( 􏼁⎡⎢⎢⎣ + 􏽘
m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑⎤⎥⎥⎦,

�
􏽥υp

􏽢θ
p

1 − ρ
􏽘

m

k�1
􏽢ak 􏽥e

T
(t)􏽢F

k
􏽥e(t) − (1 − _τ(t))􏽥e

T
(t − τ(t))􏽢F

k
􏽥e(t − τ(t))􏼔 􏼕 + 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q􏽥A􏽥F 􏽥ei(t)( 􏼁

+ 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
􏽘

N

j�1
􏽥ak􏽥g

k,p
ij

􏽥Γk 􏽥H 􏽥ej(t)􏼐 􏼑 + 2􏽥υp 􏽘

N

i�1
􏽥e

T
i (t) 􏽢Q 􏽘

m

k�1
􏽘

N

j�1
􏽢ak􏽥g

k,p
ij

􏽢Γk 􏽥H 􏽥ej(t − τ(t))􏼐 􏼑,

�
􏽥υp

􏽢θ
p

1 − ρ
􏽘

m

k�1
􏽢ak 􏽥e

T
(t)􏽥A􏽥e(t) − (1 − _τ(t))􏽥e

T
(t − τ(t))􏽢F

k
􏽥e(t − τ(t))􏼔 􏼕 + 2􏽥υp 􏽘

m

k�1
􏽥e

T
(t) IN ⊗ 􏽢Q􏽥A􏼐 􏼑􏽥F(􏽥e(t))􏼐

+􏽥ak􏽥e
T

(t) 􏽥G
p

k ⊗ 􏽢Q􏽥Γk􏼐 􏼑 􏽥H(􏽥e(t)) + 􏽢ak􏽥e
T
(t) 􏽥G

p

k ⊗ 􏽢Q􏽢Γk􏼐 􏼑 􏽥H(􏽥e(t − τ(t)))􏼑> 0,

(76)

where p � 1. Step 3: according to the proof of .eorem 1, we can
obtain that

L􏽢pV 􏽥e
(􏽢p)

t􏽢r1
􏼒 􏼓, t􏽢r1

, 􏽢p􏼓􏼒 􏼓≤ 􏽥υ􏽢p 􏽥e
(􏽢p)T

(t) 􏽥Θ(1)

􏽢p 􏽥e
(􏽢p)

(t) + 􏽥e
(􏽢p)T

(t − τ(t)) 􏽥Θ(2)

􏽢p 􏽥e
(􏽢p)

(t − τ(t))􏼔 􏼕, (77)

where 􏽢p � 1, 􏽢q � 2, 3, and

􏽥Θ(1)

􏽢p � L
2
‖ψ‖2 + 􏽥L

2
􏽥ψ􏽢p

�����

�����2
􏽘

m

k�1
􏽥ak

⎛⎝ ⎞⎠IN ⊗ In +
􏽢θ
􏽢p

1 − ρ
􏽘

m

k�1
􏽢ak

􏽢F
k

+ IN ⊗ ( 􏽢Q􏽥A)ψ− 1
( 􏽢Q􏽥A)

T⎡⎢⎢⎢⎢⎢⎢⎣

+ 􏽘

􏽢s

􏽢q�2

δ􏽢p􏽢q􏽥υ􏽢q
􏽥υ􏽢p

IN ⊗ 􏽢Q + 􏽘
m

k�1
􏽥ak

􏽥G
􏽢p
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓􏽥ψ− 1

􏽢p
􏽥G

􏽢p
k ⊗ 􏽢Q􏽥Γk􏼒 􏼓

T

+ 􏽘
m

k�1
􏽢ak

􏽥G
􏽢p
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓􏽢ψ− 1

􏽢p
􏽥G

􏽢p
k ⊗ 􏽢Q􏽢Γk􏼒 􏼓

T

− 2 􏽘
m

k�1
Ξk􏽢p ⊗ 􏽢Q⎤⎦,

(78)

􏽥Θ(2)

􏽢p � 􏽘
m

k�1
􏽢ak

􏽥L
2

􏽢ψ􏽢p

�����

�����2
IN ⊗ In( 􏼁 − 􏽢θ

􏽢p
􏽢F

k
􏼠 􏼡⎡⎣ ⎤⎦. (79)

Substituting the above designed Ξk1, 􏽢θ
1
, and 􏽢F

k located
in Step 1 into (78) and (79), we can make 􏽥Θ(1)

􏽢p ≤ 0 and
􏽥Θ(2)

􏽢p ≤ 0 hold. .us L􏽢pV(􏽥e(􏽢p)(t􏽢r1
), t􏽢r1

, 􏽢p)≤ 0.
Step 4: by the analysis of Remark 14, it can be obtained
that if overall network (52) can achieve synchroniza-
tion, there must be

E[LV((􏽥e(t), t, 􏽢r))] � E L􏽢pV 􏽥e
(􏽢p)

t􏽢r1
􏼒 􏼓, t􏽢r1

, 􏽢r1􏼒 􏼓􏼔

+L􏽢qV 􏽥e
(􏽢q)

t􏽢r2
􏼒 􏼓, t􏽢r2

, 􏽢r2􏼒 􏼓􏼕􏼕≤ 0.

(80)
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From Step 3, it can be derived that if
L􏽢pV(􏽥e(􏽢p)(t􏽢r1

), t􏽢r1
, 􏽢p)≤ 0, then E[L􏽢pV(􏽥e(􏽢p)(t􏽢r1

), t􏽢r1
, 􏽢r1)]≤ 0

holds. Combined with formula (17), it cannot be derived that
under E[L􏽢pV(􏽥e(􏽢p)(t􏽢r1

), t􏽢r1
, 􏽢r1)]≤ 0, then E[LV(􏽥e(t),

t, 􏽢r)]≤ 0. .is means that if E[L􏽢pV(􏽥e(􏽢p)(t􏽢r1
), t􏽢r1

, 􏽢r1)]≤ 0,
there is E[LV(􏽥e(t), t, 􏽢r)]≤ 0 or E[LV(􏽥e(t), t, 􏽢r)]> 0. In the
case of E[LV(􏽥e(t), t, 􏽢r)]≤ 0, overall network (52) can
achieve synchronization. Otherwise, overall network (52)
cannot achieve synchronization.

5. Concluding Remarks

In this paper, we mainly focus on the impact of the non-
linearity of nonlinear coupled function on finite-time syn-
chronization dynamics and synchronization convergence
time for a class of NCMWCNs with Markovian switching
and time-varying delay. In order to make the addressed
network achieve global synchronization in finite time, we
design a kind of finite-time synchronization controller. And
based on the finite-time synchronization controller, we
derive two kinds of finite-time estimation approaches and
find that the impact of synchronization dynamics on finite
time and synchronization convergence time can be reflected
by the obtained settling finite time t∗. .e proposed finite-
time estimation methods can reflect how the nonlinearity of
nonlinear coupled function impacts synchronization dy-
namics and synchronization convergence time of the
addressed network. Furthermore, we investigate the rela-
tionship between Markovian switching parameters and
synchronization problems of subsystems and the overall
system.

It is worthy to note that the obtained finite-time es-
timation methods heavily depend on the initial conditions
of the NCMWCNs with Markovian switching and time-
varying delay. .is shows that if the initial conditions of
the addressed system are not accurately obtained, the
proposed finite-time synchronization control methods are
invalid.

Moreover, in NCMWCNs (2), nonlinear coupled
function 􏽥h(·) must satisfy the Lipschitz condition.
Compared with sector-bounded nonlinearity condition,
Lipschitz condition is a special case [74]. If 􏽥h(·) satisfies
sector-bounded nonlinearity condition, how can we de-
sign finite-time and fixed-time synchronization control-
lers of NCMWCNs with Markovian switching and time-
varying delay? Furthermore, the fixed-time control can
effectively overcome the faultiness [75, 76]. .erefore, it is
necessary to explore fixed-time synchronization control
and fixed-time synchronization dynamic for some classes
of NCMWCNs with Markovian switching and time-
varying delay. How can we analyze the impact of non-
linearity of nonlinear coupled function on finite-time and
fixed-time synchronization dynamics and synchroniza-
tion convergence time? In addition, if 􏽥h(·) is a discon-
tinuous right-hand function, how can we investigate the
related finite-time and fixed-time problems of nonlinear
coupled delayed multiweighted complex networks with
Markovian switching? .ese are desirable in future
studies.
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