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With the development of science and technology, products are being updated more and more quickly. -erefore, the diffusion of
product information can make people better choose products. It is very meaningful to study the competition and diffusion of
multiple product information. In this paper, the dual product information diffusionmodel with preference was proposed based on
the mean-field equation in complex networks. -e dynamic of the model was analyzed by the analysis of Markov chains.
According to theMonte Carlo simulation mechanism, the critical threshold of product information was obtained.-e accuracy of
the theory and model results is verified by computer simulation, and the scenarios in which the two products information are
mutually promoted and mutually suppressed are simulated.

1. Introduction

With the advent of the information age, product updates are
getting faster and faster, and there are more and more
potential alternative products [1–3]. -e influences of many
factors are taken into account when people purchase
products, such as the quality, function, and age of the
product. Faced with alternative products, such as traditional
and innovative choices, individuals are often influenced by
their appetite for risk. Adventurous people like to try new
things and are more likely to choose innovative products,
while risk-averse people prefer traditional products. Infor-
mation diffusion is particularly important in the process of
selecting products.

-e study of information diffusion has a long history.
-e research on the influence of individual consciousness on
communication first appeared in the spread of rumors. In
1964, Daley et al. proposed a classical rumor diffusion model
(DK model) [4]. -en, the DK model was developed and a
mathematical model was applied by Maki and-omson and
Murray to study the rumors [5, 6]. Many scholars have
conducted research studies on information diffusion and

have proposed a lot of constructive ideas in applying the
diffusion theory to the practice [7–9].

Although the above research mainly focuses on theo-
retical analysis, complex network theory provides methods
to solve several problems, such as differences in propa-
gation rates between different individuals and differences
in propagation patterns in different topologies of social
networks, which promotes the research on rumor propa-
gation [10–12]. After studying the process of rumor
communication, Zanette first proposed a rumor propa-
gation model for small world networks by applying
complex network theory [13, 14]. In addition, some
scholars have found that when studying the randomness of
the DK model on scale-free (SF) networks, network het-
erogeneity has a certain impact on the rumor propagation
mechanism, indicating that the heterogeneity of the net-
work has a major impact on the rumor transmission
mechanism [15–22]. However, the limitations of these
studies lie in the neglect of individual behavior in com-
posite networks [23–27].

Technological advances fuel the development of new
products and services. Examples are abundant. Decades ago,
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black-and-white TVs were replaced by color TVs and now
the market share of color TVs is replaced by high-definition
TVs (HDTVs). -e same phenomenon also exists in the
cellular phone and software market. Two famous examples
are Microsoft’s Windows and Office lines of products, which
usually release new versions every few years.-e diffusion of
product information has been well studied in the prior
literature. Most of the existing multiple-generation diffusion
models are inspired by the seminal Bass model [28, 29]. Kim
et al. proposed a dynamic market growth model that re-
flected not only the proliferation of multiple-generation
products within the same product category but also the
complementarity and competitiveness of related product
categories [30]. Glassman et al. used a random Bass model to
predict product sales [31]; Bertotti and Modanese employed
the mean-field method and the formulation of the Bass
diffusion model for the description of the innovation dif-
fusion process [32].

However, there is very little research on product
information diffusion considering preference in complex
networks. By combining the information diffusion model
with the complex network theory, the mean-field theory
is extended to the dual product information diffusion
system. -rough the analysis of Markov chain, the dy-
namic of the model is established. -is paper analyzes the
diffusion of product information in complex networks
from the perspective of people’s risk appetite for prod-
ucts. -e rest of this paper is organized as follows. In
Section 2, we introduce the model of product information
diffusion with preference. In Section 3, we establish the
average field equation and analyze the dynamic model. In
Section 4, we analyze the critical threshold value of
production diffusion. In Section 5, we perform a nu-
merical simulation in a phase diagram to verify the
theoretical predictions in Section 4. Finally, we give the
conclusion in Section 6.

2. Dual Product Information Diffusion Model

2.1. Model Assumptions. It is considered that the spread of
information and the change of individual behavior are
complex socio-psychological processes. We use a network
model to formalize and simplify these propagation mech-
anisms. Each product information diffusion through the
same mechanism and the same network of contacts can be
seen in Figure 1.

People exchange product information through social
media. Individual behavior status is divided into risk
preference state and risk aversion state. We assume the
product information diffusion process according to the
following rules:

(i) Product information type: these are innovative
product 1 and traditional product 2. For example,
software product 1 is an updated version and
software product 2 is a traditional version.

(ii) Product information diffusion: the spreading of
product information satisfies the susceptible-in-
fected-susceptible (SIS) process. Here, we use
“infected” (abbreviated as “I”) to indicate that an
individual has been informed of a product, and we
use “susceptible” (abbreviated as “S”) to indicate
that an individual is not aware of product in-
formation. According to the individual’s accep-
tance of information, the population is divided
into four categories. -e individual does not know
the information of two products, which is rep-
resented by SS(k, t), the individual knows the
information of the two products, which is rep-
resented by II(k, t), and the individual does not
know about product 1 (2) information but knows
that product 2 (1) information is represented by
SI(k, t)(IS(k, t)).

(iii) Individual behavior: the node at risk preference
state is affected by all its neighbors, and the node in
the risk aversion state is only affected by the risk
preference state node in its neighbors. But beyond
that, we give a risk rate α of each node.-at is to say,
the probability that a node is in risk preference is α
and in risk aversion is 1 − α.

2.2.DynamicModel. With these assumptions, there are four
primary states: SS(k, t), II(k, t), SI(k, t), and II(k, t). As-
suming risk appetites are likely to accept new products, risk
averse is more likely to accept traditional product infor-
mation. Since the product is replaceable, because the in-
dividual’s preferences are different, the information
receiving process is also in a sequential order, so the in-
dividual cannot be directly converted into II state by the
state SS.-e transition between node states, at time step t, is
given by the outward arrow from the given state of the
node, which points to its possible successor state at time
step t + 1.

And eight substates are as follows: SS(k, t)a, SS(k, t)d,

SI(k, t)a, SI(k, t)d, IS(k, t)a, IS(k, t)d, II (k, t)a, and II(k, t)d.
We introduce an individual’s choice of product risk to
consider the influence of node activity on diffusion dy-
namics. Different investors have different attitudes towards

II(k, t)

SS(k, t) SI(k, t)

IS(k, t)

Figure 1: Dynamic process of dual product information diffusion.
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risks; we divide them into risk preference and risk aversion,
which are represented by a and d, respectively.

-e model thus contains two basic infection probabilities,
λ1 and λ2, as well as four special rates, β

m
1 , β

n
1, β

m
2 , and βn

2, one
for each product information, as we explain in detail in Table 1.

-erefore, the information diffusion model is given by
the following.

(i) Behavior state change is

SSa⟶1− α
SS

d
, SSd⟶α SSa

,

ISa⟶1− α
IS

d
, ISd⟶α ISa

,

SIa⟶1− α
SI

d
, SId⟶α SIa

,

IIa⟶1− α
II

d
, IId⟶α IIa.

(1)

(ii) -e dynamic change process of individual nodes
from SS state to IS state is given by the following:
-e risk preference state of the node is

SSa
+ IS⟶

λ1 ISa
+ IS,

SSa
+ II⟶

βm
1 λ1 ISa

+ II.
(2)

-e risk aversion state of the node is

SSd
+ ISa⟶

λ1 ISd
+ ISa

,

SSd
+ IIa⟶

βm
1 λ1 ISd

+ IIa.

(3)

(iii) -e dynamic change process of individual nodes
from SS state to SI state is given by the following.
-e risk preference state of the node is
-e risk aversion state of the node is

SSd
+ SIa⟶

λ2 SId + SIa,

SSd
+ IIa⟶

βm
2 λ2 SId + IIa.

(4)

(iv) -e dynamic change process of individual nodes
from IS state to II state is given by the following.
-e risk preference state of the node is

ISa
+ SI⟶

βn
2λ2 IIa + SI,

ISa
+ II ⟶

βm
2 β

n
2λ2 IIa + II.

(5)

-e risk aversion state of the node is

ISd
+ SIa⟶

βn
2λ2 IId + SIa,

ISd
+ IIa ⟶

βm
2 β

n
2λ2 IIa + IId.

(6)

(v) -e dynamic change process of individual nodes
from SI state to II state is given by the following.
-e risk preference state of the node is

SIa + IS⟶
βn
1λ1 IIa + IS,

SIa + II ⟶
βm
1 β

n
1λ1 IIa + II.

(7)

-e risk aversion state of the node is

SId + ISa⟶
βn
1λ1 IId + ISa

,

SId + IIa ⟶
βm
1 β

n
1λ1 IId + IIa.

(8)

(vi) -e dynamic process of product risk forgetting is as
follows:

IS(k, t)⟶
μ1 SS(k, t),

SI(k, t)⟶
μ2 SS(k, t),

II(k, t)⟶
η1μ1 SI(k, t),

II(k, t)⟶
η2μ2 IS(k, t).

(9)

We consider the baseline scenario in which the isolated
dynamics of each product information, when the second is
absent, is described by a simple SIS scheme. In addition,
SS(k, t), II(k, t), SI(k, t), and IS(k, t), respectively, repre-
sent the proportion of node individuals in states SS,II, SI,
and IS within the composed degree class (k, t) at time t.
-us, SS(k, t) + SI(k, t) + II(k, t) + IS(k, t) � 1,∀(k, t).
-en, we given that the node has degree < k> �

􏽐k,tP(k, t)k. -e P(k, t) represents the composed degree
distribution which gives the proportion of nodes having k

links in network.

Table 1: Definition of model parameters.

Parameter Definition
λ1 A node individual from susceptible product information to infected product information
λ2 A node individual from susceptible product information to infected product information
βm
1 -e information transmission rate of product 1 due to spreader also infected the information of product 2

βn
1 -e information diffusion probability of product 1 on account of the node has already obtained the information of product 2

βm
2 -e information transmission rate of product 2 due to spreader also infected the information of product 1

βn
2 -e information diffusion probability of product 2 on account of the node has already obtained the information of product 1

Set of transitions allowed in the model. -e variables [SS(k, t), SI(k, t), IS(k, t), II(k, t)] represent the densities of individuals of each type in a system with k

neighbors in the network.
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3. Mean-Field Equation Theory Analysis

In this section, we give the mean-field equation analysis of
product information diffusion. We give the total transition
probability of the node individual with state SS(k, t) as

pSS⟶SS � 1 − pSS⟶IS − pSS⟶SI. (10)

Sss(k, t + Δt) � SSS(k, t) − 1 − pSS⟶SS( 􏼁SSS(k, t)

� SSS(k, t) − pSS⟶IS + pSS⟶SI( 􏼁SSS(k, t).

(11)

Here, pSS⟶SS, pSS⟶IS, andpSS⟶SI, respectively, repre-
sent the transition probability of individual j from state
SS(k, t) to SS(k, t),IS(k, t), and SI(k, t).

Next, according to the model given in the second part,
we analyze the communication process of two kinds of
product information between node individuals.

Transition probability from SS to IS can be given by the
following equations.

Node in the risk preference state is

p
a
SS⟶ IS � kλ1ΔtθIS + kβm

1 λ1θIIΔt. (12)

Node in risk aversion state is

p
d
SS⟶ IS � kλ1ΔtαθIS + kβm

1 λ1αθIIΔt. (13)

Here, the θ parameters represent the nodes’ link prob-
ability.-at is, the probability that a given node links to an IS
node is

θIS �
􏽐k,tP(k, t)kIS
􏽐k,tP(k, t)k

�
􏽐k,tP(k, t)kIS

〈k〉
. (14)

-e probability that a given node links to an II node is

θII �
􏽐k,tP(k, t)kII
􏽐k,tP(k, t)k

�
􏽐k,tP(k, t)kII

〈k〉
. (15)

Similarly, we can get the following:

θSI �
􏽐k,tP(k, t)kSI
􏽐k,tP(k, t)k

�
􏽐k,tP(k, t)kSI

〈k〉
. (16)

-us, we can get the total transition probability from SS
to IS as follows:

pSS⟶IS � α p
a
SS⟶ IS( 􏼁 +(1 − α) p

d
SS⟶ IS􏼐 􏼑,

� 2kλ1ΔtαθIS + 2kβm
1 λ1αθIIΔt − α2kλ1ΔtθIS

− α2kβm
1 λ1ΔtθII.

(17)

Transition probability from SS to SI can be given by the
following equation.

Node in the risk preference state is

p
a
SS⟶ SI � kλ2ΔtθSI + kβm

2 λ2θIIΔt. (18)

Node in the risk aversion state is

p
d
SS⟶ SI � kλ2ΔtαθSI + kβm

2 λ2αθIIΔt. (19)

-us, we can get the total transition probability from SS
to SI as follows:

pSS⟶SI � α p
a
SS⟶ SI( 􏼁 +(1 − α) p

d
SS⟶ SI􏼐 􏼑,

� 2kλ2ΔtαθSI + 2kβm
2 λ2αθIIΔt − α2kλ2ΔtθSI

− α2kβm
2 λ2ΔtθII.

(20)

At the same time, we added the risk forgetting proba-
bility μ1 and μ2; then, we substitute the value of equation (17)
and (20) into equation (11), when Δt⟶ 0, and then, we get
the following:

zSSS(k, t)

zt
� μ1IS(k, t) + μ2SI(k, t) − k σ1( +σ2􏼁SSS(k, t).

(21)

-en, σ1 � αλ1(2 − α)(θIS + βm
1 θII) and σ2 � αλ2(2 −

α)(θSI + βm
2 θII) represent the average probability of each

node linked to obtain product information 1 and product
information 2, respectively.

Similarly, we analyze that transition probability from IS
to II can be given by the following equation.

Node in the risk preference state is

p
a
IS⟶ II � kβn

2λ2ΔtθSI + kβm
2 β

n
2λ2θIIΔt. (22)

Node in risk aversion state is

p
d
IS⟶ II � kβn

2λ2ΔtαθSI + kβm
2 β

n
2λ2αθIIΔt. (23)

So, we can get the total transition probability from IS to
II:

pIS⟶II � α p
a
IS⟶ II( 􏼁 +(1 − α) p

d
IS⟶ II􏼐 􏼑,

� 2kαβn
2λ2ΔtθSI + 2kαβm

2 β
n
2λ2θIIΔt − kβn

2λ2Δtα
2θSI

− kβm
2 β

n
2λ2α

2θIIΔt.
(24)

Adding the risk forgetting probability η1μ1 and η2, form
equations (17) and (24); meanwhile, Δt⟶ 0, and we can
get the following:

zSIS(k, t)

zt
� η2μ2II(k, t) − μ1IS(k, t) + kσ1SSS(k, t)

− kβn
2σ2SIS(k, t).

(25)

In the same way, we can get the remaining two
equations:
zSSI(k, t)

zt
� η1μ1II(k, t) − μ2SI(k, t) + kσ2SSS(k, t) − kβn

1σ1SSI(k, t),

(26)

zSII(k, t)

zt
� kβn

2σ2SIS(k, t) + kβn
1σ1SSI(k, t) − η1μ1II(k, t)

− η2μ2II(k, t).

(27)

From equations (25)–(27), we get the following:
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SI � − (kσ1 − η1μ1 − η2μ2( 􏼁(kβn
2σ2 − kσ2 + η1μ1( 􏼁 − kσ2 − η1μ1 − η2μ2( 􏼁 − kσ2

· − η1μ1 − η2μ2( 􏼁 − kσ1− kβn
2σ2 − μ1( 􏼁 − η1μ1 − η2μ2( 􏼁 − kβn

2σ2 − kσ1 + η2μ2( 􏼁( 􏼁 )/
− kβn

2σ2 − kσ2 + η1μ1( 􏼁 − kσ2 − η1μ1 − η2μ2( 􏼁( 􏼁( t − nkqσ1h − η1μ1 − η2μ2( 􏼁( −

kβn
1σ1 − kσ2 − μ2( 􏼁 − η1μ1 − η2μ2( 􏼁 ) − kσ1 − kβn

2σ2 − μ1( 􏼁 − η1μ1 − η2μ2( 􏼁 − kβn
2σ2 − kσ1+η2μ2( 􏼁( 􏼁 ),

IS � − − k
2βn

1σ
2
1η2μ2 − k

2βn
1σ1σ2η2μ2 − kσ1η1μ1μ2 − kσ1η2μ

2
2􏼐 􏼑/

k
3βn

1β
n
2σ

2
1σ2 + k

3βn
1β

n
2σ1σ

2
2 + k

2βn
1σ1σ2μ1 + k

2βn
2σ1σ2η1μ1 + k

2βn
2σ

2
2η1μ1􏼐

+ kσ2η1μ
2
1 + k

2βn
2σ1σ2μ2 + k

2βn
1σ

2
1η2μ2 + k

2βn
1σ1σ2η2μ2 + kσ1η1μ1μ2 + kβn

2σ2η1μ1
+ kβn

1σ1η2μ1μ2 + kσ2η2μ1μ2 + η1μ
2
1μ2 + kσ1η2μ

2
2 + kβn

2σ2η2μ
2
2 + η2μ1μ

2
2 ),

II � − − k
3βn

1β
n
2σ

2
1σ2 − k

3βn
1β

n
2σ1σ

2
2 − k

2βn
1σ1σ2μ1 − k

2βn
2σ1σ2μ2􏼐 􏼑/

k
3βn

1β
n
2σ

2
1σ2 + k

3βn
1β

n
2σ1σ

2
2 + k

2βn
1σ1σ2μ1 + k

2βn
2σ1σ2η1μ1 + k

2βn
2σ

2
2η1μ1􏼐

+ kσ2η1μ
2
1 + k

2βn
2σ1σ2μ2 + k

2βn
1σ

2
1η2μ2 + k

2βn
1σ1σ2η2μ2 + kσ1η1μ1μ2

+ kβn
2σ2η1μ1μ2 + kβn

1σ1η2μ1μ2 + kσ2η2μ2μ1 + η1μ
2
1μ2 + kσ1η2μ

2
2 + η2μ1μ

2
2 ).

(28)

Only three of these four equations are linearly inde-
pendent for each composed connectivity class (k, t). Con-
sidering this, we next analyze the time evolution of the vector
[SI(k, t), IS(k, t), SS(k, t)] to have II(k, t) � 1 − SI(k, t)−

IS(k, t) − SS(k, t).

4. Information Transmission
Threshold Analysis

In order to analyze the critical threshold of the system, we
need to find a value to satisfy the steady state
[SI(k, t), IS(k, t), II(k, t)] � (0, 0, 0)∀∈ (k, t). In other
words, all individuals in the system have access to both types
of information. -erefore, we focus to consider the addi-
tional parameters 1 and 2, which are the other variables of
linear combination. -erefore, it is possible to obtain self-
consistent equations for σ1 and σ2 as

σ1 � f1 σ1, σ2( 􏼁,

� kαλ1(2 − α) θIS + βm
1 θII( 􏼁,

�
kαλ1(2 − α)

〈k〉
􏽘
k,t

P(k, t)k IS k, t, σ1, σ2( 􏼁 + βm
1 II k, t, σ1, σ2( 􏼁􏼂 􏼃.

(29)

σ2 � f2 σ1, σ2( 􏼁,

� kαλ2(2 − α) θSI + βm
2 θII( 􏼁,

�
kαλ2(2 − α)

〈k〉
􏽘
k,t

P(k, t)k SI k, t, σ1, σ2( 􏼁 + βm
2 II k, t, σ1, σ2( 􏼁􏼂 􏼃.

(30)

-en, σ1 � f1(σ1, σ2) or σ2 � f1(σ1, σ2) indicates that
product 1 or product 2 information diffusion has reached a
stable state. Given the symmetry of equations (29) and (30),
we only need to study equation σ1 � f1(σ1, σ2). In fact,
(z2f1(σ1, σ2)/zσ21)< 0 always exists. So, we must verify that
[z2f1(σ1, σ2)/zσ21]σ1�0> 1. After some algebraic calculations,
this condition produces the following expression:

λ1 􏽐
k,t

P(k, t)k2k2σ22β
n
2β

n
1β

m
1 + kσ2 η2μ2β

n
1 + βm

1 βn
1μ1 + βn

2μ2( 􏼁􏼂 􏼃 + μ2 η1μ1 + η2μ2( 􏼁/k2σ22β
n
2η1 + kσ2 η1μ1 + η2μ2 + βn

2μ1μ2( 􏼁 + μ2 η1μ1 + η2μ2( 􏼁

μ1〈k〉
> 1.

(31)

-en, we get the critical threshold of product risk
diffusion:

λc
1 σ2( 􏼁 �

μ1〈k〉
􏽐
k,t

P(k, t)k2k2σ22β
n
2β

n
1β

m
1 + kσ2 η2μ2β

n
1 + βm

1 βn
1μ1 + βn

2μ2( 􏼁􏼂 􏼃 + μ2 η1μ1 + η2μ2( 􏼁/k2σ22β
n
2η1 + kσ2 η1μ1 + η2μ2 + βn

2μ1μ2( 􏼁 + μ2 η1μ1 + η2μ2( 􏼁.

(32)

From formula 32, we can see that the threshold of
product 1 information transmission is affected by product 2

information. If we set σ2 � 0, we get a result
λc
1(σ2 � 0) � (μ1〈k〉/〈k2〉), namely, the critical threshold
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under the diffusion of single product information. -us,
λc
1(σ2 � 0) is denoted as the main threshold, and more
generally, what we call a second-order threshold, i.e.,
λc
1(σ2)(with σ2 > 0).

5. Numerical Simulations

In this part, we simulate the model with a computer, show
the simulation results with a phase diagram, and verify the
theoretical analysis.-eMonte Carlo simulationmechanism
was designed in the simulation process, that is, only one state
can be changed in each diffusion process, and no two state
changes can occur in a time interval. Product 1 represents
the new product, and product 2 represents the old product.
For example, Microsoft product 1 represents the new version
and Microsoft product 2 represents the old version.

On the one hand, in order to avoid direct double in-
fection from the SS state to the II state, it is assumed that if
the number of product 1 information carried by the
neighbor node of an individual who has no knowledge of
either product information is larger than the number of
product 2 information carried by the neighbor node, it will
be easier for the individual to obtain product 1 information
rather than product 2 information. Just as individuals do not
have any product information, if there are more neighbor
nodes carrying new product information than neighbor

nodes carrying old product information, then it will be easier
to obtain information about innovative products, and vice
versa. On the other hand, in order to avoid the individual
directly returning to the SS state from the II state, it is
assumed that only one product information can be forgotten
at each time interval. -e forgetting of the product infor-
mation depends on the forgetting probability (η1μ1/(η1μ1 +

η2μ2)) value of the product 1 information and the forgetting
probability (1 − η1μ1/(η1μ1 + η2μ2)) worth of the product 2
information.

After the simulation parameter adjustment, we find that
the change of the simulation result mainly depends on the
size relationship between the coefficients β,η, and “1,” which
is independent of the specific value between
βm
1 , βm

2 , βn
1, β

n
2, η1, and η2. -erefore, there are mainly two

opposite simulation scenarios: first, when β< 1 and η> 1,
they are called mutual damage scenarios; second, when β> 1
and η< 1, they are called mutual promotion scenarios. In the
first mutual damage scenario, β< 1 indicates that infor-
mation diffusion is mutually suppressed. For example, it is
more difficult for an individual who has acquired product 1
information to acquire information of product 2 than an
individual who does not acquire product 1 information. In
addition, η> 1 indicates that product information forgetting
promotes each other. For example, the forgetting time of the
individual who has obtained the product 2 information is
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Figure 2: Product information diffusion mutual suppressed process.
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shortened due to the information of the product 1. We have
combined these two factors and found that the information
diffusion of product 2 in the system will promote the dif-
fusion of product 1 information. At the same time, due to
interactions, the role of product information diffusion is the
same. Finally, for the secondmutual promotion scenario, the
diffusion and forgetting of product information are com-
pletely opposite to the first case; that is, the diffusion of one
product information promotes the diffusion of another
product information.

Figure 2 describes the scenario where product infor-
mation diffusion is mutually suppressed. -e first line in the
figure shows the final diffusion of the product 2 information
system.-e second line in the figure shows the final diffusion
of the product 1 information system. We set the simulation
parameters to βm

1 � βm
2 � βn

1 � βn
2 � 0.8η1 � η2 � 1.2, and

μ1 � μ2 � 0.775.-e number of network nodes is 5000, and a
new node is added with 4 edges each time to generate a scale-
free network.-e probability of introducing product 1 and 2
information individuals initially is IS � SI � 0.3 and for (a)
and (d), the activity rate is α � 1;for (b) and (e), the activity
rate is α � 0.5 and for (c) and (f), the activity rate is α � 0.3
-e solid and dashed lines in the figure are critical thresholds
analyzed according to model theory, where the solid line
represents the primary threshold and the dashed line rep-
resents the second threshold. In this scenario, the primary

threshold is always below the second threshold, namely,
λc
1(σ2)> λ1 > λ

c
1(0) and λc

2(σ1)> λ2 > λ
c
2(0). As the system

activity is reduced, the ability of product information dif-
fusion in the system is also decreasing, and information
diffusion is becoming less and less obvious.

Figure 3 describes the scenarios in which product in-
formation diffusion is mutually reinforcing. -e simulation
network and graphical representation are the same as in
Figure 1. -e simulation parameters are set to
βm
1 � βm

2 � βn
1 � βn

2 � 1.1η1 � η2 � 1.1, and μ1 � μ2 � 0.775.
-e probability of introducing product 1 and 2 information
individuals initially is IS � SI � 0.3, and for (a) and (d), the
activity rate is α� 1; for (b) and (e), the activity rate is
α � 0.5; (c) and (f), the activity rate is α� 0.3. -e solid and
dashed lines in the figure are critical thresholds analyzed
according to model theory, where the solid line represents
the primary threshold that λc

1(0) and λc
2(0) and the dashed

line represents the second threshold that λc
1(σ2) and λc

1(σ1).
It can be seen from Figure 3 that the critical threshold
analyzed by the theory agrees with the boundary line in the
simulated image. Moreover, in the case where product in-
formation diffusion is mutually promoted, the second
threshold is below the main threshold, namely,
λc
1(σ2)< λ1 < λ

c
1(0) and λc

2(σ1)< λ2 < λ
c
2(0). At the same

time, with the decrease of activity, the critical thresholds λc
1

and λc
2 of product information diffusion are also decreasing,
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Figure 3: Product information diffusion mutual reinforcing process.
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which indicates that reducing the activity of individuals has a
certain control effect on information diffusion.

Compared with previous studies, this paper considers
the mutual influence of information between products and
also considers the individual’s forgetting of product infor-
mation over time. -e numerical simulation of this part is
consistent with the theoretical analysis, indicating the ac-
curacy of the model. In the field of research product in-
formation, a new perspective has been opened to help
operators better understand how product information is
transmitted among consumers.

6. Conclusion

In this paper, the theory of complex network is used to study
the competitive information of products. -e mean-field
equation describing the dynamic diffusion process is
established by SIS diffusion mechanism and Monte Carlo
simulation. -e risk preference is introduced into the in-
formation diffusion and competition of products, and the
diffusion mechanism of two kinds of product information is
analyzed. In contrast to previous studies, the authors take
into account the mutual influence of information between
products and the individual’s forgetting of information
about the product over time.-e research results shown that
when an individual has a state of risk preference at a certain
time, it will interact with all neighboring nodes. However, if
someone is in the state of risk aversion at some time, it can
only interact with the neighbor node in risk preference. In
the first mutual damage scenario, the information diffusion
is suppressed. In the second mutually reinforcing scenario,
the diffusion of one product information promotes the
diffusion of the other. After considering these two factors,
the SIS diffusion mechanism is used to analyze and calculate
the diffusion dynamics process and critical threshold. -en,
through computer numerical simulation, the correctness of
the theoretical analysis is verified, which has strong prac-
ticability. -e interesting results can be used to predict the
state of the market for goods or technologies.
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