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,e brain is a complex and dynamic system, consisting of interacting sets and the temporal evolution of these sets. Electro-
encephalogram (EEG) recordings of brain activity play a vital role to decode the cognitive process of human beings in learning
research and application areas. In the real world, people react to stimuli differently, and the duration of brain activities varies
between individuals. ,erefore, the length of EEG recordings in trials gathered in the experiment is variable. However, current
approaches either fix the length of EEG recordings in each trial which would lose information hidden in the data or use the sliding
window which would consume large computation on overlapped parts of slices. In this paper, we propose TOO (Traverse Only
Once), a new approach for processing variable-length EEG trial data. TOO is a convolutional quorum voting approach that breaks
the fixed structure of the model through convolutional implementation of sliding windows and the replacement of the fully
connected layer by the 1× 1 convolutional layer. Each output cell generated from 1× 1 convolutional layer corresponds to each
slice created by a sliding time window, which reflects changes in cognitive states. ,en, TOO employs quorum voting on output
cells and determines the cognitive state representing the entire single trial. Our approach provides an adaptive model for trials of
different lengths with traversing EEG data of each trial only once to recognize cognitive states. We design and implement a
cognitive experiment and obtain EEG data. Using the data collecting from this experiment, we conducted an evaluation to
compare TOO with a state-of-art sliding window end-to-end approach. ,e results show that TOO yields a good accuracy
(83.58%) at the trial level with a much lower computation (11.16%). It also has the potential to be used in variable signal processing
in other application areas.

1. Introduction

,e human brain system is a complex and dynamic system,
which is difficult to unravel and understand [1]. How to
decode brain activity is always a challenge for researchers.
For understanding the brain without invading it, electro-
encephalogram (EEG) [2], functional near-infrared spec-
troscopy (fNIRS) [3], and functional magnetic resonance
imaging (fMRI) [4] have been used commonly to measure
brain activity with their own benefits. Using EEG, the
electrical activity of the brain is recorded and monitored.
And fNIRS monitors the brain through hemodynamic re-
sponses associated with neuron behavior. Both of them have
a good temporal resolution and have been used to decode the

states of the brain over time. Complexity driven method-
ology provides a powerful approach to understand the
dynamic connections of different brain regions [5] and to
explore different kinds of brain activities. As a measure with
high spatial resolution, fMRI measures brain activity by
detecting changes associated with blood flow and provides
data sources for such methodology.

Over the last two decades, EEG has become a low cost
and feasible technology to dig into brain activities, which is
used for diagnosing disease [6], analyzing emotion [7], and
controlling specific machines [8]. To process EEG data and
decode the patterns hidden inside the brain, machine
learning techniques have been increasingly used and played
a vital role in EEG-based research and application areas [9].
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Currently, there are two types of methods for classifying
EEG data, that is, the conventional type and the end-to-end
type. In the conventional type, EEG data are filtered in the
time, frequency, or spatial domain for extracting features.
,e goal of these features is for building a classifier and a
model. Among the methods in the conventional type,
support vector machine (SVM) has been used widely in EEG
signal processing [10, 11], because of a good performance on
EEG data, the amount of which is relatively small compared
with the image or audio datasets. In 1994, Tsoi et al. [12]
attempted to use artificial neural networks (ANNs) to find
people suffering from psychiatric disorders based on EEG. In
recent years, deep learning networks have appeared to be
effective for EEG signal classification [13], given the suffi-
cient training data available. ,e end-to-end approach
builds a classifier through the raw EEG data without any
handcrafted features. It replaces multiple steps with just a
single neural network, which is essential for decoding the
brain but not clear how to select features.

Learning is one of the most important brain activities for
human. Recognizing cognitive states is the prerequisite of
learning intervention, offering an opportunity to improve
learning experience and outcomes. ,erefore, to understand
and recognize the process of human cognitive states in
learning is an attractive and significant challenge for re-
searchers. Compared with facial expression and behaviors,
physiological measures can directly reflect the intrinsic
mental states of human beings which involve neural ac-
tivities of the brain. As one of the physiological measures,
EEG has a good temporal resolution and could reflect the
changes in emotions over time.

To understand and recognize the process of human
cognitive states, one key issue is supposed to be addressed. It
is how to process the input and output data in variable
length. In a real learning environment, test item differences
and individual differences result in input in variable length.
First, in terms of test items, the learner reacts differently,
showing differences in thinking and answering time. Second,
due to individual differences, learners have different
thinking times when facing the same test item, and it is also
reflected in the difference in answering time. ,erefore, the
length of EEG recordings in trials gathered in the experiment
is usually variable.

,e conventional classifiers require input data in fixed
length, which makes some current approaches attempt to
limit all trials of EEG recordings in a fixed time. Forcing
input length to be the same is not the best solution, which
would result in the loss of information hidden in the data.
Some approaches [14–18] employ the fixed-length sliding
time window to traverse different trials of EEG recordings in
different lengths. For example, in [14], Xu et al. proposed the
application of MW-TFA techniques applying a set of sliding
windows instead of a single window to process EEG data.
,e results demonstrated MW-TFA techniques as a useful
tool to estimate the TF distribution. In [11], Liu et al.
proposed a fractal dimension-based algorithm of quantifi-
cation of basic emotions, leveraging the sliding window.,e
benefit of the usage of the sliding window is that this method
enables real-time processing. To recognize a discrete

emotion in real time, Liu et al. [17] used a short-time Fourier
transform (STFT) with a sliding time window approach
for feature extraction and normalization based on time-
frequency (TF) analysis. ,e results showed an advantage
over the existing state-of-the-art real-time emotion recog-
nition systems from EEG signals in terms of accuracy. For
emotion classification, Wang et al. [18] used a time window
without overlapping to process EEG data and tested the
effect of window size. However, the sliding time window
method that processes overlapping parts between slices con-
sumes large computation on repeatedly calculating overlapped
parts of slices. A time window without overlapping may miss
information hidden in EEG data.

To achieve a low computation but still a good perfor-
mance when processing EEG data in variable length, we
propose TOO (Traverse Only Once), a new approach for
processing variable-length EEG trial data in this paper. TOO
is a convolutional quorum voting approach that takes into
account the input data in variable length and reduces the
unnecessary computation. First, the main idea of TOO is to
build a pure convolutional model to recognize two classes of
cognitive states by traversing the EEG trial only once. To
avoid the computation on overlapped parts of data slices, the
model is built by a convolution with rectangle size kernels,
which is a convolutional implementation of the sliding time
windows. Second, to process input and output data in
variable length, we adopt the 1× 1 convolutional layer to
replace the fully connected layer. Each output cell generated
from the 1× 1 convolutional layer corresponds to each slice
created by a sliding time window, which reflects changes in
cognitive states. ,ird, we use quorum voting to process
output cells, which determine the cognitive state repre-
senting the entire single trial.

TOO has several benefits over existing machine learning
approaches for processing EEG data. First, TOO is able to
process variable-length EEG trial data with a convolutional
implementation of the sliding time windows. It provides an
adaptive model for trials of different lengths. Second, it
traverses only once the entire EEG trial data to predict class
probabilities and supports end-to-end learning, i.e., learning
from the raw data of channels as input directly. Due to
limitations in the study of human brains and cognitive
activities, it is unclear which underlying essence from EEG
data should be extracted as features for a specific cognitive
state classification using conventional methods. However,
end-to-end learning is able to map raw data directly to
objectives without handcrafted features. ,ird, through
evaluation, TOO has been proved to generate classifications
with good performance and low floating-point operations
(FLOPs) in computation. It avoids highly duplicated com-
putation, unlike sliding time window techniques. Finally,
TOO obtains not only the local classification results
reflecting the changes in the cognitive states but also the class
probability representing the state of the entire trial with
quorum voting technique.

To verify this approach, we implement an experiment, in
which we use Raven’s progressivematrices (RPMs) [19] to elicit
two cognitive states and collect EEG data.,e results show that
TOO is effective and requires low computation. Compared
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with a state-of-art sliding window end-to-end approach, TOO
yields good accuracy (83.58%) with a much lower FLOPs in
computation (11.16%). It also has the potential to be used in
variable signal processing in other application areas.

2. TheConvolutionalQuorumVotingApproach

Inspired by YOLO [20], we propose a convolutional quorum
voting approach that traverses entire EEG trial data only
once to predict class probabilities. As shown in Figure 1, the
whole recognition approach has three following main parts:
convolutional implementation of the sliding time windows,
1× 1 convolutional layer, and quorum voting.

2.1. Convolutional Implementation of the Sliding Time
Windows. ,e first part of the TOO is a convolutional
implementation of the sliding time windows. We use con-
volution to compute the entire EEG trial input in one go to
take over the sliding time windows, which is convolutional
implementation of the sliding time windows. Figure 2(a)
shows a sliding time window approach that segments the
entire EEG trial data into several windows and computes each
window of the input one at a time. Compared to sliding time
window approaches, convolutional implementation shares
mutual computations of overlapping so to avoid duplicated
computation. Convolution, in deep learning, is considered as a
cross-correlation. It performs an element-wise product with
the “window” (or the kernel), followed by summing up the
results into a single output. To produce the next results, it
slides the window through the input and performs the same
operations. Convolution is shift-invariant and linear, and all
weights of the “window” can be shared.

When implementing convolution in a sliding way (see
Figure 2(b)), the difficulty is how to ensure that the output
size equals the number of the sliding window (see the bottom
of Figure 2). For convolution, the size of the output of one
convolutional layer depends on the size of the filter and
stride. ,e EEG input, collecting from multiple channels, in
our example, i.e., 8 channels, looks like an extreme long
narrow band, in which the length (sampling rate multiples
one trial time) is much more than the width (numbers of
channels). Its size differs from common deep learning tasks,
like image processing. ,us, we design a rectangle con-
volutional kernel in TOO, instead of typical square kernel, to
meet the requirements from this feature of EEG data. ,e
structure of model for EEG data can be customized
according to the width and length of the kernel and stride.

,e output of each layer depends on the kernel size and
stride. ,rough adjusting the number of layers, kernel size,
and stride, we can build networks that produce desirable
output dimension (see the bottom of Figure 2).,e output of
each layer is expressed as

Ow �
Iw − Kw + 2 × P( 

Ks

+ 1,

Oh �
Ih − Kh + 2 × P( 

Ks

+ 1,

(1)

where Ow and Oh represent the width and height of output,
respectively; Iw and Ih represent the width and height of
input, respectively; Kw and Kh represent the width and
height of the kernel, respectively; P is the padding size; and
Ks is the kernel stride.

2.2. Converting Fully Connected (FC) Layer to 1× 1
Convolutional Layer. ,e second part of the TOO is the
1× 1 convolutional layer. ,e typical convolutional neural
networks contain two parts: feature extraction and classi-
fication. ,e convolutional layers serve feature extraction
from data. After the output of the last convolutional layer is
being flattened, the fully connected (FC) layer is added to
classify data into different categories. ,is structure makes
that the whole net can be trained from end to end by
backpropagation. However, it has a birth defect that the size
of output and input must be fixed due to the FC layer. ,e
FC layer requires every neuron to connect to all neurons on
the other side (see Figure 3(a)). If the size of output or input
varies, the net has to be changed at the same time.

In mathematics, the 1× 1 convolutional layer equals a
fully connected layer. Convolutional kernels, which share
parameters in the whole neuron layer, can be connected to a
local region. ,erefore, the functional form between two
layers is identical, which is not changed by the structure of
the net (see Figure 3(b)).

To meet the requirement of processing variable length of
input and output, we use 1× 1 convolution to replace the FC
layer in the end part of the networks in TOO (see Figure 3).
,e main difference between FC layer and 1× 1 convolu-
tional layer is that the former requires a fixed-size input,
while the latter can process input and output in variable sizes
with the shared same parameters (weights).

In TOO, the output size depends on the length of EEG
data of a trial, the length of the sliding time window, and the
stride of the sliding time window. Each output cell generated
from the last layer represents one cognitive state which is
equal to the classification result created by a single sliding
window. ,e number of final output cells is expressed as

N �
Lt − Lw

S
+ 1, (2)

where N represents the number of final output cells, Lt is the
length of a trial, Lw is the length of a sliding window, and S is
the stride of the sliding time window.

In TOO, the structure of models is dynamic adaptive, but
the convolutional kernel size is immutable. TOO model
design enables end-to-end training for every EEG data in
different lengths simultaneously.

2.3. Quorum Voting. ,e last part of the TOO is quorum
voting. With the quorum voting part, TOO provides the
opportunities to obtain a global result as well as a local result.
In some cases, it is important to know not only a global
cognitive state but also the changes in such a cognitive state
for many researchers, especially psychologists. Recognizing
the changes in cognitive states during the learning process
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helps researchers investigate cognitive states at a fine-
grained level. In other cases, researchers are also very
concerned with the cognitive state in a relatively long period.

Using a fully convolutional network can obtain a main
cognitive state as a global result for each trial based on a fully
convolution network directly. However, this result only
represents an emotional state over a period of time and
cannot reflect the subtle changes during this period.
,erefore, as shown in Figure 1, we integrate a quorum
voting part in TOO. Convolutional implementation of the
sliding time windows and 1× 1 convolutional layer can
produce output cells that have the same number as the
output generated by a sliding time window. ,ese output
cells are essential for cognitive investigation, reflecting the
changes in the brain state over time. ,en, the third part,
quorum voting, works on the output cells and produces a
cognitive state representing the entire data, which helps
researchers explore the main cognitive state for a long pe-
riod, at least an entire trial.

Properly handling a possible tie is the prerequisite of
victory voting. In this paper, we only take into account the
binary classification. To avoid a tie, the total number of
output cells should be odd. For our case, we trim the last
extra small segments away from the entire data and keep an
integral number of seconds. Since most artefacts are caused

by interaction at the end of each trial, this trimming strategy
minimizes the loss of EEG data while achieving the total
number of output cells to be odd. For example, as shown in
Figure 4, the length of EEG in a trial is 6.12 seconds. ,e
length of the sliding window is 4 seconds, and the stride is 0.5
seconds. So the number of output cells calculated by our
model is 5, with disposing of 0.12 seconds.

3. Experiment, Evaluation, and Results

To distinguish whether the cognitive state of the learner’s
answering question correctly is a guessing state or an un-
derstanding state, we designed and implemented an ex-
periment (see Figure 5(a)). In this experiment, we collected
EEG data, time stamps for segmenting data into trials, self-
assessment of subjects, and subjects’ answers for Raven’s
progressive matrices (RPMs) [19]. We used the EEG trial
data collected from this experiment to verify our TOO
approach.

3.1. Experiment

3.1.1. Subjects. Twenty-three subjects ranging from 20 to 47
years (mean� 24.48 and SD� 6.36), including 11 females
and 12 males, were involved in this experiment. All subjects
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Figure 1: ,e TOO approach: (a) convolutional implementation of sliding time windows; (b) 1× 1 convolutional layer; (c) quorum voting.

(a) (b)

Figure 2: From sliding time window approach to convolutional implementation of the sliding time windows. (a) ,e EEG data are
segmented into three pieces by sliding time windows.,ese pieces are predicted with class probabilities, respectively. (b),e same EEG data
are processed by a pure convolution and obtain directly three output cells which are corresponding to three pieces generated by sliding time
window in (a).
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had normal or corrected vision and were right-handed. Most
of the subjects (60.87%) had college-level education. All
subjects were either studying or working in the university.
All subjects have read and signed the ultimate consent form
in a single access type version. All data can be shared
publicly. Subjects were compensated for their time.

3.1.2. Stimulus Materials. For the experiment, we selected
Raven’s progressive matrices (RPMs) as the materials to
evoke two cognitive states in logic reasoning, including
“guessing” and “understanding”. RPM is a nonverbal in-
telligence test that contains visual geometric design items,
the scores of which would not be influenced by culture and
knowledge. ,e task of each test item is to pick up the
missing one from six or eight choices based on pattern
inference. Choosing an answer is based on the keyboard
instead of the mouse to minimize the artifacts caused by
electromyography. We screened 48 items of this test with
different levels of difficulty. ,e item difficulty index ranges
from 0 to 0.83 with an average of 0.27, which ensured that

the “guessing” and “understanding” states could be elicited.
Overall, each subject completed 48 trials of logic reasoning.

,e EEG trial data were labeled as “guessing” when the
subject answered the RPM item correctly and reported a
“confused” state during the answering process. When the
subject answered the RPM item correctly and did not feel
confused, the trial data were labeled as “understanding”. ,e
incorrect answers were not included in this dataset. To
guarantee the quality of ground truth, we combined item
answers with subjects’ self-reported data to label EEG signals
for classification.

3.1.3. Procedure. In the beginning, the tester briefly
explained this experiment and asked for the permission of
using the recorded EEG data for the research purpose. Every
subject read and signed the consent form.,en, each subject
had a 150-second of brain resting with watching 10 scenery
and had RPM with watching and responding to 48 con-
secutive test items coded by E-Prime 2.0 [21], wearing EEG
headset (see Figure 5(b)). Finally, each subject filled out a

(a)

∗

∗

(b)

Figure 3: Converting FC layer to 1× 1 convolutional layer. (a) FC layer. (b) 1× 1 convolutional layer.

Length of the sliding time window = 4s Stride = 0.5s

�is trial time = 6.12s

0.12s trimmed

�e next trial

6s

1

1 2 43 5

2 3 4 5

Figure 4: Trimming strategy in quorum voting to avoid a tie.

Complexity 5



customized questionnaire to self-report their states after
finishing watching. In this process, EEG data were recorded
through a laptop, and the stimuli were presented via another
computer, with the trigger synchronizing time stamps.

3.1.4. Acquisition Device. We collected EEG data, time
stamps for segmenting data into trials, self-assessment of
subjects, and subjects’ answers for RPM. We employed the
OpenBCI Cyton board with the 3D printed headset to ac-
quire EEG data. ,is headset features 8 channels (Fp1, Fp2,
C3, C4, T5, T6, O1, and O2) plus 2 references (A1 and A2)
based on the 10–20 format (see Figure 5(c)), with the
sampling rate of 250. We integrated a trigger function and
hardware into the system to help split each subject’s data by
trial. ,e time stamps for segmenting data into trials were
obtained here. ,e stimuli were coded by E-Prime 2.0.
,rough E-Prime, we gathered subjects’ answers for RPM.
After the stage of elicitation, self-assessment reports were
filled out by subjects. To make the label accurately reflect the
cognitive states, data of self-assessment and answers for
RPM were used.

3.2. Evaluation. We test with different approaches and
compare TOO approach with STQV approach in the work of
Xu et al. [22]. ,e classification tasks are towards two
categories: “guessing” and “understanding.”

3.2.1. Model Design. STQV is based on the sliding time
window approach, which aims at processing variable EEG
data. To make comparison possible, we used the TOO to
build a model, which had the same number of layers and the
number of output cells as STQV. We present the details of
the model in Figure 6.,is TOOmodel was composed of six

convolutional layers, a 1× 1 convolutions layer, and a
quorum voting layer. ,e input width was the number of
electrodes, and the input length was the answering time of
subject in each trial. ,e output size corresponded to the
number of sliding time windows.

3.2.2. EEG Dataset and Training. ,e EEG data that we
collected had the following properties. First, EEG data of each
trial varied in length due to individual differences and dif-
ferences in the difficulty of the test items. Second, the labels of
these data were two classes. We created a dataset to store EEG
data. We had 1104 trials (23 × 48) of EEG data in total, and
EEG data for each trial contained eight channels of data. Only
294 of 1104 trials were used, which were related to the
classification of “guessing” and “understanding”. ,erefore,
294 trials with the labels “guessing” or “understanding” were
filtered to evaluate TOO. Among them, the maximum value
of the length of trials was 15 s, the minimum was 5 s, the
average was 10.57 s, and the standard deviation was 5.86. 4194
pieces were generated by the sliding time window in STQV.
,e output size was determined by the number of sliding time
windows, as shown in Figure 2. ,e length of the sliding
window is 4 seconds, and the stride is 0.5 seconds. Finally,
4194 output cells were generated by the TOO model.

In this work, we split the data into two sets, that is,
training set and test set. ,en, we used this train/test split to
evaluate the performance of the final model. ,e training set
randomly collected EEG data from 16 subjects, and the test
set used the data of 7 subjects. ,e learning rate was set to
1.5 × 10− 3. Binary cross-entropy was used to compute the
loss of model, while the stochastic gradient descent was
adopted as the optimization algorithm to reduce loss. Early
stopping was used as the method of regularization to avoid
overfitting when training model with iterations.

Elicitation
experiment

Data
collection

Cognitive 
recognition

Classifiers

Master

Guess

Fp1 Fp2

C4C3

T5 T6

O2O1

(a)

(b)

(c)

Figure 5: (a) ,e flow of EEG data collection and the recognition of “guessing” and “understanding”. (b) ,e open BCI acquisition device
and 8 channel positions. (c) One of the subjects was watching the stimulus and selecting items in the experiment. At the same time, EEG data
were collected and visualized on the screen of another computer.
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3.3. Results. To test TOO, we calculated the accuracy and
computation of the models built by TOO and another ap-
proach that used a sliding time window to process the data
and then compared these results.

3.3.1. Accuracy. First, we compared the performance of
TOO and a sliding time-window with quorum-based voting
(STQV) approach [22]. STQV is an approach to process the
input in variable length. It segments EEG data of variable
length into fixed-length pieces, then predicts the class of each
piece, and determines the class of each question through
voting from pieces. In [22], the STQV approach was
implemented with the end-to-end ConvNets and filter bank

common spatial pattern (FBCSP) combining the vector
machine (SVM), linear discriminant analysis (LDA), and
Näıve Bayesian Parzen window (NBPW) classification al-
gorithms. It employed the time sliding window to process
variable data. EEG trial data were first segmented into a
number of 4-second time window with a 3.5-second over-
lapping between two successive time windows. ,e stride is
0.5 s, and each slice is 4 s.,e slices were used as the input for
predicting class probabilities by the end-to-end convolution.

Wemade the comparison not only at the output cell level
but also at the trial level. As shown in Table 1, the accuracy of
TOO achieves 86.00% at the level of output cells and 83.58%
at the level of trial, performing as good as the end-to-end
ConvNets with STQV approach.

EEG data of trial in variable length N
um

be
r o

f
ele

ct
ro

de
s

Conv. kernel
2 × 2 × 50

Conv. kernel
2 × 2 × 400

Conv. kernel
4 × 1 × 50

Conv. kernel
8 × 1 × 20

Conv. kernel
1 × 1 × 10

Conv. kernel
1 × 1 × 2

Figure 6: Six convolutional layers of the TOO model structure.

Table 1: ,e accuracy of TOO and STQV.

Accuracy
STQV

TOO
FBCSP + SVM FBCSP+LDA FBCSP+NBPW ConvNets

Output cells 81.22% 82.04% 82.04% 86.26% 86.00%
Trial 83.71% 82.64% 80.65% 83.58% 83.58%
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Figure 7: (a) ,e FLOPs charts of trials; (b) the FLOPs charts of subjects.
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3.3.2. Computation. Besides accuracy, we calculated the
floating point operations (FLOPs) [23], using the following
function for convolutional kernels:

FLOPs � 2 × H × W × Cin × Kh × Kw + 1(  × Cout, (3)

where H, W, and Cin are the height, width, and the number
of channels of the input feature map, respectively; Kh and
Kw are the kernel width and kernel length; and Cout is the
number of output channels.

Different from the sliding time window approach, TOO
traverses the entire EEG data of a trial for training and
testing; therefore, it reduces duplicated computation greatly.
As shown in Table 1, ConvNets show the best performance
compared with FBCSP+ SVM, FBCSP+LDA, and
FBCSP+NBPW. Both ConvNets and TOO are based on
convolutional neural networks and use quorum voting. In
this work, we compared TOO and STQVwith ConvNets (for
which we used STQV in short in the next paragraph) and
calculated FLOPs for both of them.

As shown in Figure 7, it is obvious that TOO outper-
forms STQV greatly in computation. It is easy to find that
TOO model costs much less computation with good ac-
curacy. ,e bars indicate the FLOPs of every trial in
Figure 7(a), of which the red represents the TOO and the
blue represents the STQV. ,e lines in Figure 7(b) describe
the FLOPs of every subject. TOO yields a smaller amount
computed than STQV for all trials and all subjects. ,e
FLOPs of all trials on average for STQV is 4.0959 × 107,
while for TOO is just 0.4573 × 107. In this test, TOO uses
only 11.16% FLOPs of STQV to achieve the same good
performance.

4. Conclusion

In this paper, we propose a convolutional quorum voting
approach named TOO to recognize two-class cognitive
states with EEG trial data. TOO builds a dynamic adaptive
model to process input and output EEG signals in variable
length. Due to its nature pure convolution operation, it
products classification results by traversing the entire input
data only once instead of the sliding time window ap-
proaches, which compute overlapped data repeatedly. TOO
extremely reduces computation. Results from the evaluation
show that TOO achieves an accuracy of 83.58% of classi-
fication but costs only around one-tenth of the computation
of the state-of-art sliding time window approaches. ,is
research sheds new light on EEG data processing with
convolution.

Furthermore, the TOO model has great potential ability
to deal with data in variable length in other domains, like
speech-based emotion recognition, physiological signal
recognition, and sensor-based activity recognition.
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