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Road link speed is one of the important indicators for traffic states. In order to incorporate the spatiotemporal dynamics and
correlation characteristics of road links into speed prediction, this paper proposes a method based on LDA and GCN. First, we
construct a trajectory dataset from map-matched GPS location data of taxis. .en, we use the LDA algorithm to extract the
semantic function vectors of urban zones and quantify the spatial dynamic characteristics of road links based on taxi trajectories.
Finally, we add semantic function vectors to the dataset and train a graph convolutional network to learn the spatial and temporal
dependencies of road links..e learned model is used to predict the future speed of road links..e proposed method is compared
with six baseline models on the same dataset generated by GPS equipped on taxis in Shenzhen, China, and the results show that
our method has better prediction performance when semantic zoning information is added. Both composite and single-valued
semantic zoning information can improve the performance of graph convolutional networks by 6.46% and 8.35%, respectively,
while the baseline machine learningmodels work only for single-valued semantic zoning information on the experimental dataset.

1. Introduction

With the increasing number of vehicles, traffic congestion in
cities is getting more and more serious. Obtaining real-time
and future road states is essential for optimizing driver
routes, reducing road congestion and developing sustainable
urban transport policies [1, 2]. Road states are usually
measured by traffic indexes such as volume, speed, and
occupancy [2, 3]. With the support of communication and
computing technologies, these indexes can be calculated
from monitoring data obtained from sensors placed in the
road network. Particularly, taxis with location-positioning
capabilities are considered to be flexible probes that can
obtain real-time, continuous information on vehicle
movements, trip origins and destinations, routes, and pas-
senger status. Studies have also shown that the analysis and
prediction of urban road states using location data and
artificial intelligence methods can be effective in relieving
road traffic stress [4–6].

.e layout of urban functional zones is the root cause for
the generation of traffic demand, the uneven distribution of
traffic flow, and the dynamic characteristics of road network.
Traditional methods of urban functional zoning use land-
uses, satellite images, and questionnaire surveys to statically
delineate urban functional areas by clustering or the es-
tablishment of indicator systems. However, the static
functional delineation cannot reflect the travel patterns
exhibited by human activities [7, 8] and their impact on the
formation of regional functions. In recent years, trajectory
data such as taxi and bus location data have been gradually
applied to the classification of land use and the identification
of functional zones in road networks to help city managers
better understand the relationship between urban functional
zones and travelers’ activities. On the other hand, the traffic
flow between road segments is spatially correlated [9]. Not
only do the traffic flows between upstream and downstream
road segments influence each other, but there is also a traffic
transfer relationship between multiple road intersections.
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Studies have shown that the traffic state at one intersection is
directly related to the other 100 intersections [10]. However,
the use of trajectory data to identify urban functional zones
and predict road link speeds is independent of each other.
.e information on the functional structure of road network
is for planning purposes only and is not integrated with
speed predictions for road links. In addition, correlations
between road segments and intersections were tested only at
small spatial scales. .erefore, it would be valuable to in-
clude these two factors in road speed prediction.

As socioeconomic activities develop and change, an
urban area usually contains multiple functions simulta-
neously. .is in turn affects the temporal and spatial
characteristics of each road. But in the traditional method of
road network subdivision, each road belongs to only one
functional zone [11, 12]. .e results of such singular de-
lineation cannot reflect the dynamic nature of the network
zones and have poor relevance to human activities. Recently,
some studies [13–16] have proposed multifunctional
quantification methods based on textual data mining, such
as the Latent Dirichlet Allocation (LDA) model [17]. .e
results of the multifunctional quantitative calculations are
expressed as vectors, which are then clustered to form the
final functional zoning of road network [18, 19]. Further-
more, urban transportation networks are typically complex
networks characterized by small-world, community struc-
tures. Current machine learning algorithms for complex
networks have become a research hotspot. Several graph
representation methods [20, 21] and graph neural networks
(GNNs) [22] have been introduced in complex network
modeling. In the past years, data-driven machine learning
methods were commonly used to predict the state of the
road network, such as support vector machines [23] and
neural networks [24]. Recently, there are published litera-
tures based on GNNs in the field of road state prediction,
such as Multirange Attentive Bicomponent GCN (MRA-
BGCN) [25], Multiweighted Traffic Graph Convolutional
Network (MW-TGC) [26], DDP-GCN [27], and T-GCN
[28]. In these methods, only primitive information in taxi
trajectories and structural information in road network were
used, such as speed, travel time, traveled distance, speed
limit, and flow direction. It was expected that through the
analysis of a large amount of data, efficient models could be
learned autonomously. However, less research has been
devoted to integrating the spatial semantic zoning infor-
mation with predictive models and examining the validity of
zoning information on the intended models.

For the reasons mentioned above, this paper aims to
integrate the semantic zoning information with graph
convolutional network for road link speed prediction.
Firstly, LDA algorithm was used to obtain the stable se-
mantic zoning information of taxi travel network over a
certain period of time, and then the extracted functional
vectors were added to the training process of spatial-tem-
poral graph convolutional network and baseline machine
learning models. Finally, we compared and analyzed the
performance of functional vectors in each model. .e main
contributions of this paper are as follows: (1) due to the
difficulty in reflecting the temporal and spatial dynamic

dependencies of each road link by assigning it to a single
zone, we obtained the composite functional vectors of each
road link using semantic zoning based on the text of the taxi
trajectories. (2) We proposed the use of spatiotemporal
graph convolutional network to fuse information on se-
mantic zoning, historical speed, and network structure. (3)
With the proposed method, the large-scale spatial correla-
tion of road links was integrated into the predictive model
using LDA-generated semantic vectors; the local spatial
correlation and the temporal dependencies of road links
were learned by spatial–temporal graph convolutional
network.

.is paper is organized as follows. We briefly describe
the works related to road speed prediction in Section 2. In
Section 3, the detailed steps of the proposed method are
explained, and theoretical basis of each algorithm used is
introduced. .e results of comparison experiments with six
baseline algorithms are presented in Section 4 and discussed
in Section 5. .e conclusion and future work are reported in
Section 6.

2. Literature Review

.e functional layout and structure of the city is the root
cause of the generation of traffic demand and the imbalanced
distribution of traffic flows in the taxi trip network. .is
unevenness in traffic flow is often reflected in the spatial and
temporal differences in location. For example, traffic de-
mand in commercial areas is high and road congestion is
frequent. For electric vehicles, longer charging times tend to
cause congestion near charging stations [29]. In contrast, the
road network in cultural district tends to experience traffic
peaks during commuting and school hours. Identifying
zoning and cluster characteristics of taxi travel networks has
been the focus of research in urban planning, transportation
network planning, and spatiotemporal trajectory mining for
taxi operations and management. .ere are three types of
methods to characterize the zoning or clustering of taxi
travel networks. .e first method is to detect hotspots and
identify clustering patterns using a clustering algorithm
based on taxi location points. .e second approach is to
divide the urban space into regular grids of a certain size
[8, 30] or traffic zones [31] and then perform density analysis
and clustering pattern discovery in the grids or zones. .e
last one is the semantic analysis method, which extracts
trajectories from taxi location points according to spatial and
temporal order and then combines them with textual in-
formation such as point of interests (POIs) data [32] and
street names to identify the semantic functional areas of the
travel network [13–16]. Compared to the previous two
approaches, the semantic-based approach makes the func-
tional zoning of the travel network more interpretable. In
semantic analysis methods, LDA [17] is a widely used
method that first appeared in the field of natural language
processing (NLP) for semantic topic recognition. .e cur-
rent researches have been extended to the field of trajectory
data mining with good results [14, 16]. When analyzing taxi
trajectory data using LDA algorithm, the “word-document-
topic” relationship in text mining is referenced to extract the
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road network semantic zones based on “road-trajectory-
topic zone.”

Traffic state estimation refers to the analysis of typical
quantities, such as traffic speed, travel time, flow volume,
and density. Traditional traffic prediction algorithms include
support vector machine (SVM) [23], support vector re-
gression (SVR) [2], ARIMA, and neural networks [24]. .e
early speed collecting approaches primarily adopt loop
sensors, radar, cameras, and other sensors, which are mostly
used in road traffic monitoring and autonomous vehicle
state detection [33]. Compared to the above sensors, the GPS
equipped in taxis has a wider coverage and is more useful for
recording the driving speed of each road segment. For ex-
ample, Shan [3] proposed a multivariate linear regression
model based on taxi location data to calculate the travel
speed of each road segment by fusing information from the
previous interval time and adjacent road segments. Oshyani
[34] used an estimator based on indirect inference to predict
traffic speed. Shan [35] tested three widely used GPS-based
traffic speed estimation methods. Deng [36] introduced a
path inference process for congested link speeds from low
sampling frequency taxi GPS data. Satrinia [2] predicted the
traffic speed using support vector regression. Yao [23]
proposed a support vector machine model with spa-
tial–temporal parameters for short-term traffic speed pre-
diction, includingmultitime-step traffic prediction of several
road links, and compared the proposed model with ANN,
k-NN, historical data-based model, and moving average
data-based model. .e abovementioned methods in big data
generally lack longevity and scalability due to insufficient
robustness of the underlying theory. Despite the good
performance of the SVM and ANN, they can only provide
deterministic point prediction and failed to provide the
corresponding uncertainty quantification. In recent years,
there have been some state-of-the-art prediction methods
that can measure uncertainty in transportation field [37–39],
but these methods have not yet been used for road state
prediction.

In recent years, research trend in the field of traffic
prediction has been towards deep learning and combina-
torial models. For example, Ma [40] proposed a convolu-
tional neural network (CNN) to learn traffic from images
and predict large-scale, network-wide traffic speed. Liu [41]
introduced an attention CNN to predict traffic speed. Kim
[42] employed the capsule network on loop sensor data for
traffic speed prediction. As an emerging framework, GNNs
have been widely promoted and extended in traffic pre-
diction. Zhao [28] presented a temporal graph convolutional
network (T-GCN) that combines GCN with gated recursive
unit (GRU) for traffic prediction. Guo [43] proposed at-
tention-based spatial-temporal GCN for traffic flow fore-
casting. Lu [44] designed a graph Long Short-TermMemory
(LSTM) framework to capture spatial-temporal represen-
tations in road speed prediction. GCNs can be seen as a
special case of GNNs [22], whose spectral domain approach
aims to introduce the convolutional theory of signal analysis
into irregular graphs to extract spatial features similar to
those of CNNs on images. GNNs can also implement
graphical feature extraction through message passing.

However, it is prone to smoothing problems [22]. Com-
bining the spatial zoning characteristics of taxi travel net-
works at different scales with road speed prediction is
beneficial to the optimization and integration of model
design. Following this idea, Huang [45] used spectral
clustering to classify the traffic conditions into several
clusters and implemented predictions for the clusters with
less variability of traffic conditions within each cluster. In
order to be able to add semantic information to the pre-
dictive model and to learn the spatiotemporal dependence
between road segment links, we integrated two state-of-the-
art algorithms. We used LDA algorithm for semantic zones
detection for road links at large scale and adopted a GCN
algorithm for speed prediction that considers spa-
tial–temporal dependencies at local scale.

3. Data and Methods

3.1. Data. .e data used in this paper are taxi trajectories
and road network. Taxi data was collected in Shenzhen,
China, from May 1 to May 15, 2015. .e raw taxi data was
sampled at intervals of about 30 seconds. .e road network
data was downloaded from OpenStreetMap [46] and
manually checked and edited. A sample of taxi data and the
road network are shown in Figure 1. Since the taxi data
contains some useless information and some errors, we first
removed the useless fields from the daily data and saved the
following fields: taxi ID, latitude and longitude, timestamp,
speed, and operator status. After removing the outliers, the
final dataset contains a total of 16,828 taxi trajectories.

3.2.Methods. From the existing literature [14], the temporal
and spatial dynamic characteristics of road links can be
quantified by trajectory semantic mining methods and
represented in the form of functional vectors. Additionally,
the characteristics of road links are correlated to their
historical states and are influenced by the surrounding road
links. In order to incorporate the spatiotemporal dynamic
and correlation characteristics of road links into speed
prediction, this paper proposes a speed prediction approach
for road links based on the integration of LDA and GCN and
validates the feasibility of this approach and the effectiveness
of the functional vectors of road links through comparative
experiments. .e detailed flowchart is illustrated in Figure 2.

.e proposed approach has five key steps (shown in
Figure 2), which are trajectories extraction, map matching,
semantic zones detection, semantic zones merging, road link
speed prediction, and comparison experiments. .e first
three steps are used to prepare the experimental data and to
discover the semantic zones in taxi travel network. .e
extracted results are feature vectors of the semantic zones. In
order to verify the effectiveness of zoning information in
road link speed prediction, we merged the composite se-
mantic zones using modularity [47] in the fourth step and
generated two types of features: single-valued zoning fea-
tures and composite zoning features. In the fifth step, six
baseline models were trained using the two types of features
and the historical average road link speed, respectively.
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Finally, both types of features were added to the prediction
process and their effectiveness was compared with six
baseline models.

Step 1. Extracting trajectories from taxi location data.
.e trajectories in taxi raw data are composed of a

collection of discrete points. We extracted the trajectories
based on carrier states at the time of taxi positioning. .e
location where the carrier state changes from 0 to 1 was
defined as the origin, and the location where the carrier state
changes from 1 to 0 was defined as the destination (see
Figure 3). Continuous location points between origin and
destination were used as a trajectory. To avoid the impact of
searching for passengers on road link speed calculations, we
ignored the locations of taxis without passengers.

Step 2. Map matching.
In this paper, the ST-Matching algorithm [48] was used

to match all trajectories to the road network. .is algorithm
takes into account the spatial geometry and topology of the
road network as well as the time/velocity constraints of the
trajectories. It can handle low-sample-rate localization data
within 3 to 5minutes with excellent matching accuracy and
is suitable for the low-frequency data in this paper. .e GPS
geographic coordinates are converted to planar coordinates,
and OpenStreetMap and PostGIS [49] were used to extract

the source and target nodes of the road network during the
matching process to search for the shortest path. Figure 4(a)
shows the prematching trajectory points and Figure 4(b)
shows the postmatching trajectory points. It can be seen that
all the trajectory points have been correctly aligned to the
road network.

Step 3. Semantic zoning based on LDA algorithm.
In order to obtain composite features for semantic

zones, LDA algorithm was adopted in this paper. LDA is a
semantic topic model proposed by Blei [17] and enables
modeling of intertextual semantic topics based on text
corpus. In the results obtained by LDA, a topic contains
the probability distribution of each word. For each
document, it can have multiple topics. When describing
the distribution of document topics, a document can be
represented as a composite vector of topics, or a topic
with the highest probability is used as the topic of a
document. For taxi trajectory topic discovery, the former
can be used for subsequent machine learning tasks, and
the latter can be used to visualize zoning results. .e LDA
algorithm is defined as follows.

LDA (as shown in Figure 5) assumes that the a priori
distribution of the document topic and word is Dirichlet
distribution; then for any document d and any topic k, LDA
has the following definitions:

Taxi ID

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

Longitude

114.0313
114.0313
114.0231
113.9988
113.9681
113.9642

Latitude

22.67733
22.67733
22.68513
22.69002
22.6866

22.685617

Time

2015-05-01 00:05:29
2015-05-01 00:08:29
2015-05-01 00:12:46
2015-05-01 00:14:38
2015-05-01 00:18:12
2015-05-01 00:18:30

Speed

22
22
64
77
68
78

Direction

7
217
283
291
256
254

Status

0
1
1
1
1
1

(a)

Guangming

Bao'an

Longhua PingshanLonggang

Dapeng
Yantian

Luohu

FutianNanshan

(b)

Figure 1: .e sample data and road network in Shenzhen. (a) Sample location data. (b) Road network in Shenzhen.
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θd � Dirichlet( α→),

βk � Dirichlet( η→),

Ζd,n � Multinomial θd( ,

Wd,n � Multinomial βZdn
 ,

(1)

θd is the probability distribution of each implied topic in the
dth document. α is hyperparameter of distribution and a
K-dimensional vector. βk is the probability distribution of
the kth topic feature word. η is hyperparameter of distri-
bution and is a V-dimensional vector, and V represents the
number of all words in the lexicon. Ζd,n is the probability
distribution for the nth topic in document d. Wd,n is the
probability distribution for the nth word in the dth
document.

.e LDA model is generated as follows:

(1) For each topic k, calculation Perplexity, and JS

Divergence, choose the best number (K) of topic.
(2) For each topic k ∈ [1, K], draw βk � Dirichlet( η→).
(3) For each document d ∈ [1, D] ,draw

θd � Dirichlet( α→).
(4) .en for each word n in document d, draw the topic

of the nth word:Zd,n � Multinomial(θd) and the nth
word:Wd,n � Multinomial(βZdn

).

When training the LDA model, a common evaluation
metric is confusion (as shown in equation (2)) [17]. Smaller

perplexity means that the model is a better predictor for new
text. Also in this paper, the Jensen–Shannon Divergence (JS
Divergence) [50], a method for calculating topics similarity,
is used together with perplexity to determine the optimal K.

Perplexity is defined below:

perplexity(T) � exp −


N
m−1 logp Wm( 


N
m−1 Dm

 , (2)

where
N
m�1 Dm is the sum of all words in test dataset.T is the

test dataset with N documents, Dm represents the number of
words in document m, and Wm is the words in document m.

Jensen–Shannon Divergence is defined as follows:

TraJS(topic) �


V
m−1 DJS topicm, c(  

2

V
, (3)

where V is the number of topics, DJS is the JS Divergence of
topics, TraJS(topic) is the variance of topics, topicm is the
mth topic, and c is the mean of probability distribution (c)

of topic-word.
.e final optimal number of topics is determined by

perplexity TraJS, which is calculated as follows:

perplexity TraJS �
perplexi Dtest( 

TraJS Ttest( 
, (4)

where Dtest is test dataset.
On the basis of the above definition, we created a topic

model for taxi trajectories based on LDA algorithm. When

Preparing experimental data

Trajectories extraction

Map matching

Semantic zones detection

Road links speed prediction

Composite semantic zones based
on T-GCN

Comparison experiments

Semantic zones merging

Single-valued semantic zones
based on T-GCN

Figure 2: .e flowchart of proposed approach.

A trajectory

Get on Get offCarry passengers

State = 1

State = 0

Figure 3: Taxi trajectories extraction.
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building the model, we treated a trajectory as a “document”
and each road link number in a trajectory as a “word.” All
trajectories constitute a word corpus. .en, we used equa-
tion (4) to select the optimal number of topics and used the
LDAmodel to extract the topics in trajectories. .e obtained
topics consist of several road links. Also, each link belongs to
multiple traffic topics, which is similar to a document that
can contain multiple topics.

Step 4. Merging semantic zones.
After specifying the number of topics, the probability

distribution of each road link in each semantic zone is
generated by LDA algorithm. .e topic for each road link
is a vector of probability distribution. .is means that
each road link will belong to multiple semantic zones, i.e.,
composite zones. Visualization methods in existing
studies will select the topic with the highest probability as
the final semantic zone to which a road link belongs. In
other words, composite zones will be converted to single-
valued zones. However, the resulting zones will be very
fragmented. A semantic zone may consist of many small
fragments that are scattered in taxi travel network.
.erefore, in order to reduce the dispersion at a specific
number of zones and to perform comparative experi-
ments between feature vectors of composite and single-
valued semantic zones, we used modularity [47] to merge
the small fragments and maximize the modularity of road
network subdivision. An idealized community division
has the highest similarity between nodes within a com-
munity and the lowest similarity of nodes between
communities. Modularity is commonly used to measure
the merits of community subdivision results of complex
networks. .e higher the quality of the community di-
vision, the greater the modularity Q.

.e modularity is calculated as follows:

Q �
1
2m


vw

Avw −
kvkw

2m
 δ cv, cw( . (5)

By using equation (5), we can convert the composite
zones obtained by LDA into single-valued zones with larger
modularity. In subsequent comparative experiments, we can
simultaneously evaluate the effectiveness of composite and
single-valued zones in the prediction of road link speed.

Step 5. Building predicting model for road links.
.e state of each road link is influenced by the upstream

and downstream links. .erefore, incorporating the com-
plex structure and historical state of the road network into
model will be beneficial to improve the accuracy of speed
prediction for road links and also enables to predict multiple
road links at once. GNNs are this kind of methods for
learning on a non-Euclidean structure. GNNs introduce the
convolution theory from the Euclidean data to the non-
Euclidean data to solve the spatial dependencies. In order to
address both spatial and temporal dependencies, Zhao [28]
proposed the temporal graph convolutional network (T-
GCN). .e temporal dependencies are obtained by adding
the GRU structure to GCN model. In order to compare and
analyze the effectiveness of single-valued zoning and com-
posite zoning while maintaining the network topology, we
chose to incorporate the results of LDA into T-GCN in the
proposed approach. T-GCN is defined as follows:

ut � σ Wu f A, Xt( , ht−1  + bu( ,

rt � σ Wr f A, Xt( , ht−1  + br( ,

ct � tanh Wc f A, Xt( , rt × ht−1(   + bc( ,

ht � ut ∗ ht−1 + 1 − ut( ∗ ct,

(6)

where ut and rt are update gate and reset gate at time t. .ey
are used to control the forgetfulness of state information
from previous period. ct is memory contents stored at time
t. ht is output state at time t and ht−1 indicates the output of
time t − 1. A represents the adjacency matrix of road net-
work. Xt is feature matrix of each road link at time t.

.e training process of T-GCN model is as follows (as
shown in Figure 6). Firstly, we calculate the ground truth
average speed of each road link for a certain period based on
map-matched trajectories. .en, we build training and test

(a) (b)

Figure 4: Map matching results. (a) Prematch trajectory points. (b) Postmatch trajectory.

α ηβkθd Zd,n Wd,n
N K

Figure 5: Graphical representation of LDA [17].
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dataset based on historical data of each road link and extract
its semantic zoning information of taxi travel network. Next,
we combine with adjacency matrix of road network for
T-GCN training. Finally, the speed prediction for each road
link is output and compared to the true value to optimize the
model.

4. Experiments and Results

4.1. 1e Results of Semantic Zoning for Taxi Travel Network

4.1.1. Optimal Parameter Selection. LDA model has the
following parameters that should be set up firstly: (1)
Dirichlet distribution parameter α for trajectory-traffic
topic; (2) Dirichlet distribution parameter β for traffic topic-
road link; and (3) the number K of traffic topics.

α value affects topics distribution for each trajectory, and
β value affects road link distribution for each traffic topic.
.e greater the two values, the more concentrated the
distribution. In order to obtain optimal parameters, the
values of α ∈ [0.001, 0.01, 0.05, 0.1, 0.25, 0.5] and
β ∈ [0.001, 0.01, 0.01, 0.05, 0.1, 0.25] were compared. We
found that traffic topic model was better differentiated when
α � 0.25 and β � 0.01.

Another important parameter is the number of topics K. If
K is too large, the topic division is very detailed, and the
likelihood of similarity between topics will increase, while a
lower value of K may be not able to distinguish topics well.
.erefore, tests are needed to determine the number of themes
K. In the previous section, we have determined the optimal
value of α and β. With α � 0.25 and β � 0.01, we conducted
tests by taking the number of topics from 2 to 100 at an interval
of 1. Perplexity (equation (2)), Jensen–Shannon Divergence
(equation (3)), and the joint index of perplexity and Jensen–
Shannon Divergence (equation (4)) were calculated..e results
are shown in Figures 7(a)–7(c).

In Figure 7(a), the perplexity value of LDA decreases as
the topic number K increases. After K � 18, the perplexity
value begins to decrease slowly. In Figure 7(b), as the
K-values increase, the value of Jensen–Shannon Divergence
starts to increase slowly between 15 and 20 and gradually
flattens out. In Figure 7(c), the trend is consistent
(Figure 7(a)), which starts to slowly decline after K � 18. In
order to effectively characterize the traffic flow clustering
pattern of travel network topics in study area, K � 18 was

chosen as the topic numbers for LDA algorithm in the
experiment.

4.1.2. 1e Semantic Zones of Taxi Travel Network. After
semantic zoning and semantic zones merging based on
modularity, stable semantic zones of travel network was
generated within 15 days using the constructed trajectories
dataset, where the LDA was modeled using the Gensim [51]
library. .e result semantic zones were visualized using
ArcGIS [52] software. We classified zoning information into
two categories, namely, composite semantic zones generated
by LDA algorithm and single-valued semantic zones merged
from LDA results based on modularity. In the former, each
road link contains probability belonging to 18 semantic
zones. In the latter, each road link belongs only to the se-
mantic zone with maximum probability.

Figure 8 shows the map of composite semantic zones. We
used different colors to represent zones. Line widths were set by
the probability of a road link belonging to one of the 18 zones.
As can be seen from the figure, the distribution of semantic
zones is clear across map, but the number of semantic zones
varies from district to district (as shown in Table 1). Nanshan,
Futian, and Luohu districts have the highest number of topics,
and only Longhua district matches the semantic zone nicely.
Additionally, we found that traffic topic zones are correlated
with land use and are prone to form semantic zones near train
stations, airports, residential areas, and commercial areas. On
arterial roads, it is also easy to form semantic zones, such as
Beihuan Road and Binhai Road. Since the probability that a
road belongs to each of the 18 zones is difficult to visualize, some
zones have nested road links that belong to other zones (as
shown in the upper right corner of Figure 8).

Figure 9 shows the map of single-valued semantic zones.
We classified each road link to one semantic zone with max-
imum probability and used the same color style as Figure 8. As
the map depicts, all semantic zones are rendered clearly and
overlap disappears. .e nested road links between different
semantic zones are reduced.

4.2. 1e Comparison of Prediction Models

4.2.1. Data Preparation and Experimental Setup

(1) Data Preparation. .ere are 44,609 links in the Shenzhen
road network, which has a complex network structure. We

C1 C1 C1

C1 C1 C1

C1 C1 C1

C2 C2 C2

C2 C2 C2

C3C1 X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

X21 X22 X23 X24 X25

C3C3

C3C3

C3C3

C3C3

T-GCN

Z1 Z2 Z3 Z4 Z5

Z6 Z7 Z8 Z9 Z10

Z11 Z12 Z13 Z14 Z15

Z16 Z17 Z18 Z19 Z20

Z21 Z22 Z23 Z24 Z25

Semantic zoning Input layer Output layer Road link speed

Y1

Y2

Yn

....

Figure 6: .e training process of T-GCN.
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collected data starting and ending from May 1 to May 15,
2015. Due to the short period of data collection, some of the
road links lack taxi track data. As shown in Figure 9, the
small amount of data leads to many road links that are not
explicitly in a topic. .erefore, in order to compare the
effectiveness of single-valued semantic features and com-
posite semantic features in the speed prediction of road links
and to examine the learning ability of T-GCN on the spa-
tiotemporal dependencies on road links, an experimental
area was selected as an example in this paper. .e experi-
mental area contains multiple semantic zones, including
composite zoning and single-valued zoning information,
which are suitable for the research objectives of this paper.
Also, the amount of data in the experimental area is suffi-
cient to make the prediction model fit better. After data
processing, the experiment area was selected from composite
zoning map and single-valued zoning map extracted by LDA
(as shown in the upper right of Figure 10). .ere were 766
road links in the research area. .e data of road link speeds
at 7:00–23:00 was selected. We adopted 15minutes as the
time interval, the previous four periods were selected as
historical speed features, and the speed of the next one
period was used as the prediction value. Also, in the

comparison experiment, semantic zoning information will
be added to the features. In the splitting of datasets, 80% of
all data were used as training sets and 20% as test sets.

(2) Algorithm Selection and Parameter Setting. In this study,
Vector Machine Regression (SVR), Random Forest Re-
gression (RFR), Gradient Boost Regression (GBDT),
XGBoost, Decision Tree Regression (DTR), and T-GCN
were selected for comparative analysis on the impact of
semantic zones in road link speed prediction. .e first five
baseline algorithms are from the Scikit-learn package which
is a machine learning library for Python. We used Grid-
SearchCV in Scikit-learn to automatically find the optimal
parameters for these five algorithms..e parameters of these
five machine learning algorithms are shown in Table 2. .e
hyperparameters of T-GCN model mainly include batch
size, learning rate, training epochs, and number of hidden
units. Based on the experience of Zhao [28] and after re-
peated tests, learn rate was set to 0.01, and catch size was set
to 32, and the number of hidden units was set to [8, 16, 32,
64, 100]. We found that T-GCN model has the highest
prediction accuracy when the number of hidden layers is 64.
In this experiment, Adam optimizer was used for loss
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Figure 7: .e perplexity (a), Jensen–Shannon Divergence (b), and their joint indexes (c) under different topic numbers.
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calculation and the training loss remained stable when the
number of iteration epochs was 100.

(3) Evaluation Metrics. In order to accurately evaluate the
performance of prediction models in road link speeds, the
following metrics were used in this study. .ese metrics
include Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Coefficient of Determination (R2), and Ac-
curacy (Acc). RMSE and MAE were used to calculate the
error of the model; the smaller the value, the better the
model. R2 was used to test the model’s predictive ability on
the test dataset; the larger the value, the better the model.

(4) Results. .e results were compared and analyzed in three
scenarios. .e first was only use of raw data to train models
and evaluation results; the second was modeled under
single-valued zones; and the third was done under com-
posite zones..e accuracy of eachmodel is shown in Table 3.

From Table 3, we can see that the RMSE error of T-GCN
decreases gradually with the addition of semantic infor-
mation (from single-valued zoning to composite zoning),
while the RMSE error of the other five machine learning

models increases when composite zoning is used instead.
For example, the RMSE error of the T-GCN model is about
52.03% smaller than that of SVR model when composite
zoning is used. .e trend for R2 is the same as for RMSE
error. .e ability of the predicted results of T-GCN to
represent actual data increases gradually with the addition of
semantic zoning information, while the other five models
perform poorly under composite zoning. For example, the
R2 of T-GCN is improved about 8.94% compared to that of
SVR with the addition of composite partition information.
Based on the raw data, the machine learning algorithms were
able to achieve average accuracy 83.68%, while the accuracy
of T-GCN was only 73.63%. .is may be due to the small
amount of available data. T-GCN still needs more data to
improve its ability to learn spatial dependencies. After
adding semantic zoning information, the accuracy of ma-
chine learning algorithms was improved by an average of
8.76%. But it showed different performance in composite
and single-valued zones, and the accuracy of each machine
learning model becomes poor under composite zones.
T-GCN showed improved performance with both com-
posite and single-valued zoning information, with a 6.46%
improvement in the single-valued zones over raw data only
and a 1.88% improvement in the composite zones compared
with nonoverlapping zoning information.

5. Discussion

(1) LDA gives the distribution probabilities of semantic
zones for each road link. It is a common practice in
visualization to select the topic with highest prob-
ability as the final semantic zones for road links. In
this experiment, we extracted semantic zoning
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Figure 8: Composite semantic zones of taxi travel network in Shenzhen.

Table 1: Number of semantic zones in each district.

Districts Number of topic zones
Nanshan 5
Luohu 4
Futian 8
Bao’an 4
Longgang 5
Longhua 3
Yantian 1
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information according to this idea and used mod-
ularity to merge the scattered, nested road links
belonging to other zones. We can see that the
resulting map becomes tidier and clearer (shown in
Figure 9). However, from the predicting results, the
accuracy with composite zoning information in
T-GCN is improved as compared to the single-
valued zones. In addition, LDA is a community
discovery algorithm with semantic information,
which is different from the traditional division
methods targeting on topological relationships for
obtaining single-valued communities such as GN

[53], FN [54], and FUA [55]. Traffic flow of road link
is influenced by dynamic changes at previous times
and surrounding road links..e road links will fall in
different semantic zones at different times. .e
probability that one road link belongs to more than
one semantic zone in LDA depicts the spa-
tial–temporal ambiguity. .erefore, the composite
zones for road links are closer to the actual spatial
and temporal characteristics of the transportation
network. Ding [56] found that communities iden-
tified using topic analysis are more interrelated than
communities detected by topological methods, so it
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Figure 10: .e experiment area.
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would be useful to apply composite zones which are
better at characterizing the taxi travel network
structure to predict the average speed of road links.

(2) Data augmentation in traffic prediction can be
classified into two types: one is to take external in-
formation, for example, adding information such as
weather and holidays to prediction models. .e
other is to build features from road network topology
and historical time series data or augment data using
neural networks [57]. .is paper adopted the second
approach to augment data for traffic prediction. We
used LDA to extract spatial–temporal semantic in-
formation from trajectory data and concatenate it
with historical average road link speeds to solve the
problem of single data source in prediction models.
Experiments on predicting average road link speeds
were performed on the proposed approach and six
baseline models (RFR, DTR, SVR, GDBT, XGBoost,
and T-GCN)..e experimental results of eachmodel
showed that the performance improvement by data
augmentation varied obviously. In the experiment,
the improvement in prediction accuracy after adding

semantic zoning information using T-GCN model is
obviously better than other traditional machine
learning methods. However, single-valued and
composite semantic zoning information can have
different effects when added to machine learning
algorithms. Adding composite zoning information
makes the machine learning algorithms worse. .e
reason is that each road link may not belong to all
semantic zones, and the probability of some road
links is zero, so a large number of zero values affect
the model fitting. In addition, although the accuracy
of machine learning algorithms is higher than
T-GCN, but traditional machine learning algorithms
such as SVM can only predict the results of one road
each time, which is inefficient in practical applica-
tions, while T-GCN could predict the average speed
of road links all at once. Moreover, as the research on
GCNs is deepened, the combination of semantic
information with spatial and temporal relationships
learned automatically from GCN may improve the
prediction performance. It should be noted that the
objective of this paper is to verify the validity of

Table 2: Parameter settings.

Model Parameter

XGBoost learning_rate max_depth n_estimators Subsample Gamma
0.01 12 100 0.58 0.50

GBDT learning_rate max_depth n_estimators Subsample min_samples_split
0.1 5 40 0.5 10

DTR max_depth min_samples_split min_samples_leaf
5 50 6

RFR n_estimators max_depth min_samples_leaf min_samples_split
100 5 10 50

SVR Kernel C Gamma
Linear 5 0.001

Table 3: Accuracy evaluation of each algorithm.

Model Experiment RMSE MAE R2 ACC
XGBoost Raw data 6.161418 4.229177 0.837552 0.841541

LDA+XGBoost Single-valued zoning 4.541672 3.112215 0.883153 0.911551
Composite zoning 10.154425 7.539924 0.737299 0.553254

GBDT Raw data 6.440737 4.388805 0.822487 0.834358

LDA+GBDT Single-valued zoning 4.412345 3.064314 0.885717 0.915466
Composite zoning 10.375719 7.732406 0.731502 0.533065

DTR Raw data 6.461293 4.509432 0.821353 0.833829

LDA+DTR Single-valued zoning 4.244633 2.992957 0.890745 0.922742
Composite zoning 10.301833 7.658928 0.733414 0.539691

RFR Raw data 6.278449 4.281197 0.831324 0.838532

LDA+RFR Single-valued zoning 4.112489 2.829821 0.894147 0.927477
Composite zoning 10.250276 7.613335 0.734748 0.544287

SVR Raw data 6.369968 4.186199 0.826567 0.836183

LDA+ SVR Single-valued zoning 3.583199 2.317352 0.907773 0.945007
Composite zoning 10.856324 7.991883 0.719071 0.489392

T-GCN Raw data 6.149417 7.8762835 0.7345389 0.736309

LDA+T-GCN (our method) Single-valued zoning 5.964327 7.7329316 0.7435799 0.8009587
Composite zoning 5.207459 6.962856 0.7897214 0.81981
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semantic zoning features in predicting the average
speed of road links and that data such as weather is
difficult to obtain and therefore is ignored.

6. Conclusion and Future Work

.is paper proposed a method for predicting average
road link speed that integrates the semantic zones of taxi
travel network extracted by LDA and the spa-
tial–temporal dependencies learned by T-GCN. Firstly,
the taxi location data was preprocessed, and datasets for
subsequent tasks were built up after anomaly data fil-
tering, trajectory segmentation, and map matching. Next,
we converted the trajectories to a sequence of road
numbers and extracted the semantic zones using LDA
algorithm. To test the validity of the semantic zoning
features, we merged the composite semantic zones ob-
tained from LDA to form single-valued zones using
modularity in social network community detection. Fi-
nally, we compared the proposed approach with six
baseline models. .e main findings of this study are
summarized below:

(1) Semantic zones of the taxi travel network do exist
within a certain period of time. .ese zones can de-
scribe the spatiotemporal dynamic characteristics of the
road network.

(2) LDA can be used to quantify the dynamic charac-
teristics of the road network and integrate with the
historical state of the network, which helps to im-
prove the accuracy of speed prediction for road links.

(3) Comparedwith traditionalmachine learningmodel, the
semantic zoning information has better performance in
T-GCN model, which can learn the spatiotemporal
dependencies of the travel network simultaneously and
can integrate the semantic zones.

In future work, we would like to research on end-to-end
algorithms referring to the techniques such as network
representation learning and GCNs to reduce the complexity
of road link average speed prediction.
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