
Research Article
Underwater Acoustic Signal Prediction Based on MVMD and
Optimized Kernel Extreme Learning Machine

Hong Yang , Lipeng Gao, and Guohui Li

School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China

Correspondence should be addressed to Hong Yang; uestcyhong@163.com and Guohui Li; lghcd@163.com

Received 13 November 2019; Revised 2 March 2020; Accepted 27 March 2020; Published 24 April 2020

Academic Editor: Bernhard C. Geiger

Copyright © 2020 Hong Yang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme
learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals.
To solve the problem of K value selection in variational mode decomposition, a new K value selection methodMVMD is proposed
from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset
modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf opti-
mization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized
kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD,
an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is
applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA,
EMD-OKELM, and other predictionmodels.+e experimental results show that the proposedMVMD-OKELM predictionmodel
has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.

1. Introduction

Underwater acoustic signal prediction is the basis of un-
derwater acoustic signal processing, which can be applied to
many aspects such as underwater target signal reduction,
detection, and feature extraction [1–3]. +e underwater
acoustic signal has not only nonlinear, non-Gaussian, and
nonstationary characteristics but also typical chaotic, fractal,
and other characteristics [4, 5], which provide a basis for
short-term prediction of underwater acoustic signal.

In recent years, with continuous development of ship
noise reduction technology, the detection of underwater
target signal is more and more difficult. If a more accurate
prediction model is adopted, the lower signal-to-noise ratio
signal can be detected [6]. +erefore, the study of the
prediction problem of underwater acoustic signal is of great
significance in the processing of underwater acoustic signal.
In traditional forecasting models [7, 8], autoregressive and
moving average model (ARMA) and autoregressive inte-
grated moving average model (ARIMA) models have been

widely used in time series prediction. However, ARMA and
ARIMA can only capture the linear relationship of the signal
in nature, but not the nonlinear relationship of the signal,
which will have certain limitations on the time series pre-
diction. Artificial intelligence algorithms developed in recent
years, such as BP, RBF, WNN, and ESN, are suitable for
capturing the nonlinear relationship of signals and are
gradually beginning to be applied in time series prediction.
Zhou et al. [9] used the combination of particle swarm
optimization (PSO) and RBF neural network to predict the
underwater acoustic signal and verified the short-term
predictability of chaotic time series. He and Zhang et al. [10]
applied the BP neural network and RBF neural network to
the prediction of underwater acoustic signal and achieved
good prediction results. Yang et al. [11] used the fruit fly
algorithm to optimize the wavelet neural network, which
further improved the prediction accuracy of underwater
acoustic signal. Chitsazan et al. [12] improved the classical
echo state network and applied it to the prediction of wind
speed and direction, with good prediction results. Although
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this prediction method relying solely on the neural network
model has achieved good prediction results, it does not
consider importance of data preprocessing. In recent years,
the decomposition technology in data preprocessing has
attracted the attention of researchers, and some achieve-
ments have been made in time series prediction [13–19]. Li
et al. [13] proposed a chaotic time series prediction model of
monthly precipitation based on the combination of varia-
tional mode decomposition and extreme learning machine
(ELM). +e model can predict the precipitation trend and
improve the prediction accuracy. Xiong et al. [14] used a
combination of wavelet decomposition and LSSVM to
achieve short-term prediction of wind speed. Büyükşahin
and Ertekin [15] proposed a hybrid prediction method
combining ARIMA and artificial neural network (ANN) and
added empirical mode decomposition technology to further
improve the prediction accuracy of time series. Li et al. [16]
proposed a deep learning prediction model based on ex-
treme-point symmetric mode decomposition and cluster
analysis to predict monthly mean value of sunspots and have
a good prediction effect. Cheng et al. [17] used ensemble
empirical mode decomposition and LSSVM to achieve
short-term prediction of wind power and verified that this
prediction method has better prediction accuracy than EMD
and LSSVM methods. Nazir et al. [18] proposed an im-
proved CEEMDAN decomposition method and applied it to
the prediction of river flow, and achieved good prediction
results. Li et al. [19] proposed an underwater acoustic signal
prediction method based on ESMD and ELM, which further
improved the prediction accuracy based on ELM. To sum up,
the combination of decomposition methods and various
prediction models can effectively improve the prediction
accuracy of time series. However, this kind of report on the
prediction of underwater acoustic signal using decompo-
sition prediction idea is rare, so it is necessary to carry out
further research in this field.

In time series prediction, if an appropriate decompo-
sition method can be selected, the original complex signal
can be decomposed into multiple stationary component
signals, so as to optimize the prediction model and improve
the prediction accuracy. +e VMD decomposition method
proposed by Dragomiretskiy and Zosso [20] is an effective
decomposition method. +e method is suitable for
decomposing nonlinear and nonstationary signals, and to a
certain extent, it eliminates the modal aliasing phenomenon
of decomposition methods such as EMD and EEMD and has
been applied in various time series predictions [13, 21, 22].
However, the decompositionmode numberK needs to be set
in advance before VMD decomposition signal. Too large
value will lead to over decomposition, while too small value
will lead to insufficient decomposition. +erefore, the se-
lection of K value plays an important role in the decom-
position of the VMD. +e number of VMD decomposition
layers is usually determined by the observation center fre-
quency [23, 24] or by the EMD decomposition layer [25, 26].
+e observation of the center frequency is subject to sub-
jective factors, and the EMD decomposition principle is far

from the decomposition principle of VMD, so it is difficult to
be persuasive. In recent years, Sun et al. [27] proposed a K
value determination method based on the correlation co-
efficient, which determines the final modal number by
judging the correlation coefficient between the decompo-
sition mode and the original signal. Wang et al. [28] pro-
posed a method for determining K value based on the center
frequency, which determines the optimal number of modes
by judging the ratio of the center frequencies between before
and after modes. Wang et al. [29] proposed a method for
determining K value based on energy conservation. +e
method determines the optimal K value by judging the
energy magnitude between sum of each component and
original signal energy. In this paper, a K value selection
method based on mutual information is proposed, which is
to determine the optimal K value by judging the change in
mutual information between the reconstructed series and
the original series.

Based on the idea of decomposition prediction, this
paper proposes an MVMD-OKELM prediction model.
Firstly, the underwater acoustic signal is decomposed into a
series of relatively stable components by MVMD. +en, a
kernel extreme learning machine (KELM) prediction
model is established for each component. +e parameters
of the KELM model are selected by grey wolf optimization
(GWO). Finally, the prediction results of all components
are reconstructed to obtain the final prediction results. To
fully illustrate the effectiveness of MVMD-OKELM in time
series prediction, this paper applies the proposed MVMD-
OKELM prediction model to Mackey–Glass chaotic time
series and underwater acoustic signal, respectively, and
compares it with ARIMA, EMD-OKELM, and other pre-
diction models.

2. Basic Theory

2.1. VariationalModeDecomposition. VMD can decompose
the input signal into subsequences with different center
frequencies and limited bandwidth uk(t) (k � 1, 2, . . . , K).
+e decomposition process is a process of solving the
variational problem. +e constrained variational model is as
follows [20]:

min
uk{ }, ωk{ }
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where ωk represents the center frequency of the kth modal
function.

In order to solve the constrained variational problem
(1), a penalty factor C and a Lagrangian multiplication
operator θ(t) are introduced to transform the constrained
variational problem into an unconstrained variational
problem:
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where ‖f(t) − 
K
k�1uk(t)‖

2
2 is the second penalty term and

〈·〉 is the inner product operation.
+e unconstrained variational problem (2) is solved

by the multiplication operator alternating direction
method and uk(t), wk, and θ(t) are alternately updated as
follows:
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u

n+1
k (ω)⎡⎣ ⎤⎦, (5)

performing an inverse Fourier transform on uk(ω), and the
actual part uk(t)  is the solution uk(t) (k � 1, 2, ..., K).

+e VMD algorithm introduces the original signal into
the variational model and then uses the process of finding
the optimal solution of the constrained variational model to
obtain the component. In this process, each component is
alternately iteratively updated in the frequency domain,
adaptively decomposing the frequency band of the signal,
and finally gets K narrowband components.

2.2. Modal Number Selection Method Based on Mutual
Information. +e K value of decomposition mode number
should be determined first when VMD is used for de-
composition. +e selection of the K value has a great in-
fluence on the decomposition effect. When K is too small,
signal decomposition may be insufficient, and some signals
may be treated as noise. When K is too large, the signal may
be overdecomposed, generating excessive noise or causing
modal aliasing. In order to overcome the influence ofK value
selection on the decomposition effect, this paper proposes a
method of selecting the number of modes based on mutual
information, called the MVMD algorithm.

Mutual information is a criterion to measure the degree
of interdependence between two random variables [30, 31],
and the greater the mutual information between two ran-
dom variables, the stronger the correlation between them.

+e mutual information between two variables can be
expressed as

M(X; Y) � 
y∈Y


x∈X

p(x, y)log
p(x, y)

p(x)p(y)
, (6)

where p(x) and p(y) are the probability of edge distribution
of two random variables X and Y, respectively, and p(x, y) is
the probability of joint distribution.

In this paper, the mutual information relationship be-
tween the reconstructed series after VMD decomposition
and the original series is used to select the K value. When the
signal is decomposed by VMD, the decomposition signal will
slowly transition from the state of insufficient decomposi-
tion to the state of full decomposition with the increase in
the number K of decomposition layers. In this process, the
mutual information between the reconstructed series and
the original series is increasing continuously. When the
number of decomposition layers K is greater than the op-
timal K value, the VMD decomposition will enter the
overdecomposition state, and the mutual information of the
reconstructed series and the original series between adjacent
K values will tend to be stable. In addition, the over-
decomposition state may also bring redundant noise signal,
which will reduce the mutual information between the
reconstructed series and the original series. +erefore, this
paper selects a threshold value σ for the determination of the
optimal K value. If the mutual information difference be-
tween the adjacent decomposition layers Ki and Ki+1 is less
than the threshold, the optimal value of VMD is considered
as Ki.

+e algorithm flow to solve the optimal K value is shown
in Figure 1.

2.3.KELM. +e extreme learningmachine is a single-hidden
layer feedforward neural networks (SLFNs) proposed by
Huang et al. [32], and KELM is an extension of ELM by
combining regularization theory and kernel method [33].
KELM has better stability and generalization ability com-
pared with ELM and has been widely used in regression
fitting problems.

+e algorithm model of KELM is expressed as follows:

f(x) � h(x)β, (7)

where h(x) is the output matrix of the hidden layer and β is
the connection weight of the hidden layer and the output
layer.

In order to improve the stability and generalization
ability of the model, the penalty coefficient C is introduced,
and then, the least squares solution of the output weight can
be obtained according to the generalized inverse matrix
theory:

β � H
T I

C
+ HH

T
 

−1
y, (8)

whereH is the hidden layer output matrix and y is the vector
of the desired output. So the output function of the KELM
can be written as

f(x) � H
T I

C
+ HH

T
 

−1
y h(x). (9)

Considering the case where the feature mapping func-
tion h(x) is unknown, the kernel function needs to be in-
troduced into the KELM. To define the kernel matrix
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ΩKELM � HHT, the element of the matrix is
ΩKELM(i, j) � h(xi)h(xj) � K(xi, xj), and then, the net-
work output of KELM can be expressed as follows:
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where K(xi, xj) is a kernel function; this paper selects a
radial basis function kernel with a wide convergence domain
and good generalization ability:

K xi, xj  � exp −
1
λ2

xi − xj

�����

�����
2

 . (11)

2.4. GWO. +e grey wolf optimization (GWO) algorithm is
a novel swarm intelligence optimization algorithm proposed
by Mirjalili et al. [34]. Compared with the particle swarm
optimization (PSO) algorithm, GWO has high optimization
precision, fast convergence, and good robustness.

+e algorithm searches for the optimal solution by
simulating the social class and predation behavior of the
wolves. +e grey wolf relies on the strict hierarchical system
within the wolves to complete the hunting and predation
process. +e pyramid model is built with the social rank of
the wolves. It is divided into four grades α, β, δ, and ω from
top to bottom, as shown in Figure 2. In the wolves, the αwolf
dominates and the wolves are rounded up from all directions
with the prey as the center. Under the leadership of the α
wolf, the attack is carried out by the β and δ closest to the
prey. Group ω is used to fill vacancies to prevent prey from
escaping. +e wolves continue to attack to narrow the en-
circlement and eventually capture the prey.

+e siege model of wolves against the prey is as follows:

D � CXP(t) − X(t)


,

X(t + 1) � XP(t) − AD,
(12)

where X is the current position of the grey wolf individual,
XP is the position of the prey, D is the distance between the
prey and the grey wolf, A is the convergence factor, C is the
swing factor, and A and C can be expressed as follows:

A � 2a · r1 − a,

C � 2r2,
(13)

where a is linearly reduced and has a ∈ [0, 2] and r1 and r2
are random vectors in [0, 1].

In GWO, α, β, and δ are the optimal solutions in the
whole wolf group. Other wolves can update their hunting
positions according to the positions of α, β, and δ. When the
grey wolf updates the position, it should first calculate the
distance from the three wolves α, β, and δ, and the formula is
as follows:

Dα � C1Xα(t) − X(t)


,

Dβ � C2Xβ(t) − X(t)


,

Dδ � C3Xδ(t) − X(t)


,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where Dα, Dβ, and Dδ represent the distance of the grey wolf
from α, β, and δ and Xα, Xβ, and Xδ represent the position of
the grey wolf α, β, and δ, respectively.

After calculating Dα, Dβ, and Dδ, the other wolves will
approach the three wolves of α, β, and δ and update their
position. +e formula is as follows:

X1 � Xα(t) − A1Dα,

X2 � Xβ(t) − A2Dβ,

X3 � Xδ(t) − A3Dδ,

⎧⎪⎪⎨

⎪⎪⎩
(15)

where X1, X2, and X3 are vectors of other wolves moving to
α, β, and δ, respectively.

According to the following formula, the new position of
the grey wolf individual in the population after iteration can
be obtained:

X(t + 1) �
X1 + X2 + X( 3

3
. (16)

K = 1

VMD
decomposition

Component
reconstruction

Original
signal

Calculate the difference in
mutual information when the

number of decomposition
layers is K and K + 1

Optimal K
value

K = K + 1

No

Yes

σ < 0.01

Figure 1: MVMD solves the optimal K value.
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2.5. MVMD-OKELM Prediction Model. In the imple-
mentation of KELM learning algorithm, if the selection of
nuclear parameters and regularization coefficients is not
appropriate, the performance of the model will be affected.
If the intelligent optimization algorithm is combined with
KELM and the kernel parameters and regularization co-
efficients are optimized, the performance of the model can
be improved to some extent. +is paper proposes an
OKELMmethod, which uses the grey wolf group intelligent
optimization algorithm to optimize the parameters of
KELM.

In implementation of the OKELM method, the root
mean square error is used as the fitness evaluation
function:

fitness �

�����������������

1
N



N

i�1
y(i) − yd(i) 

2




, (17)

where y(i) is the predicted output of the model and yd(i) is
the desired output.

+is paper proposes an underwater acoustic signal
prediction model based on MVMD-OKELM. +e modeling
process of the predictionmodel is shown in Figure 3. Specific
steps are as follows:

(1) Decompose the underwater acoustic signal using
MVMD to obtain several IMF components

(2) Establish a KELM prediction model for each IMF
component obtained by MVMD decomposition

(3) Optimize the selection of each KELM parameter
(4) +e prediction result of each component is recon-

structed to obtain a prediction result
(5) Perform error analysis on the prediction results

3. Application Examples

In order to verify the validity of the MVMD-OKELM
prediction model, the MVMD-OKELM prediction model is
applied to chaotic time series prediction and underwater
acoustic signal time series prediction, respectively.

In this paper, GWO and PSO are used to optimize KELM
parameters, and the parameters are set as shown in Table 1.

+e evaluation index uses the root mean square error
ERMSE, the average absolute error EMAE, and the determi-
nation coefficient R2, respectively:

ERMSE �

����������������


N
i�1 y(i) − yd(i)( 

2

N



,

EMAE �
1
N



N

i�1
y(i) − yd(i)


,

R
2

� 1 −


N
i�1 y(i) − yd(i)( 

2


N
i�1(y(i) − y)2

,

(18)

where N is the number of predicted sample points, yd(i) is
the actual output, y(i) is the predictive output, and y is the
average of the time series. +e closer the value of R2 is to 1,
the better the fit of the predicted output data to the original
data.

3.1. Mackey–Glass Chaotic Time Series Prediction. +e
Mackey–Glass equation is a classical chaotic dynamic sys-
tem. It is often used to test the predictive performance of
nonlinear time series. +e chaotic time series is generated by
the following equation [35]:

dy(t)

dt
�

αx(t − τ)

1 + xc(t − τ)
− βx(t), (19)

where α� 0.2, β � 0.1, c � 10, and τ are time-delay
parameters.

+e Mackey–Glass time series exhibits chaotic charac-
teristics when τ > 16.8, and the larger the τ value, the higher
the degree of chaos, and the greater the prediction difficulty.
+e Mackey–Glass chaotic time series generated by (19) can
be solved by the dde23 function in Matlab. Figure 4 shows a
chaotic time series of 700 generated when τ � 30. It can be
seen from the figure that the time series has more complex
nonlinear chaotic characteristics. In the sample division, 700
data points are divided into 694 samples, and the first 80% of
the samples are selected as training samples and the last 20%
are used as test samples.

Firstly, the original chaotic time series is decomposed by
using VMD, and the K value is determined by the mutual
information method proposed in this paper before de-
composition. With the change in the K value, the mutual
information trend of Mackey–Glass chaotic time series is
shown in Figure 5.

As we can see from Figure 5, when K� 8, value of mutual
information is 1.886; when K� 9, value of mutual infor-
mation is 1.874. +at is, when K> 8, the VMD decompo-
sition appears overdecomposed, so we set the K value to 8.

+e MVMD decomposition results of the Mackey–Glass
chaotic series are shown in Figure 6.

To compare the prediction effect of the MVMD-OKELM
model, this paper will use EMD to decompose it and es-
tablish the EMD-OKELM prediction model. +e EMD
decomposition result is shown in Figure 7.

As shown in Figures 6 and 7, the Mackey–Glass chaotic
time series is decomposed into 8 IMF components by VMD
and 7 IMF components by EMD decomposition. It can be
seen from the decomposition results that the high-frequency
component fluctuation of EMD is not stable, and the

α

β

δ

ω

Figure 2: Wolves classification.
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endpoint effect appears, which greatly affects the perfor-
mance of the subsequent prediction model. To compare the
prediction effect of MVMD-OKELM prediction model,
SVM, RBF, KELM, ARIMA, PSO-KELM, OKELM, and
EMD-OKELM will be used to predict Mackey–Glass chaotic
time series. When using SVM to predict, we set the upper

bound of Lagrange multiplier to 2 and the parameter of
insensitive loss function to 10. When forecasting with RBF,
we use newrbe function in Matlab and set the radial basis
expansion parameter to 0.07; when KELM prediction is used
alone, we set the regularization parameter to 2 and the kernel
parameter to 20. When ARIMA is used for prediction,
auto.arima function in R language is used to obtain pa-
rameters, and then ARIMA (4, 0, 2) prediction model is
obtained, where 4 represents the lag number of data itself, 0
represents the difference in order, and 2 represents the lag
number of prediction error. +e optimization algorithm is
adopted to determine the parameter setting in the combined
prediction model. +e prediction results of SVM, RBF,
KELM, and ARIMA are shown in Figure 8; the combined

Original signal

MVMD

IMF1 IMF2 IMFn. . .

KELM1 KELM2 KELMn. . .

Predicted value
1

Predicted value
2

Predicted value
n

. . .

Predictive
output

Error analysis

Establishing KELM
prediction model with

optimal parameters

GWO
optimization

Initialization
parameters

Start

End

Figure 3: MVMD-OKELM prediction model.

Table 1: Comparison of MVMD-OKELM and performance in-
dicators of each model.

+e main parameters Parameter value
Population size 10
+e maximum number of iteration 50
Regularization parameter optimization range [1, 800]
Kernel function width optimization range [1, 70]
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A
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Figure 4: Mackey–Glass chaotic time series.
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1.5
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43 8 92 7651
K

Figure 5: Mackey–Glass mutual information trend chart.
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prediction models of PSO-KELM, OKELM, and EMD-OKE
are shown in Figure 9. +e error distribution between the
predicted output and real value of each model is shown in
Figure 10, and Figure 11 further shows a boxplot of the
prediction error.

It can be seen from Figures 8 and 9 that the ARIMA
prediction model has a better prediction effect in a single
model, and the prediction result of combined prediction
model is far better than that of single prediction model. As
can be seen from Figures 10 and 11, MVMD-OKELM
model has the smallest fluctuation of prediction error and

better prediction performance. However, the difference
between OKELM method and PSO-KELM method is
small, and the performance of the two algorithms cannot
be clearly distinguished. To verify the superiority of
OKELM, Figure 12 gives the optimal value iteration
curves of OKELM and PSO-KELM. It can be seen that
OKELM has strong optimization ability and tends to be
stable after 25 iterations. To compare the iteration speeds
of the two algorithms, this paper performed 10 iterations
and averaged times of the 10 algorithm iterations. +e
average iteration time of OKELM is 16.365267 seconds,
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Figure 6: MVMD decomposition of Mackey–Glass chaotic sequence.
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Figure 7: EMD decomposition of Mackey–Glass chaotic series.
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and the average iteration time of PSO-KELM is 16.080680
seconds. In summary, we can conclude that iteration
speed of OKELM and PSO-KELM is not much different,
and optimization ability of OKELM is stronger. +erefore,
the OKELM model proposed in this paper has better
prediction performance and is more suitable for KELM
parameter optimization.

To quantitatively analyze the predictive performance of
each predictive model, Table 2 gives a comparison of per-
formance indicators for each predictive model, and

Figure 13 shows a comparison of RMSE and MAE for each
prediction model.

As can be seen from Table 2 and Figure 13, a single
ARIMA model is better than SVM, RBF, and KELM, and
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the predicted accuracy of the optimized KELM model is
improved compared to ARIMA. +e prediction results of
OKELM and PSO-KELM are very close and have similar
prediction accuracy, but the search ability of GWO is
stronger than that of PSO. Compared with PSO, it is not

easy to fall into the local optimal solution. +erefore, we
chose the OKELM prediction model based on the GWO
optimization algorithm for subsequent decomposition
prediction. +e EMD-OKELM prediction model based on
EMD decomposition only improves a small amount of
prediction accuracy based on OKELM. +e prediction
accuracy of MVMD-OKELM prediction model based on
MVMD decomposition is about one order of magnitude
higher than that of other models, and its prediction
performance is significantly higher than other predictive
models.

3.2. Underwater Acoustic Signal Prediction Experiment.
+e underwater acoustic signal selected in this paper is the
ship radiated noise signal. +e underwater acoustic signal
has typical chaotic characteristics and can be used for short-
term prediction. In order to contrast with Mackey–Glass
chaotic time series, this section also divides 694 sets of data
and selects the first 80% sets of data as training samples and
the latter 20% sets of data as test samples. +e underwater
acoustic signal is shown in Figure 14.

As can be seen from Figure 14, the data complexity is
much higher than the Mackey–Glass chaotic time series,
which means that the prediction of underwater acoustic
signal is more difficult than the Mackey–Glass chaotic time
series.

Before the prediction, the underwater acoustic signal is
first decomposed by MVMD, and K value is selected by the
mutual information method. +e trend of mutual infor-
mation is shown in Figure 15.

As can be seen from Figure 15, when K� 8, the value of
mutual information is 1.709; when K� 9, value of mutual
information is 1.682. +at is, when K> 8, the VMD de-
composition appears overdecomposed, so we set the K value
to 8.

+e MVMD decomposition result of the underwater
acoustic signal and the decomposition result of the EMD is
shown in Figures 16 and 17.

+e chaotic component is mainly concentrated in the
high-frequency component [36], and the stronger the chaos,
the higher the prediction difficulty. To compare the pre-
diction performance of MVMD-OKELM and EMD-
OKELM inmore detail, this paper selects the high-frequency
component imf1 of EMD decomposition and the high-
frequency component imf8 of MVMD decomposition for
comparison. +e results are shown in Figures 18 and 19,
respectively.

+e root mean square error of EMD-OKELM is 0.0309,
the root mean square error of MVMD-OKELM is 0.0017,
and the prediction accuracy of MVMD-OKELM is one order
of magnitude lower than that of EMD-OKELM. As can be
seen from Figure 16, the prediction effect of some points in
the high-frequency component decomposed by EMD is
poor, which is caused by the large fluctuation of the high-
frequency component decomposed by EMD, while the imf8
component decomposed by MVMD fluctuates closely
around a central frequency and the fluctuation is relatively
stable, so the prediction accuracy of MVMD-OKELM is

Objective space

0.0215
0.02155

0.0216
0.02165

0.0217
0.02175

0.0218
0.02185

0.0219
0.02195

0.022

Be
st 

sc
or

e o
bt

ai
ne

d 
so

 fa
r

5 10 15 20 25 30 35 40 45 50
Iteration

GWO
PSO

Figure 12: GWO-KELM and PSO-KELM optimal value conver-
gence curve.

Table 2: Comparison of MVMD-OKELM and performance in-
dicators of each model.

Predictive model RMSE MAE R2

SVM 0.07495 0.05798 0.9451
RBF 0.06446 0.04604 0.9573
KELM 0.05128 0.04280 0.9668
ARIMA 0.02464 0.01672 0.9924
PSO-KELM 0.02194 0.01525 0.9941
OKELM 0.02147 0.01520 0.9943
EMD-OKELM 0.02127 0.01516 0.9945
MVMD-OKELM 0.00701 0.00544 0.9993
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higher. Since the prediction results are predicted and
reconstructed from all components separately, the MVMD-
OKELM reconstruction should produce better results than
EMD-OKELM. In this section, except that the parameters of
the ARIMA model are changed to ARIMA (1, 0, 3), the
parameter settings of other comparative models refer to the

previous section. +e prediction results of single model of
underwater acoustic signal are shown in Figure 20, and the
prediction results of combined prediction models are shown
in Figure 21. +e error distribution of the underwater
acoustic signal is shown in Figure 22, and the corresponding
error boxplot is shown in Figure 23.
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As can be seen from Figures 20 and 21, in underwater
acoustic signal prediction, the prediction accuracy of the
combined prediction model is still higher than the single
prediction model. As can be seen from the error distribution

diagram in Figure 22, the MVMD-OKELM prediction error
distribution proposed in this paper is relatively uniform and
fluctuates near the baseline, and its prediction performance
is significantly better than other models. It can be seen in the
boxplot of Figure 23 that the prediction error of ARIMA
prediction model at some points is large, and it cannot fit all
the points. In Figure 23, the fluctuation of MVMD-OKELM
is the smallest, and the error distribution is relatively con-
centrated, which is consistent with the results obtained in
Figure 22, which further illustrates that MVMD-OKELM
has better prediction performance. Table 3 gives the specific
performance indicators, and Figure 24 shows the RMSE and
MAE of the underwater acoustic signal prediction model.

As can be seen from Table 3 and Figure 24, MVMD-
OKELM has smallest RMSE value and MAE value and
highest R2 value, which indicates that the MVMD-OKELM
prediction model can be effectively applied in underwater
acoustic signal prediction. However, the overall prediction
performance index of the underwater acoustic signal is
slightly worse than the prediction result of the
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Figure 18: EMD imf1 component prediction result.
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Mackey–Glass chaotic time series. +is also shows that the
chaotic degree of the actual underwater acoustic signal is
much higher than that of the Mackey–Glass chaotic time
series.

To avoid the accidental occurrence of underwater
acoustic signal, this paper extracts 700 data points in the
same data set as underwater acoustic signal II. Underwater
acoustic signal II is shown in Figure 25.

In the prediction of underwater acoustic signal II, SVM,
RBF, KELM, ARIMA, PSO-KELM, OKELM, and EMD-
OKELM is also used as comparison models to verify the
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Figure 20: Underwater acoustic signal I prediction result of single model.
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Figure 21: Underwater acoustic signal I prediction result of combined model.
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distribution.
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prediction performance of MVMD-OKELM.WhenMVMD
decomposition is used, the mutual information method is
also used to determine the K value, which can be determined
as 5 in the mutual information trend in Figure 26. In the
parameter settings, ARIMA model parameters of the un-
derwater acoustic signal II are ARIMA (2, 1, 2). +e single
model prediction result of underwater acoustic signal II is
shown in Figure 27, and the combined prediction model
result is shown in Figure 28.

From Figures 27 and 28, it can be seen that, in single-step
prediction, although the fitting degree of each model is

already very high, the prediction accuracy of single pre-
diction model is far lower than that the combined model.
Although the prediction accuracy of combined prediction
models is relatively high, we can still see that MVMD-
OKELM has the best prediction effect. To judge the model
better, this paper further gives the error boxplot of un-
derwater acoustic signal II and the specific prediction in-
dexes of the model.

In the boxplot of Figure 29, it can be seen that the
MVMD-OKELM has the smallest error fluctuation. In Ta-
ble 4, it can be seen that MVMD-OKELM has the lowest
RMSE and MAE values and the highest coefficient of cer-
tainty. +is fully shows that the prediction effect of MVMD-
OKELM is the best in these models. +rough the analysis of
underwater acoustic signal II, we can conclude that MVMD-
OKELM has strong applicability and can be effectively used
in underwater acoustic signal prediction.

3.3. Diebold–Mariano Test. In order to find out the optimal
prediction model statistically, this paper uses the Die-
bold–Mariano test [37] to evaluate whether there is sig-
nificant difference between MVMD-OKELM and other
comparative models in prediction ability. +e Die-
bold–Mariano test results of Mackey–Glass time series are
shown in Table 5. From Table 5, it can be seen that the P
values tested by Diebold–Mariano are all less than 0.01,
which indicates that the MVMD-OKELM model has sig-
nificant differences compared with other 7 comparative
models at a significance level of 1%. In the Diebold–Mariano
test of underwater acoustic signal, except ARIMA has sig-
nificant difference with the MVMD-OKELM model at 5%
significance level, and other models have significant dif-
ferences with the MVMD-OKELMmodel at 1% significance
level. In the underwater acoustic signal II, the P values tested
by Diebold–Mariano are all less than 0.01, which indicates
that the MVMD-OKELM model has significant differences
compared with other 7 comparative models, which is
consistent with the conclusion obtained in the underwater
acoustic signal I. Tables 6 and 7 further show that the
MVMD-OKELM prediction model has significant advan-
tages in prediction performance and can be effectively ap-
plied to underwater acoustic signal prediction.

Table 3: Predictive model performance indicator comparison.

Predictive model RMSE MAE R2

SVM 0.10216 0.07931 0.8938
RBF 0.08401 0.06219 0.9108
KELM 0.07630 0.06045 0.9288
ARIMA 0.04686 0.03666 0.9672
PSO-KELM 0.04869 0.03877 0.9667
GWO-KELM 0.04868 0.03877 0.9667
EMD-OKELM 0.03166 0.02449 0.9853
MVMD-OKELM 0.01171 0.00938 0.9984

0

0.02

0.04

0.06

0.08

0.1

0.12

RB
F

KE
LMSV

M

A
RI

M
A

PS
O

-K
EL

M

EM
D

-O
KE

LM

M
V

M
D

-O
KE

LM

O
KE

LM

Prediction model

RMSE
MAE

Figure 24: RMSE and MAE histograms for each prediction model.

–0.5

0

0.5

1

A
m

pl
itu

de

100 200 300 400 500 600 7000
Sample points

Figure 25: Underwater acoustic signal series II.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5 61
K

Figure 26: Underwater acoustic signal II mutual information
trend.

Complexity 13



–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
A

m
pl

itu
de

20 40 60 80 100 120 1400
Sample points

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

102 104 106 108 110 112 114 116 118 120100
Sample points

Reference axis
SVM
RBF

KELM
ARIMA

Reference axis
SVM
RBF

KELM
ARIMA

Figure 27: Underwater acoustic signal II prediction results of single model.
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Figure 28: Underwater acoustic signal II prediction results of combined model.
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4. Conclusions

From the perspective of mutual information, this paper
uses the trend of mutual information between the
reconstructed series and the original series to select the
best K value and proposes a new K value selection method.
To further improve the performance of the KELM
method, an OKELM method is proposed to optimize the
kernel parameters and regularization coefficients of
KELM. Combined with MVMD decomposition, an un-
derwater acoustic signal prediction model based on
MVMD-OKELM is established. +rough the comparative
study of the experiment, it can be concluded that

(1) OKELM has similar iterative speed compared with
PSO-KELM, but GWO has a stronger optimization
ability; it is not easy to fall into a local optimal so-
lution compared to PSO

(2) +eMVMD-OKELM prediction model is significantly
better than the contrast model in Mackey–Glass cha-
otic time series and underwater acoustic signal pre-
diction, which shows the potential of MVMD-OKELM
in underwater acoustic signal prediction

(3) +e prediction result of Mackey–Glass chaotic time
series is better than that of underwater acoustic

signal, indicating that the chaotic of underwater
acoustic signal is stronger than that of Mackey–Glass
chaotic time series when τ � 30
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