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Accurate and reliable predictions of landslide displacements are difficult to perform using traditional point prediction approaches
due to the associated uncertainty. Prediction intervals are effective tools for quantifying the uncertainty of point predictions by
estimating the limit of future landslide displacements. In this paper, under the framework of the original lower upper bound
estimation method, a direct interval prediction approach is proposed for landslide displacements based on the least squares
support vector machine (LSSVM) and differential search algorithms. Two LSSVM models are directly implemented to generate
the interval of future displacements, and the optimal model parameters are derived by the differential search algorithm. /e
Baishuihe landslide and the Tanjiahe landslide located on the shoreline of the /ree Gorges Reservoir, China, are used to test the
proposed approach. Compared with other models, the proposed method performed best and presented the smallest coverage
width-based criterion values of 0.8927 and 1.0562 at monitoring stations XD01 and ZG118 for the Baishuihe landslide, re-
spectively, and 0.1316 and 0.1191 at monitoring stations ZG289 and ZG287 for the Tanjiahe landslide, respectively. /e results
indicate that the proposed approach can provide high-quality prediction intervals for landslide displacements in the/ree Gorges
Reservoir area.

1. Introduction

Landslides represent a serious hazard posing a serious threat
to human life and property safety and causing tremendous
damage to the environment. /e /ree Gorges Reservoir
area in China is a high-incidence area for landslide disasters
[1, 2], with the number of landslides exceeding 4,200 [3]. It is
impossible to comprehensively control for all potential
landslides in this area. /erefore, early warning systems,
which represent a cost-effective approach, are urgently
needed for mitigating disaster risk.

Accurate and reliable displacement prediction is a core
element of landslide early warning systems [4]. However,
landslide deformation is characterized by complexity, un-
certainty, and nonlinearity. Various factors, such as the
landform, geological structure, stratigraphic lithology,

rainfall, and reservoir level, affect the evolution of landslides
and increase the difficulty of accurately predicting landslide
displacement. Numerous prediction models have been
proposed during the past several years. /ese models can be
divided into two main categories: physically based models
and phenomenological models [5]. Physically based models
use the relationship between the geomaterial physical
properties (e.g., shear strength, deformation modulus, and
permeability coefficient) and landslide displacement to
predict future displacements. A physically based model
facilitates a better understanding of landslide deformation
mechanisms; however, due to uncertainty in the geomaterial
properties and boundary conditions of the model and the
time-consuming implementation, the applicability of such
models in large and complex landslides is limited. Alter-
natively, phenomenological models directly reveal the
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empirical relationship between the limited displacement
data and underlying causes [5]. Compared with physically
based models, phenomenological models do not require the
construction of explicit expressions between the geomaterial
properties and landslide displacements; therefore, they have
broad applicability. Since Saito [6] established an empirical
approach for landslide prediction based on tertiary creep in
1965, phenomenological models have evolved from em-
pirical models to statistical predictionmodels [7] and then to
computational intelligence models [4, 8]. In recent years,
machine learning methods have been introduced for land-
slide prediction because of their powerful nonlinear map-
ping ability [4, 9–11]. /ese prediction methods include
single computational intelligence models, such as back-
propagation neural network (BPNN) [12, 13], Gaussian
process [14], and extreme learning machine (ELM) [15], as
well as hybrid intelligent models, such as ensemble of ELMs
[16], decision tree combined two-step cluster [17], SVM
optimized by particle swarm optimization (PSO) [18],
LSSVM optimized by a genetic algorithm [19], and chaotic
ELM [20]. /e outstanding performance of computational
intelligence algorithms in landslide displacement prediction
makes this method increasingly attractive.

However, most prediction approaches are deterministic
or point prediction methods [21]. Although the output of a
specific model is believed to be quite accurate, it is still
affected by the uncertainty contributed by the model
structure, input selection, dataset noise, and so on. A single
point prediction cannot provide the degree of uncertainty
associated with a prediction. /us, decision makers cannot
determine the level of risk when facing a mitigation decision.
From a practical viewpoint, the information provided by
traditional point prediction methods may be insufficient.
/erefore, more meaningful methods must be proposed to
evaluate the uncertainties associated with point prediction.
Prediction intervals (PIs) are powerful techniques for
quantifying the uncertainty of point predictions [22]. /ese
techniques consist of upper and lower bounds within which
future targets are expected to lie with a predetermined
probability. In this form, the best and worst conditions can
be obtained, thus enabling decision makers to make more
informed decisions. In recent years, numerous studies
reporting the application of PIs have been performed in
many fields, such as electricity price forecasting [23], flood
forecasting [24], and wind power forecasting [25, 26].

PIs have also been introduced into landslide displace-
ment predictions. However, these studies are at the nascent
stage and very limited. In [21, 27], the bootstrap technique
and the ELM method were combined for the interval pre-
diction of landslide displacement./e bootstrap technique is
the most frequently used technique for the construction of
PIs, and it is easy to implement and quite reliable compared
with other approaches. However, the calculation efficiency
of this method is low for large datasets [28]. In [29], an
improved lower upper bound estimation (LUBE) method
for the interval prediction of landslide displacements was
proposed. /e method constructs PIs by utilizing an evo-
lutionary algorithm to optimize the outweigh analysis of the
artificial neural network (ANN) model with random hidden

weights. /e LUBE method [28] is a reliable method for
interval predictions of time series data. It constructs PIs
directly without the limitations of implementation difficulty,
low computational efficiency, or doubtful assumptions re-
garding the data distribution compared with traditional
methods (e.g., bootstrap and Bayesian methods) [30].
However, ANNs require the adjustment of many parameters
and are prone to being trapped in a local optimum. /ese
drawbacks of the ANN-based LUBE method may increase
the forecasting uncertainty.

In this study, the LUBE method is applied to construct
the PIs of landslide displacement. To overcome the disad-
vantages of ANNs, LSSVMs are applied instead. Unlike
ANNs, the LSSVM has an excellent inference and gener-
alization capacity with fewer debugging parameters and can
always find a global minimum and avoid the overfitting
problem. /e differential search (DS) algorithm [31], which
is a stochastic computational intelligence algorithm with a
strong global optimization capability, is introduced to op-
timize the parameters of the LSSVMs. /us, a direct interval
prediction approach, namely, DS-LSSVM, for landslide
displacement is developed. For testing the proposed ap-
proach, the Baishuihe landslide and Tanjiahe landslide lo-
cated on the shoreline of the/ree Gorges Reservoir, China,
are applied. To validate the effectiveness of the proposed
method, it is compared with several other methods, in-
cluding the LSSVM model optimized by particle swarm
optimization (PSO-LSSVM), LSSVM model optimized by
genetic algorithm (GA-LSSVM), hybrid method combining
the bootstrap, ELM, and ANN methods (bootstrap-ELM-
ANN), and ELM optimized by particle swarm optimization
(PSO-ELM).

2. Study Area

/e study area is located in the /ree Gorges Reservoir area
in Shazhenxi, a town in Zigui County in Hubei Province,
China (Figure 1(a)), and it belongs to a low-middle
mountain topographic region. /e mountain elevation in
this area ranges from 500 to 900m, and the range extends in
the east-west direction. /e lithology mainly consists of
Jurassic and Triassic sandstone, shale, and limestone rocks,
and their combination often forms soft and hard formations.
/e site belongs to a subtropical monsoon climate. /e
annual average temperature is 15°C, and the annual average
precipitation is 958mm. /e rainy season is mainly con-
centrated from April to October, during which the monthly
average rainfall is between 150mm and 458mm. /e reg-
ulation of the/ree Gorges Reservoir level adopts dry season
and flood season schemes, and the reservoir level fluctuates
between 145m and 175m and shows obvious seasonal
features. From mid-September to the end of October every
year, the water level rises from 145m to 175m and remains
at 175m until December. From January toMay, the reservoir
declines to 155m. In mid-June, the reservoir reduces to a
flood-control limit of 145m. Between mid-June and mid-
September, the water level is generally maintained at 145m.
Groundwater in the study area is mainly recharged by
rainfall and the reservoir, and the reservoir level is the lowest
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groundwater erosion level. Due to the complex geological
conditions, landslide hazards are frequent. /e Baishuihe
and Tanjiahe landslides (Figure 1(b)) are two typical land-
slides in this area.

2.1. Baishuihe Landslide

2.1.1. Geological Conditions. /e Baishuihe landslide is lo-
cated on the southern bank of the Yangtze River, approx-
imately 56 km upstream of the/ree Gorges Dam (Figure 1).
Figure 2(a) shows the three-dimensional topographic con-
tour map of the landslide, which is fan-shaped in plan view
and covers an area of approximately 21.5×104m2. /e el-
evations of the top and tip of the landslide are 390m and
75m, respectively. /e length and width of the displaced
material are 500m and 430m, respectively. /e average
thickness of the landslide is 30m according to the boreholes.
/e volume of the displaced material is estimated at
645×104m3, and the main movement direction of the
landslide is 20°.

/e engineering geological cross section of the Baishuihe
landslide is shown in Figure 2(b). /e soil profile consists of
three overlying zones. (1) /e first zone is a quaternary
deposit composed of silty clay and fragmented rubble. Silty
clay is moist and brown in colour. /e fragmented rubble
originates from the underlying parent rock (mostly siltstone)
and varies in shape (angular and subangular) and diameter
(mostly ranging from 0.1m to 0.6m), with a content be-
tween 10% and 30%. (2)/e second zone is a narrow band of
silty clay (represented by a red line in Figure 2(b), i.e., shear

zone). /e thickness of the band lies between 0.2m and
1.3m, and the average thickness is 0.7m. Brown silty clay is
wet and dense and has high plasticity. /is clay contains
10–30% subrounded siltstone gravel with diameters between
10 and 20mm. (3) /e third zone is bedrock that consists of
siltstone with interbedded layers of mudstone and carbon
shale. /e bedrock is moderately weathered and belongs to
the Lower Jurassic Xiangxi Formation (J1x), and its dip
direction and dip angle are 15° and 35°, respectively. /e
siltstone is hard, while the interbedded layers of mudstone
and carbon shale are susceptible to weathering; thus,
landslide susceptibility is increased because of the unfav-
ourable properties and weak strength.

2.1.2. Deformation Characteristics. Since 2003, the Baish-
uihe landslide has undergone considerable deformation in
May and July each year. To monitor the displacement and
render an early warning system, eleven global positioning
system (GPS) monitoring monuments were installed on the
main body of the Baishuihe landslide and surveyed monthly.
According to ground deformation monitoring, the landslide
can be divided into an active block and a relatively stable
block. /e monitoring displacement values of the five GPS
monuments located in the active block and the corre-
sponding rainfall and reservoir water levels over a period of
ten years between 2003 and 2013 are displayed in Figure 3.
/e results indicate that the displacement of the landslide
has increased continuously with time since the GPS mon-
uments were installed in 2003. Two deformation phases,
short-term accelerating deformation and long-term almost
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Figure 1: (a) Location of the study area, /ree Gorges Reservoir area, China. (b) Location of the Baishuihe and Tanjiahe landslides. (c)
Overall view of the Baishuihe landslide. (d) Overall view of the Tanjiahe landslide.
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imperceptible deformation, can be distinguished from the
step-like deformation characteristics of the monitoring
displacement. /e short-term accelerating deformation
phase mainly occurs during the rainy season and reservoir
drawdown. /e long-term almost imperceptible deforma-
tion phase mainly occurs during the dry season and reservoir
impoundment, which indicates that heavy rainfall and
reservoir drawdown are the two main triggering factors that
cause serious deformation of the Baishuihe landslide.

2.1.3. Correlation Analysis. To better understand the triggers
for seasonal rapid acceleration, the displacement velocity at
XD01 is correlated with the reservoir level, and the rainfall
and reservoir level changes are analyzed. As shown in
Figure 4, large bubbles (denoting high deformation rate) are
mainly located at a reservoir level of approximately 145m
and lie in an area where reservoir water changes slowly
(between 0 and −7m per month). /ese data indicate that
reservoir level drawdown is a main triggering factor of
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Figure 3: Monitoring data for rainfall, reservoir level, and Baishuihe landslide displacement from July 2003 to June 2013.
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Figure 2: (a) /ree-dimensional topographic contour map of the Baishuihe landslide. (b) Engineering geological cross section (A-B) of the
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accelerated deformation, and the landslide is in the most
dangerous stage when the reservoir level is about to drop to
the lowest water level of 145m. Relatively, large bubbles are
distributed under different rainfall conditions. However,
among the relatively large bubbles, approximately two-
thirds are located above the rainfall level of 100mm per
month. /is pattern demonstrates that rainfall is partly
correlated with landslide deformation. /e cold-coloured
bubbles are mostly located at 100mm/month rainfall and
above the 150m reservoir level. /ese bubbles are smaller
than the warm-coloured bubbles at the 145m water level.
/is pattern indicates that the combined effect of heavy
rainfall and rising reservoir level on landslide deformation is
less than the combined effect of heavy rainfall and water level
drawdown. /e above analysis indicates that reservoir level
drawdown is the main triggering factor of Baishuihe
landslide deformation, while rainfall is a secondary factor.
/eir combined effect on landslide deformation is greater
than the effect of a single factor.

2.2. Tanjiahe Landslide

2.2.1. Geological Conditions. /e Tanjiahe landslide is lo-
cated on the right bank of the Yangtze River, 3 km upstream
of the Baishuihe landslide and 59 km from the /ree Gorges
Dam (Figure 1). /e landslide is horn-shaped in plan view
and covers an area of approximately 40×104m2

(Figure 5(a)). /e elevations of the top and tip are 432m and
135m, respectively./e length, width, and average thickness
of the displaced material are 1,000m, 400m, and 40m,
respectively. /e volume of the displaced material is esti-
mated to be 1,600×104m3. /e main movement direction is
340°.

Figure 5(b) shows the engineering geological cross
section of the Tanjiahe landslide. /e soil profile consists of
four layers from top to bottom. (1) /e first layer is a thin
quaternary deposit./e average thickness of this layer is 5m.
/e quaternary deposit is composed of brown, yellow, and
moist silt clay and siltstone rubble and quartz sandstone with
various shapes (angular and subangular) and diameters
(ranging from 0.1m to 0.3m)./e rubble content is between
20% and 50%. (2) /e second layer is thick and consists of a
yellow debris deposit. /e average thickness of this layer is
35m. /e material of the blocky rock is siltstone and quartz
sandstone. /is layer underlies the thin quaternary deposit
and is the main component of the displaced material. (3)/e
third layer is a narrow band of black silty clay. /is layer is
the location of the shear zone represented by a red line in
Figure 5(b). /e thickness of this layer ranges from 0.1m to
0.3m. Black silty clay is wet and dense and has intermediate
plasticity. /is clay contains 20–40% subrounded gravel of
siltstone and quartz sandstone, with diameters from 5mm to
20mm. (4) /e fourth layer is bedrock that consists of
carbonaceous siltstone and quartz sandstone with inter-
bedded coal seams. /e bedrock is moderately weathered
and belongs to the Lower Jurassic Xiangxi Formation (J1x).
/e dip direction and the angle of the bedrock are 10° and
36°, respectively.

2.2.2. Deformation Characteristics. Four GPS monitoring
monuments were installed to monitor the displacement of
the landslide since 2006, and the survey frequency was once
per month. Figure 6 shows the time series of the monitoring
displacements and the corresponding reservoir water levels
and rainfall over a period of nine years. /e figure shows
that the deformation of the lower part (ZG290) is obviously
smaller than that of the central and upper parts (ZG287,
ZG288, and ZG289), the monitoring displacement in-
creases continuously with time, and the displacement of
each monitoring monument is synchronous. /e defor-
mation characteristics of the Tanjiahe landslide are ap-
proximately uniform without an obvious acceleration
phase such as in the Baishuihe landslide. /e landslide
deformation rate will increase when it encounters rainfall
or when the reservoir level is high (between 160m and
175m). /e deformation characteristic illustrates that a
high reservoir level and rainfall accelerate the deformation
of the Tanjiahe landslide.

2.2.3. Correlation Analysis. /e correlations among the
statistical data of the displacement velocity of ZG289,
rainfall, reservoir level, and reservoir level velocity are il-
lustrated in Figure 7. /e figure shows that large bubbles
(relatively high deformation rate) are distributed throughout
the reservoir level intervals and present the greatest distri-
bution at the lowest reservoir level (145m) and the highest
reservoir level (between 160m and 175m). Based on the
relative height (rainfall) of the large bubble distribution, the
location of the large bubbles in the highest reservoir level
(primarily located below 50mm rainfall) is lower than that
in the lowest reservoir level (primarily located above 50mm

130 140 150 160 170 180

0

50

100

150

200

250

300

350

0

5

9

13

17

21

25

5 64 123 182 241 300 359 418 477 536

–15

–11

–7

–3

Ch
an

ge
 in

 re
se

rv
oi

r l
ev

el 
(m

/m
on

th
)

Reservoir level (m)

Ra
in

fa
ll 

(m
m

/m
on

th
)

Displacement velocity (mm/month)

Figure 4: Correlation of displacement velocity at XD01 with the
reservoir level, rainfall, and reservoir level change.

Complexity 5



rainfall). /ese findings show that the high deformation rate
at the lowest reservoir level is mainly caused by rainfall,
while the high deformation rate at the highest reservoir level
is mainly caused by the reservoir level. Further analysis of
colour of the large bubbles shows that the cold-coloured
bubbles (reservoir level raising) are generally located under
the warm-coloured bubbles (reservoir level drawdown),
which means that an increasing reservoir level is the major
factor leading to deformation. /e large deformation rate
during water level drawdown is mainly caused by rainfall.

/e above analysis shows that an increasing reservoir level
and rainfall are the two main triggering factors that affect the
deformation of the Tanjiahe landslide.

3. Methodology

3.1. Formulation of PIs. PIs can provide a range encapsu-
lating the future unknown targets with a confidence level
(usually 95%). Given a dataset Dt � (xi, ti) 

N

i�1, xi represent
the input factors and ti represent the related output
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displacements of the forecast. A PI can be represented by the
following equation:

I
(α)

xi(  � L
(α)

xi( , U
(α)

xi(  . (1)

/e future predicted displacement is expected to be
covered by I

α
(xi) with a coverage probability

P L
(α)

xi( ≤ ti ≤ U
(α)

xi(   � 100(1 − α)%, (2)

where α is the quantile of the standard normal distribution
and L

α
(xi) and U

α
(xi) denote the lower and upper bounds

of the i-th PI, respectively.
In the original LUBE method, an ANN model with two

outputs is used to construct PIs./e two outputs correspond
to the lower and upper bounds. In this study, under the
framework of LUBE, the LSSVMmodel is applied instead of
an ANN to build the PIs of landslide displacement. One
standard formulation of the LSSVM model can generate
only a single output./us, two LSSVMmodels are applied to
generate two outputs for predicting the two bounds of the PI.
Figure 8 shows the LSSVM model used to construct PIs in
the LUBE method.

3.2. Performance Indices. Two indices, namely, the PI cov-
erage probability (PICP) and normalized mean PI width
(NMPIW), are applied to assess the performance of the
proposedmethod./e PICP evaluates the possibility that the
future target values lie within the upper and lower limits. It
can be expressed by the following formula:

PICP �
1
N



N

i�1
ci, (3)

where N is the number of predicted samples. /e parameter
ci can be expressed as follows:

ci �
1, ti ∈ L

(α)
t xi( , U

(α)
t xi(  ,

0, ti ∉ L
(α)
t xi( , U

(α)
t xi(  .

⎧⎪⎨

⎪⎩
(4)

/e larger the PICP, the more targets fall within the
prediction interval. /e constructed PIs with a PICP greater
than or close to the nominal confidence level are reliable PIs.
Otherwise, the prediction interval is invalid and unreliable.
Generally, an ideal PICP can be easily obtained by widening
the PIs from either side. However, excessively wide PIs are
meaningless in practice since they cannot provide accurate
quantifications of target uncertainty. /erefore, the quality
of the PI in terms of its width must also be assessed. /e
NMPIW is introduced in this paper and can be expressed by
the following formula:

NMPIW �
1
N


N
i�1

U
(α)

t xi(  − L
(α)

t xi(  

tmax − tmin
, (5)

where tmax and tmin denote the minimum and maximum
values of the monitored displacement, respectively. NMPIW
denotes the mean width of PIs normalized by the range of
the target. If the constructed PIs are reliable (have a satis-
factory PICP), then a lower NMPIW value of the PIs will
correspond to a higher quality of the PIs.

In general, a PI with a high PICP and low NMPIW is
considered high quality. However, both measures assess the
PIs from only one aspect. /is paper aims to construct PIs
with higher PICP and lower NMPIW values. /erefore, a
combined index, i.e., coverage width-based criterion (CWC)
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LSSVM model, respectively; the outputs (y)1 and (y)1 generated by
the two LSSVM models correspond to upper and lower bounds of
future unknown displacement, respectively.
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modified from [29], is applied to comprehensively evaluate
the quality of PIs. /e CWC can be given as follows:

CWC � (NMPIW + ψ)e
c(PICP− μ)2/2δ2

, (6)

where ψ is in the range (0.1%, 0.5%). /e parameter μ is
equal to 1− α, and δ lies in the range (0, 1). In the training of
LUBE, c equals 1, and in testing, c is defined as the following
step function [22, 26, 28, 30]:

c �
1, PICP< μ,

0, PICP≥ μ.
 (7)

/e aim of the CWC is to balance the NMPIW and PICP
of the PIs. A small CWC corresponds to high-quality PIs,
and vice versa.

3.3. LSSVM for Regression Analysis. /e LSSVM is an im-
proved formulation of the original SVM. /e LSSVM can
greatly reduce the computational cost of SVMs by con-
verting the inequality constraint to a set of linear equations.
Details on this method can be found in [32]. In this study,
the LSSVM is used for regression analysis. Given a training
dataset xi, ti 

N
i�1 with input data xi ∈ Rm and output target

ti ∈ R, where Rm denotes the m-dimensional vector space.
/e formulation of the LSSVM for regression analysis can be
represented using the following constrained optimization
problem:

min
w,b,ξ

J(w, ξ) �
1
2
w

T
w +

1
2

c 

N

i�1
ξi,

s.t. ti � wTϕ xi(  + b + ξi, i � 1, 2, . . . , N,

(8)

where c is a regularization parameter, ξi represent random
errors, wT is the weight vector, φ(x) is the kernel space
function, and b is the bias.

By solving the above optimization problem, the result
can be constructed as

t(x) � sign 
N

i�1
αiK xi, xk(  + b⎛⎝ ⎞⎠, (9)

where αi is the Lagrange multiplier and K(·) is a kernel
function matrix. In this paper, the radial basic function
(RBF) is selected as the kernel function of the LSSVM be-
cause it has fewer parameters and excellent nonlinear
mapping performance [33, 34]. /e form of the RBF
function is represented as follows:

K xi, xk(  � exp −
xi − xk

����
����
2

2δ2
⎛⎝ ⎞⎠, (10)

where δ is the bandwidth of the RBF (δ > 0).
/e parameters c and δ are two hyperparameters of the

LSSVM that strongly influence the accuracy of the fore-
casting. In this study, the DS algorithm is applied to search
for the optimal c and δ.

3.4. DS Algorithm. /e DS algorithm is a nature-inspired
metaheuristic optimization algorithm proposed by Civ-
icioglu [31] in 2012, and it simulates the Brownian-like
random-walk movement of organism migration. /e details
of the DS algorithm can be found in [31]. /e DS algorithm
is simple and easy to use and has a fast and large search
range. Multiple organisms can be simultaneously considered
in the optimization process of the DS, which increases the
likelihood of finding the global optimal solution. /erefore,
the DS algorithm is applied for the optimization of the
LSSVM.

3.5. Implementation of DS-LSSVM. To construct PIs, both
lower and upper bounds of forecasting targets must be
calculated. Unlike the ANN-based LUBEmethod, which can
have two outputs, the LSSVM model can generate only a
single output. /erefore, two LSSVM models are applied for
predicting the two bounds of the PIs. c and δ are the two
parameters that affect the prediction accuracy of the LSSVM.
/us, the DS algorithm is used to optimize the four pa-
rameters of the two LSSVMs. In point predictions, optimal
parameters of the LSSVM are usually obtained by the
minimization of error-based cost functions, such as the sum
of squared error [18, 19, 33]. Since this paper aims to use
LSSVMs for PI construction, PI-based cost functions are
more reasonable than error-based cost functions for training
the LSSVM. In this study, the PI-based cost function of the
DS algorithm is the CWC (equation (6)). Minimizing the
CWC in the iterations of the DS algorithm enables the
identification of optimal parameters. /en, the optimal
parameters are transferred to the LSSVMs to directly con-
struct the PIs.

In this paper, the XD01 and ZG118 sites of the Baishuihe
landslide and ZG289 and ZG287 sites of the Tanjiahe
landslide are selected as prediction targets. /e frequency of
the reservoir level and rainfall are surveyed once a day, and
the monitoring displacement is determined once a month.
To ensure a consistent time scale, both reservoir level and
rainfall are processed into a monthly average reservoir level
and monthly rainfall (accumulated rainfall within one
month). /e overall flowchart of the construction of the PI
by the LSSVM and DS algorithms is shown in Figure 9. /e
detailed steps are described as follows.

3.5.1. Input Variable Selection. To establish nonlinear
mapping between the influence factors and landslide dis-
placement, suitable input variables must be selected, and
these variables must be tightly correlated with landslide
displacement. According to the previous studies of landslide
displacement prediction in the /ree Gorges Reservoir area
[8, 13, 15, 17–19, 21], the current evolution state and external
triggering factors of landslides are two aspects for input
variable selection. Generally, three factors, namely, the
displacements over the past 1, 2, and 3 months, are selected
as the input variables corresponding to the current evolution
state. Four factors, namely, the rainfall over the past month,
the rainfall over the past 2 months, the average reservoir
level in the current month, and the change in reservoir level
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in the current month, are usually selected as the input
variables corresponding to the external factors. /us, a total
of seven input variables are selected. /ese input variables
are commonly used and considered to be effective inputs
[8, 13, 15, 17–19, 21]./e displacement in the current month
is selected as the output.

3.5.2. Data Partitioning. /e formulated data set (xi, ti)

with N samples should be partitioned into two parts, i.e., the
training data set and testing data set. /e former is used to
train the LSSVM, and the latter is applied to validate the
proposed method. In studies of landslide deformation
prediction in the /ree Gorges Reservoir area based on a
machine learning algorithm [8, 13, 15, 17–19, 21, 27, 29],
researchers usually select the monitoring displacement data
of the most recent year as the testing set and use the
remaining data as the training set. /erefore, this common
criterion is employed to divide the data. /e XD01 moni-
toring point of the Baishuihe landslide is processed in 100
groups. 83 observations between February 2005 and Sep-
tember 2011 are selected as the training set, and 17 obser-
vations between January 2012 and May 2013 are selected as
the testing set./e ZG118monitoring point of the Baishuihe
landslide is processed in 117 groups. /e training set is the
99 observations between October 2003 and September 2011,
and the testing set is the 17 observations between January
2012 and May 2013. /e ZG289 and ZG287 monitoring
points of the Tanjiahe landslide are processed in 101 groups.
83 observations between February 2007 and September 2013
are selected as the training set. /e testing set is the 18
observations between January 2014 and June 2015. To
eliminate differences in the data set sizes, both training set
and testing set are scaled in the range [−1, 1]. After training
and testing, all the values are renormalized to the actual size.

3.5.3. Parameter Initialization. In the DS algorithm, the
dimension of the respective problem, the maximum iter-
ation, and the number of elements in the superorganism
must be determined. In this study, the proposed method
contains two LSSVMmodels, and each model contains two
hyperparameters (c and δ). /us, the dimension of the
respective problem is four (c1, δ1, c2, δ2). /e number of
elements in the DS algorithm is set to 40. /e maximum
iteration is determined by multiple trials. Most of the trial
results show that the cost function value tends to be stable
when the maximum iteration is 400, and a larger number of
iterations do not significantly change the fitness value.
/erefore, the maximum iteration is set to 400. /e initial
hyperparameter search range should be coarse and is set to
[10−15, 1015], and the hyperparameters are optimized within
this initial range. /en, through multiple trials, the coarse
range can be refined based on the range within which most
of the optimal values fall. In the Baishuihe landslide, the
search range of c and δ is refined to [1010, 1015]. In the
Tanjiahe landslide, the search area of c and δ is [1010, 1015]
and [1010, 1014], respectively. /e confidence level is set to
95%. In the CWC, µ, δ, and ψ are set to 0.95, 0.05, and 0.1%,
respectively.

3.5.4. Training the LSSVM Using the DS Algorithm. /e
training set is applied to train the two LSSVM models. /e
training algorithm is the DS algorithm, and the training goal
is to minimize the cost function CWC. In each iteration, the
CWC is evaluated, and the optimal parameters are updated
based on the CWC. In this study, the termination criterion is
the maximum number of iterations. Once the termination
criterion is reached, the four optimal hyperparameters of the
LSSVM are obtained, and the PIs of the training set can also
be obtained.
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Figure 9: Flowchart of the DS-LSSVM method for PI construction for landslide displacement.
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3.5.5. Construct the PIs of the Testing Set. /e optimal
hyperparameters are transferred to the LSSVMs for con-
structing the PIs of the testing data set. /en, the quality of
the constructed PIs is evaluated by the PICP, NMPIW, and
CWC./e point prediction can also be derived by averaging
the upper and lower bounds of the constructed PIs when
deterministic results are demanded.

4. Results and Comparison

4.1.Numerical Results. For validating the repeatability of the
proposed method, the proposed method is repeatedly
implemented 10 times in each case study. /e prediction
performances (CWC, PICP, and NMPIW) are calculated in
each replicate, and the final lower and upper bounds of the
PIs are constructed by averaging the results of 10 replicates.
/e convergence behaviour of the fitness function for the
four monitoring points for the LUBE method is shown in
Figure 10. /e test results are reported in Tables 1 and 2.

Tables 1 and 2 show the summary of all results obtained
by the ten calculations using the proposed method. /e
CWC, PICP, and NMPIW methods and their statistics,
including the median and standard deviation (SD), are
computed for the quantitative assessment of the perfor-
mance of the DS-LSSVM method. /e highest-quality PIs
(the smallest CWC and its associated PICP and NMPIW) in
10 replicates are also listed in the row named Best. /e PICP
is very close to or higher than the 95% confidence level in
most replicates in both landslide cases./is result shows that
the PI generated by the proposed method is effective, reli-
able, and able to satisfactorily cover the target in different
runs. /e values of CWC, PICP, and NMPIW in ten rep-
licates are relatively consistent, and their medians and best
values are close for the two case studies. /e respective SDs
of these three indexes are 0.0709, 0.0304, and 0.0689 for
XD01 and 0.1472, 0.0287, and 0.1450 for ZG118 of the
Baishuihe landslide and 0.0571, 0.0315, and 0.0091 for
ZG289 and 0.0474, 0.0454, and 0.0138 for ZG287 of the
Tanjiahe landslide. /e low variation in the three indexes
confirms the repeatability and stability of the proposed
method.

Figure 11 shows the PIs of the Baishuihe and Tanjiahe
landslides with a 95% confidence level constructed by av-
eraging the results of the ten replicates. /e monitoring
displacement of both training and testing sets for XD01,
ZG118, ZG289, and ZG287 is well captured by the con-
structed PIs, and the trends of the upper and lower bounds
are basically consistent with the actual observations. In
Figures 11(a) and 11(b), there are individual displacements
in the training dataset that are not covered by the con-
structed PIs. /e reason for this phenomenon is that the
model is trained to construct PIs with 95% confidence, not
100%, so there may be individual monitoring displacements
in the training set that are not covered by the PIs. /e PICP
in both case studies generally meets the given 95% confi-
dence level. /e above results indicate that the proposed
method can effectively evaluate the uncertainties corre-
sponding to the landslide displacement prediction and
provide satisfactory PIs.

4.2. Method Comparison. For comparison purposes, the
PSO-LSSVM, GA-LSSVM, bootstrap-ELM-ANN [21], and
PSO-ELM [25] methods are implemented to construct PIs
using the same data sets. In the PSO-LSSVM and GA-
LSSVMmethods, the search range of c and δ is [1010, 1015] in
the Baishuihe landslide. In the Tanjiahe landslide, the search
area of c and δ is [1010, 1015] and [1010, 1014], respectively. By
minimizing the cost function CWC in the GA and PSO, the
optimal parameters of the LSSVM can be obtained. In the
bootstrap method, a paired bootstrap is used, and the
bootstrap replicate number is set to 200./e ELM is a single-
hidden-layer feedforward neural network. /e number of
hidden nodes in the ELM is determined by a 10-fold cross-
validation method using only the training set. /e nodes of
the hidden layer of the ELM are 23 and 22 for the XD01 and
ZG118 sits of the Baishuihe landslide, respectively, and 29
and 30 for the ZG287 and ZG289 sites of the Tanjiahe
landslides, respectively. /e sigmoid function is selected as
the activation function. A single hidden layer ANN is se-
lected, and the nodes of the hidden layer of ANN are 10 and
15 for the Baishuihe landslide and Tanjiahe landslide, re-
spectively. In the PSO-ELM, an ELM model with two
outputs is optimized by PSO to directly generate PIs [25].
/e nodes of the hidden layer and activation function of the
ELM are the same as those of the bootstrap-ELM-ANN
model. /e cost function of the neural network-based LUBE
is equation (6). All the compared methods are run ten times.
/eir statistical indicators of the comprehensive index
(CWC) are calculated to compare the prediction perfor-
mance of the proposed method.

For a better quantitative comparison, the percentage
improvement (PER) is used, and it is defined as

PER �
CWCcompared − CWCproposed

CWCcompared
× 100%, (11)

where proposed and compared represent the DS-LSSVM
and the compared methods, respectively. Based on the
definition of equation (11), if the value of PER is positive,
then a greater PER value corresponds to higher-quality PIs
of the DS-LSSVM relative to the PIs of the comparison
method, and vice versa.

/e PER values are reported in the parentheses in Ta-
ble 3. Hereafter and for ease of reference, the compared
methods’ subscripts are used to represent the PERs of the
compared methods (i.e., PERPSO-LSSVM, PERGA-LSSVM,
PERBootstrap-ELM-ANN, and PERPSO-ELM).

Table 3 shows that the PER values are all positive and
different for the different methods. In the Baishuihe land-
slide, the minimum and the maximum of the median of the
PERs are 13.73% and 67.55%, respectively. /e minimum
and the maximum of the SDs of PERs are 35.71% and
92.17%, respectively. In the Tanjiahe landslide, the minimum
and the maximum of the median of the PERs are 18.39% and
99.48%, respectively. /e minimum and the maximum of
the SDs of the PERs are 53.02% and 100%, respectively.
/ese data indicate that the proposed method outperforms
the four compared methods in terms of the reliability and
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stability of the landslide displacement interval prediction
and can construct a more high-quality PI.

/e LSSVM-based LUBE methods (PSO-LSSVM and
GA-LSSVM) have a lowermedian of the PER than that of the

neural network-based methods (bootstrap-ELM-ANN and
PSO-ELM). /is result shows that the LSSVM methods
establish higher-quality PIs than the neural network models.

Compared with the PSO-LSSVM and the GA-LSSVM
algorithms, the proposed method provides a significant
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Figure 10: Convergence behaviour of the fitness function for the four monitoring points: (a) XD01 of the Baishuihe landslide; (b) ZG118 of
the Baishuihe landslide; (c) ZG287 of the Tanjiahe landslide; (d) ZG289 of the Tanjiahe landslide.

Table 1: Prediction results of the proposed method in the testing
set of the Baishuihe landslide. Best means the highest-quality PIs in
10 replicates, and SD means the standard deviation.

Times
XD01 ZG118

CWC PICP NMPIW CWC PICP NMPIW
1 0.8446 1.0000 0.8436 1.2280 0.9444 1.2194
2 0.8960 0.9412 0.8811 0.8848 0.9444 0.8784
3 0.8894 0.9412 0.8747 0.9932 1.0000 0.9922
4 0.9908 1.0000 0.9898 0.8186 1.0000 0.8176
5 0.8641 1.0000 0.8631 1.2875 0.9444 1.2786
6 0.8629 1.0000 0.8619 1.1636 0.9444 1.1554
7 0.9990 0.9412 0.9826 1.0154 0.9444 1.0081
8 0.9110 0.9412 0.8959 1.0081 1.0000 1.0071
9 0.7722 1.0000 0.7712 1.0971 1.0000 1.0961
10 0.9695 1.0000 0.9685 1.1299 0.9444 1.1220
Best 0.7722 1.0000 0.7712 0.8186 1.0000 0.8176
Median 0.8927 1.0000 0.8779 1.0562 0.9444 1.0521
SD 0.0709 0.0304 0.0689 0.1472 0.0287 0.1450

Table 2: Prediction results of the proposed method in the testing
set of the Tanjiahe landslide.

Times
ZG289 ZG287

CWC PICP NMPIW CWC PICP NMPIW
1 0.1293 0.9444 0.1275 0.1185 0.9444 0.1168
2 0.1339 0.9444 0.1321 0.1034 0.9444 0.1018
3 0.2803 0.8889 0.1318 0.2073 0.8889 0.0972
4 0.1207 0.9444 0.1189 0.0948 1.0000 0.0938
5 0.1116 0.9444 0.1100 0.1329 1.0000 0.1319
6 0.1238 1.0000 0.1228 0.1069 0.9444 0.1052
7 0.1239 0.9444 0.1221 0.1197 0.9444 0.1179
8 0.2382 0.8889 0.1118 0.1770 0.8889 0.0829
9 0.1365 0.9444 0.1347 0.2270 0.8889 0.1066
10 0.1372 0.9444 0.1354 0.1030 1.0000 0.1020
Best 0.1116 0.9444 0.1100 0.0948 1.0000 0.0938
Median 0.1316 0.9444 0.1251 0.1191 0.9444 0.1036
SD 0.0571 0.0315 0.0091 0.0474 0.0454 0.0138
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improvement in the median and SD. For example, in ZG289
of the Tanjiahe landslide, the median and SD of the PERPSO-

LSSVM are 18.39% and 87.72%, and the median and SD of the
PERGA-LSSVM are 66.65% and 94.74%, respectively. /ese
data show that, for predicting the landslide displacement
interval, higher-quality PIs can be obtained using the DS
algorithm to optimize the LSSVM hyperparameters than
using PSO and GA algorithms.

Compared with the LSSVM-based LUBE method, the
bootstrap-ELM-ANN and PSO-ELM methods perform
poorly in the two case studies. Specifically, the PSO-ELM
method performs the worst and has serious overfitting
problems in the Tanjiahe landslide. /e PSO-ELM method

can still obtain a reliable PI in the Baishuihe landslide case.
For this method, the median of the CWC of XD01 is 1.70,
although its stability is poor, and its SD value is 1.15. In the
Tanjiahe landslide, the PSO-ELM method is completely
ineffective, and its best, median, and SD values are much
larger than those of the other three methods. /ese data
show that the PSO-ELM method poorly predicts the cu-
mulative displacement of the two landslides.

/e bootstrap-ELM-ANN method has higher reliability
than the PSO-ELMmethod./e obtained PICP values in ten
experiments are relatively stable and all higher than the 95%
confidence level. For example, the SD of the PERBootstrap-

ELM-ANN is smaller than that of the PERPSO-LSSVM and
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Figure 11: Constructed PIs with 95% confidence levels: (a) XD01 of the Baishuihe landslide; (b) ZG118 of the Baishuihe landslide; (c) ZG289
of the Tanjiahe landslide; (d) ZG287 of the Tanjiahe landslide.
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PERGA-LSSVM for the Tanjiahe landslide and XD01 of the
Baishuihe landslide. However, the NMPIW is large, resulting
in a large CWC. /e best and median values of the PER-
Bootstrap-ELM-ANN are higher than those of the PERPSO-LSSVM
and PERGA-LSSVM, indicating that the bootstrap-ELM-ANN
method tends to build wide PIs to achieve a satisfactory
coverage probability.

5. Discussion

Different landslides have various deformation characteristics
and degrees due to the various environments and engi-
neering geological conditions. /erefore, the prediction
accuracy varies for different landslides using the same
prediction method. For example, in this study, the predic-
tion performance of the Baishuihe landslide and the Tanjiahe
landslide is obviously different under the proposed method.
/e deformation rate of the Tanjiahe landslide is relatively
mild, and the step-like deformation characteristic is insig-
nificant. /e deformation of this landslide is mainly con-
trolled by internal factors, such as the creep of the sliding
zone material, and does not respond dramatically to the
triggering factors (reservoir level and rainfall), which makes
the deformation of the Tanjiahe landslide easier to predict by
an extrapolation of the early deformation. In contrast, the
deformation of the Baishuihe landslide is drastic. Due to
external factors, such as periodic rainfall and reservoir level
fluctuations, the deformation of the Baishuihe landslide has
obvious step-like characteristics. Because of the complex
nonlinear relationship between the triggering factors and
landslide deformation, accurately predicting landslide dis-
placement is more difficult, especially in the accession de-
formation phase, and the prediction error is often large (this

phenomenon can be found in [13, 15, 18]). /e information
provided by traditional point prediction methods is barren
and cannot enable decision makers to perceive the reliability
of the point prediction./erefore, interval prediction, which
can quantify the uncertainties in the displacement predic-
tion, is a better alternative and more reasonable than tra-
ditional point prediction. /rough interval prediction, the
range of the future deformation trend is quantitatively
evaluated, and the best and worst conditions are provided to
decision makers so that more rational disaster prevention
decisions can be made.

For the same landslide displacement data, the quality of
the constructed PIs by different machine-learning-based
interval prediction methods is also diverse because of the
imperfect structure, overfitting, and hyperparameters. In
practice, a PI with a coverage probability that is equal to or
greater than the given confidence level and an interval width
that is as narrow as possible is expected. A PI with a high
coverage probability but a very wide width is meaningless.
/is paper compares the proposed method with the PSO-
LSSVM, GA-LSSVM, bootstrap-ELM-ANN, and PSO-ELM
methods using the same data set. /e comparative analysis
shows that the proposed method is obviously superior to the
comparedmethod and can construct a high-quality PI with a
high coverage probability and a narrow width. /e boot-
strap-ELM-ANN method builds the PI via a quantile
analysis of the point prediction errors with certain prior
assumptions. Because these assumptions may not conform
with the actual situation, the established PIs will be unre-
liable and invalid. /e proposed method based on the LUBE
framework can directly build PIs without any error as-
sumptions with high robustness and reliability. /erefore,
this method is a promising tool for constructing the PI of the

Table 3: CWC comparisons between the proposed and compared methods.

Cases PSO-LSSVM GA-LSSVM Bootstrap-ELM-ANN PSO-ELM

Baishuihe landslide

XD01

Best 0.96 1.10 1.18 1.90
(19.79%) (30.00%) (34.75%) (59.47%)

Median 1.04 1.35 1.67 2.75
(14.42%) (34.07%) (46.71%) (67.64%)

SD 0.67 0.21 0.12 0.37
(89.55%) (66.67%) (41.67%) (81.08%)

ZG118

Best 0.94 1.08 1.50 2.38
(12.77%) (24.07%) (45.33%) (65.55%)

Median 1.34 1.26 1.64 3.19
(20.90%) (15.87%) (35.37%) (66.77%)

SD 0.44 0.60 0.15 0.98
(65.91%) (75.00%) (0.00%) (84.69%)

Tanjiahe landslide

ZG289

Best 0.14 0.21 0.34 13.25
(21.43%) (47.62%) (67.65%) (99.17%)

Median 0.15 0.40 0.35 9015.04
(13.33%) (67.50%) (62.86%) (100.00%)

SD 0.49 1.04 0.11 11166.22
(87.76%) (94.23%) (45.45%) (100.00%)

ZG287

Best 0.12 0.11 0.24 1.22
(25.00%) (18.18%) (62.50%) (92.62%)

Median 0.22 0.18 0.25 126.23
(45.45%) (33.33%) (52.00%) (99.90%)

SD 0.06 0.94 0.08 35571.46
(16.67%) (94.68%) (37.50%) (100.00%)
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landslide displacement. /e neural network-based LUBE
method (PSO-ELM) is also compared with the proposed
method. However, the performance of this method in the
test set of the two case studies is poor./e PSO-ELMmethod
overfits the Tanjiahe landslide, and the constructed PIs in the
Tanjiahe landslide are not satisfactory in terms of the
confidence level and the interval width. /e overfitting
problems may be due to fewer training samples, noise in the
training data, or improper training. /e process of solving
the overfitting problem of the model is relatively tedious,
which is a setback to the strong inference capacity of the
proposed method and the good applicability to different
landslides.

In practical applications, the proposedmethod is suitable
for landslide displacement prediction in the medium term
and long term and can be used to construct the PIs of the
expected displacement, which has been correlated with the
reservoir level and rainfall forcing. PIs are more realistic and
relevant for decision makers than point predictions since
they allow researchers to acknowledge uncertainty [21]. /e
construction of PIs can effectively supplement point pre-
dictions for early warning systems. /e PIs can be used to
detect changes in the creep stage. If the monitored value is
much beyond the established PI range, then researchers
should be alert and seek supplementary information to
determine whether the landslide is in the tertiary creep stage.
To this end, time-of-failure forecasting methods could be
run in parallel to compute the alert velocity thresholds, and
the corresponding early warning procedures should be
considered until either collapse occurs or the landslide
reaches a new equilibrium [4].

In this study, the proposed method needs a minimum
window of three months of previous measurements to
predict the displacement of the next month. /us, the
method is only applicable for landslides with relatively long
and continuous monitoring data. PIs are constructed at a
95% confidence level in this paper./e other quantiles of the
PIs can also be built by the proposed method if needed. Since
the monitoring data of the landslide displacement are sparse,
the prediction accuracy may be low for the cumulative
displacement. /erefore, wavelet decomposition, empirical
mode decomposition, and other time series decomposition
techniques can be introduced and may improve the quality
of the PIs. In addition, the appropriate selection of the input
variables can effectively improve the prediction accuracy of
the model. Because the focus of this paper is the interval
prediction algorithm, the research on input variable selec-
tion is shallow, and only seven input variables are selected.
Future research can fully investigate the influencing factors
that may be related to deformation according to the specific
landslide, and correlation analysis algorithms such asmutual
information, maximum mutual information theory, and
partial autocorrelation functions can be introduced to es-
tablish suitable variable selection criteria.

6. Conclusions

In this paper, a direct interval prediction method to quantify
the uncertainties associated with landslide displacement

prediction is developed. Landslide displacements can be
predicted with reasonable confidence in advance by the
proposed method. In this method, two LSSVMs are applied
to construct the PIs of landslide displacement. /e pa-
rameters of the LSSVMs are optimized by the DS algorithm,
which has strong global optimization capabilities. By min-
imizing a PI-based cost function, the optimal parameters of
the LSSVMs are obtained by the DS algorithm./e proposed
method is applied to the Baishuihe landslide and the Tan-
jiahe landslide. /e prediction results show that the pro-
posed method has good applicability to the two landslides.
/e prediction performance of the proposed method is
compared with that of several other algorithms, namely, the
PSO-LSSVM, GA-LSSVM, bootstrap-ELM-ANN, and PSO-
ELM methods. /e comparison results confirm the effec-
tiveness and superiority of the proposed method in the
construction of high-quality PIs for landslide displacement.
/erefore, the DS-LSSVM method is a promising technique
for landslide displacement interval prediction in areas of the
/ree Gorges Reservoir with similar geological conditions as
the Baishuihe and Tanjiahe landslides.
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