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In this paper, a novel no-equilibrium 5D memristive hyperchaotic system is proposed, which is achieved by introducing an ideal
flux-controlled memristor model and two constant terms into an improved 4D self-excited hyperchaotic system. ,e system
parameters-dependent and memristor initial conditions-dependent dynamical characteristics of the proposed memristive
hyperchaotic system are investigated in terms of phase portrait, Lyapunov exponent spectrum, bifurcation diagram, Poincaré
map, and time series.,en, the hidden dynamic attractors such as periodic, quasiperiodic, chaotic, and hyperchaotic attractors are
found under the variation of its system parameters. Meanwhile, the most striking phenomena of hidden extreme multistability,
transient hyperchaotic behavior, and offset boosting control are revealed for appropriate sets of the memristor and other initial
conditions. Finally, a hardware electronic circuit is designed, and the experimental results are well consistent with the numerical
simulations, which demonstrate the feasibility of this novel 5D memristive hyperchaotic system.

1. Introduction

As an important branch of nonlinear science, chaos has
undergone great evolution and development since the first
three dimensional (3D) system showing butterfly-shaped
chaotic attractor was reported by Lorenz in 1963 [1–3].
Compared with chaos, hyperchaos possesses more ran-
domness, complex dynamical behavior, and unpredictability
with at least two positive Lyapunov exponents (LEs). Nu-
merous examples of novel hyperchaotic systems [4–9] can be
intensively discovered, and they have been widely applied in
many fields, such as cryptography [10], neural network [11],
synchronization [12, 13], and secure communications
[14, 15].

,e memristor that had been postulated as the fourth
basic circuit element in 1971 by Chua [16] is a two-terminal
passive electronic element described by nonlinear

constitutive relation of charge q and flux φ and was for the
first time fabricated in 2008 by Williams’s group of HP Labs
[17]. Currently, the modeling of basic memristor circuits
[18, 19], the physical realization of all kinds of memristors
and memristive systems [20, 21], the design and analysis of
memristor-based application circuits [22, 23], etc. are
attracting much attention in engineering communities. In
particular, by introducing memristors with the intrinsic
nonlinear characteristics into some existing dynamical
systems, several memristor-based chaotic/hyperchaotic
systems are proposed and applied [24–27]. ,ese mem-
ristor-based chaotic/hyperchaotic systems could exhibit
numerous nonlinear dynamical behaviors, such as hidden or
self-excited attractors, and coexisting multiple [28] or
coexisting infinitely many attractors [29, 30].

Hidden attractor is a new type of attractors and has
received considerable interest recently [31–35]. ,e
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significant difference between self-excited attractor and
hidden attractor is that the basin of attraction with self-
excited attractor is associated with one or more unstable
equilibrium points, while that of hidden attractor does not
intersect with any small neighborhoods of unstable equi-
librium points. ,e hidden attractor exists in some special
chaotic systems, including ones with only stable equilibrium
points [36, 37], with an infinite number of equilibrium
points [38, 39], or without equilibrium points [40, 41]. Since
hidden attractor systems have neither heteroclinic nor
homoclinic orbits, there is no way to verify the chaos state by
conventional Shilnikov criteria [42]. However, there has
been significant interest in studying hidden attractors be-
cause they play an important role in both academic sig-
nificance and practical engineering applications [43]. For
example, they allow unexpected and potentially disastrous
responses to perturbations in a structure like an airplane
wing or a bridge [44].

Multistability, meaning the coexistence of multiple
attractors that rely on the different initial conditions and the
same set of system parameters, is a fantastic physical phe-
nomenon [45–47]. Multistability makes a nonlinear dy-
namical system offer great flexibility and exhibits a plentiful
diversity of stable states of the system. In particular, when
the number of coexisting attractors tends to infinity, the
coexistence of infinitely many attractors is called extreme
multistability. ,e emergence of extreme multistability is
usually accompanied by other interesting dynamical be-
haviors just like transient behavior [48–50]. Since multi-
stability can be taken as an additional source of randomness
used for many information engineering applications [51] or
used for image processing [52], it is attractive to seek a
memristor-based hyperchaotic system that has the striking
dynamical behavior of extreme multistability.

Motivated by the abovementioned considerations, a
novel no-equilibrium 5D memristive hyperchaotic system is
proposed in this paper, which is achieved through intro-
ducing an ideal flux-controlled memristor model and two
constant terms into an improved 4D self-excited hyper-
chaotic system by [53]. From the physical circuit realization
point of view, the corresponding 5D memristive hyper-
chaotic circuit is achieved by utilizing a memristor to
substitute a linear coupling resistor and adding DC sources
to realize two constant terms. ,e dynamical properties of
the proposed system are investigated in terms of phase
portrait, Lyapunov exponent (LE) spectrum, bifurcation
diagram, Poincaré map, time series, and so on. To the best of
the authors’ knowledge, such a 5D memristive hyperchaotic
system without equilibrium points exhibiting the striking
phenomena of hidden extreme multistability, transient
hyperchaotic behavior, and offset boosting control that has
hardly been reported in the published literature until now, to
a certain extent, is worthy of further detailed discussion.

,e remaining sections of this paper are organized as
follows. Section 2 briefly introduces how to obtain the
mathematical model of the novel 5D memristive hyper-
chaotic system. ,e complex and abundant dynamical
properties of this novel 5D memristive hyperchaotic system
including hidden hyperchaos, extreme multistability,

transient hyperchaotic behavior, and offset boosting control
are analyzed numerically and theoretically in Section 3. In
Section 4, the hardware electronic circuit is designed and the
experimental results are presented to show its feasibility.
Finally, the conclusions are summarized in Section 5.

2. The Memristor and Novel 5D Memristive
Hyperchaotic System

,e memristor is a two-terminal passive element with
variable resistance called memductance W(φ) or memri-
stance M(q). ,e memristance M(q) described by nonlinear
function M(q)� dφ(q)/dq depends on the amount of charge
q that has passed through the memristor in a given direction.
In other words, the memristor has the distinctive ability to
memorize the past quantity of charge. ,e voltage-current
(v-i) characteristic curve of a memristor can exhibit a
pinched hysteresis loop whose shape varies with the fre-
quency. Let us consider an ideal flux-controlled memristor
model W(φ) in this paper, which can be described as

_i � W(φ)v,

_φ � v,

W(φ) �
dq(φ)

dφ
� α + βφ2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where parameters α and β are positive constants. Here, we
just use the mathematical expression of the ideal flux-
controlledmemristor and neglect the physical significance of
its variables.

Using simple feedback control techniques, by adding an
additional state variablew to the second equation of the well-
known Lorenz system, a 4D hyperchaotic system by [53] can
be described as

_x � a(y − x),

_y � bx − y − xz + w,

_z � −cz + xy,

_w � −dw − kx + exy,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where a, b, c, d, e, and k are all system parameters and x, y, z,
w are four state variables. When a, b, c, d ∈ R+, e ∈ R−, k ∈ R,
these system parameters can determine the dynamic be-
haviors and bifurcations of system (2) with three equilibrium
points or a unique zero equilibrium point.

Based on the 4D hyperchaotic system (2), the afore-
mentioned ideal flux-controlled memristor model is intro-
duced to the first equation, and the flux φ that passes
through the memristor became a new state variable denoted
as U. We consider Y as the state voltage v inputting to the
memristor, and let ρ be a positive parameter indicating the
strength of the memristor. From the physical circuit reali-
zation point of view, this approach is equivalent to replacing
the linear coupling resistor which emulates the constant
coefficient of the variable y in the first equation with the
memristor. At the same time, the two constant terms g and h
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are added to the second and third equation, respectively.
Meanwhile, a linear state variable term y of system (2) is
reduced in the second equation. As a result, a dimensionless
state equation set of a novel 5D memristive hyperchaotic
system is constructed and described as

_X � ρW(U)Y − aX,

_Y � bX − XZ + W + g,

_Z � −cZ + XY − h,

_W � −dW − eX − fXZ

_U � Y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where X, Y, Z,W, U and ρ, a, b, c, d, e, f, g, h are the new five
state variables and the system parameters. Here, it can be
seen that system (3) has fourteen terms, including four
(three quadratics and one cubic) nonlinear terms. It is worth
noting that the nonzero constant terms g and h are newly
introduced, which can make the proposed 5D memristive
hyperchaotic system have no equilibrium points. ,erefore,
the nonzero constant terms g and h are especially valuable
for the emergence of hidden extreme multistability in the
presented system.

3. Dynamic Analysis and Numerical Simulation

In this section, with the help of equilibrium points, phase
portrait, LE spectrum, bifurcation diagram, Poincaré map,
and time series, the striking and complex nonlinear dy-
namical behaviors of the novel 5D memristive hyperchaotic
system are broadly investigated by numerical simulations,
including hidden hyperchaotic attractor, hidden extreme
multistability, transient hyperchaotic behavior, and offset
boosting control.

3.1. Equilibrium Points and Typical Hidden Hyperchaotic
Attractor. ,e proposed 5D memristive hyperchaotic sys-
tem (3) has the same dissipativity as the original 4D
hyperchaotic system (2). Obviously, due to the introduction
of the constant terms g and h, the novel 5D memristive
hyperchaotic system (3) is asymmetrical. For calculating the
equilibrium points of system (3), let
_X � _Y � _Z � _W � _U � 0; the equilibrium equations can be
obtained:

0 � ρW(U)Y − aX,

0 � bX − XZ + W + g,

0 � −cZ + XY − h,

0 � −dW − eX − fXZ,

0 � Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Since g and h are all nonzero parameters, obviously,
from the first, fourth, and fifth equations of system (3),
X � Y � W � 0, which is inconsistent with the second
equation, provided that g≠ 0.,erefore, it can be shown that
system (3) has no real solutions and thus system (3) has no
equilibrium points, which is completely different from

system (2) with three equilibrium points. As a result, the
generating attractors of system (3) are all hidden, and the
Shilnikov criteria cannot be adopted to explain its chaotic
behavior because it has neither heteroclinic or homoclinic
orbits.

Consider that the typical system parameters given in
system (3) are chosen as ρ� 25, a� 20, b� 30, c� 4, d� 0.2,
e� 4, f� 0.1, g � 1, h� 1, α� 1, β� 0.02, and the initial
conditions (X(0), Y(0), Z(0), W(0), U(0)) are assigned as (1,
0, 1, 0, 1); the proposed 5D memristive system exhibits a
double-wing hyperchaotic hidden attractor, in which the
projections of phase portraits on X-Z, Y-Z, X-Y, X-W, Y-W
and Y-U planes are shown in Figures 1(a)–1(f), respectively.
As can be seen from Figure 1, the proposed system has more
complex attractor structure than system (2) presented by
[53]. Correspondingly, the five LEs are calculated by Wolf’s
method with a step of 0.5 as LE1 � 0.90134, LE2 � 0.2807,
LE3 � 0.015517, LE4 � −0.12893, and LE5 � −25.2686, and the
Lyapunov dimension is dL� 4.0423, which indicates that
system (3) is really a hyperchaotic system with two positive
LEs.

,e Poincaré maps of the proposed system (3) projected
on X-Y plane with the Z� 30 section and Y-Z plane with the
X�Y section are shown in Figures 2(a)–2(b), respectively.
Obviously, it can be seen that the Poincaré maps here
contain an infinite number of dense points with fractal
structures, which implies that the orbits of the attractors are
continuously bifurcated and folded in different directions. It
also illustrates that the system has hyperchaotic and ex-
tremely rich dynamical behavior.

3.2. Hidden Hyperchaotic Behavior Depending on System
Parameters. ,e proposed memristive hyperchaotic system
(3) has eleven system parameters which can affect the dy-
namical characteristics of the system. To analyze the gen-
eration of hidden hyperchaotic attractors of system (3) with
respect to some system parameters, the LE spectrum and the
corresponding bifurcation diagram as two useful tools are
adopted. In this subsection, the system parameters a and b
are adjusted, respectively, and the system parameters ρ� 25,
c� 4, d� 0.2, e� 4, f� 0.1, g � 1, h� 1, α� 1, β� 0.02 as well as
the initial conditions (1, 0, 1, 0, 1) are fixed.

When system parameter b� 30 and a increases from 2 to
38 with a step size of 0.2, the LEs of system (3) can be
calculated as shown in Figure 3(a). It is worth mentioning
that we have only sketched the first three LEs which are
sufficient to qualify the behavior of the system. ,e last two
LEs are not plotted because they are always large negative
number. ,e corresponding bifurcation diagram of state
variable Y is given in Figure 3(b). With the change of system
parameter a, from Figures 3(a) and 3(b), the system can be
tracked in different states.,e state of the system is related to
the values of LEs. One zero and four negative LEs indicate
the system is in periodic state. Two zero and three negative
LEs indicate the system is in quasiperiodic state. One
positive, one zero, three negative LEs and two positive, one
zero, two negative LEs, respectively, indicate that the system
is in chaotic and hyperchaotic states.,erefore, when system
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parameter a ∈ [2, 3.5), the system is in weak chaotic state.
When a ∈ [3.5, 12.1) ∪ (33, 38], the largest LE is a very small
positive value or almost equals zero; then the system is in
periodic or quasiperiodic limit cycle state. When a ∈ [12.1,
17.8], the system is in hyperchaotic state. When a ∈ (17.8,
33], the system is in chaotic state. ,ere, periodic windows
with zero largest LEs are also found in these chaotic regions.
From the above numerical simulations, the proposed system
(3) actually has rich hidden dynamics and can produce
hyperchaos. It can be also shown that the bifurcation dia-
gram matches well the LE spectrum.

Similarly, when a � 20 and b increases in the range of 0
to 60, the first three LEs and the bifurcation diagram of
state variable Y are plotted in Figures 3(c) and 3(d). From
Figures 3(c) and 3(d), the dynamical behaviors of system
(3) can be clearly observed. With the change of system
parameter b, the system can evolve into periodic state,
hyperchaotic state, and chaotic state. Furthermore, for a
wide range of system parameters a and b, the results in
Figure 3 have shown that the proposed 5D memristive
system (3) indeed generates hidden hyperchaotic
attractors.
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Figure 1: Different perspectives on the hyperchaotic attractor of system (3) without equilibrium.
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Figure 2: Poincaré maps of the hyperchaotic attractor of the system (a) on the Z� 30 section and (b) on the X�Y section.

4 Complexity



More specifically, some evolutive orbits changing with
system parameter a in the Y-Z plane are numerically dis-
played in Figures 4(a)–4(f). Figures 4(a) and 4(b) show the
projections of some weak chaotic attractors, Figures 4(c) and
4(f) show the projections of periodic or quasiperiodic limit
cycle, and Figures 4(d) and 4(e) show the projections of
chaotic and hyperchaotic attractors.

3.3. Hidden ExtremeMultistability Relying onMemristor and
Other Initial Conditions. ,e dynamic characteristics of
system (3) are affected not only by the system parameters,
but also by the memristor and other initial conditions. In
this subsection, we are going to explore hidden dynamical

behaviors closely relying on the memristor and other initial
conditions in the novel 5D memristive hyperchaotic system,
in which the system parameters are kept constant. To a
certain extent, initial conditions-dependent hidden dy-
namics just reveal the hidden extreme multistability phe-
nomenon in system (3).

,e typical system parameters are set as ρ� 25, a� 20,
b� 30, c� 4, d� 0.2, e� 4, f� 0.1, g � 1, h� 1, α � 1, β � 0.02,
and the initial conditions are fixed as (1, 0, 1, 0, U(0)); here,
the memristor initial condition U(0) is taken as the bifur-
cation parameter. When U(0) is gradually varying from −40
up to 40, the first three LEs and the corresponding bifur-
cation diagram of the state variable Y are plotted in
Figures 5(a) and 5(b), respectively. It is seen that the
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Figure 3: Hidden hyperchaotic dynamics: (a) and (c) are the first three LEs with the variation of parameters a and b; (b) and (d) are the
bifurcation diagrams of the state variable Y with the variation of parameters a and b.
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bifurcation diagram matches well the LE spectrum. From
Figure 5, it is easily found that the memristive system (3) can
exhibit periodic, chaotic, hyperchaotic, and intermittent
chaotic dynamics with the variation of the memristor initial
condition U(0). In Figure 5(a), we can notice the nearly

symmetric phenomenon around the point 0; that is, the
figure displayed from 0 to 40 is almost identical to the other
half observed from −40 to 0. When U(0) is gradually in-
creased from 0, the bifurcation diagram shows that system
(3) starts from hyperchaotic state to intermittent chaotic
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Figure 5: ,e occurrence of infinitely many hidden attractors of system (3) with respect to U(0): (a) the first three LEs, (b) the bifurcation
diagram of the state variable Y.
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Figure 4: Typical phase portraits in the Y-Z plane with different a values: (a) weak chaotic attractor (a� 2), (b) weak chaotic attractor
(a� 2.6), (c) quasiperiodic limit cycle (a� 5), (d) chaotic attractor (a� 12.3), (e) hyperchaotic attractors (a� 18), (f ) quasiperiodic limit cycle
(a� 40).
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state, and then turns into periodic state through reversed
period-doubling bifurcation route. ,e hyperchaotic be-
havior with two positive LEs is mainly located in the region
of [−18, 18]. At the same time, several narrow chaotic
windows with one positive LE in the hyperchaotic region
and some periodic windows with zero largest LEs in the
chaotic region are also found.

In fact, the infinite number of coexisting hidden
attractors is confirmed by Figure 5. As can be seen from
Figure 6, several negative and positive memristor initial
conditions are considered. When U(0) is set to −7, −20.5,
−24.5, −30, and −31.5, respectively, the phase portraits of
coexisting hidden multiple attractors in the Y-Z plane and
the Y-Z-U space are displayed in Figures 6(a) and 6(b).
Meanwhile, when U(0) is set to 5, 18.5, 22.5, 27.5, and 32,
respectively, the phase portraits of coexisting hidden
multiple attractors in the Y-Z plane and the Y-Z-U space
are displayed in Figures 6(c) and 6(d). From Figure 6, it can
be seen that the types of these hidden attractors are dif-
ferent from each other. Generally, Figure 6 clearly reveals
the coexistence of an infinite number of hidden attractors
with different dynamical behaviors, such as hyperchaos,
chaos, and asymmetrical or symmetrical limit cycle, im-
plying the emergence of extreme multistability in system
(3).

On the other hand, when the system parameters of
system (3) are kept unchanged, the initial conditions (X(0),
Y(0), Z(0),W(0), U(0)) are assigned as (X(0), 0, 1, 0, 1), and
the other initial condition X(0) is taken as the bifurcation
parameter. When X(0) is varied in the region of [−100, 100],
the first three LEs and the corresponding bifurcation dia-
gram of the state variable Y are plotted in Figures 7(a) and
7(b), respectively. With the variations of the other initial
condition X(0), it can be seen that system (3) has two states
of chaotic attractor and periodic limit cycle. In the same way,
several negative and positive initial conditions are consid-
ered according to Figure 7. When X(0) is set to −40, −15, 19,
52, respectively, the phase portraits of coexisting hidden
multiple attractors in the Y-Z plane are displayed in
Figures 8(a) and 8(b). Similarly, we can observe an infinite
number of coexisting attractors with different topological
structures including both chaotic and periodic motions. As a
result, it is remarked that when the memristor initial con-
dition U(0) and the other initial conditions of X(0), Y(0),
Z(0), and W(0) are assigned to different values, system (3)
has completely different bifurcation behaviors, which fur-
ther indicates that there is coexisting infinitely many
attractors’ behavior in system (3).

3.4. Transient Hyperchaotic Behavior. ,e interesting phe-
nomenon of transient hyperchaotic behavior means that a
nonlinear system behaves as hyperchaotic attractor in a finite
time interval and then turns into a periodic or another
hyperchaotic/chaotic attractor with the time evolution,
which has been observed in many nonlinear dynamical
systems. Interestingly, system (3) exhibits complex transient
hyperchaotic behavior when choosing appropriate system
parameters and initial conditions.

Firstly, we just fix the system parameter ρ� 27, while the
other system parameters and initial conditions of system (3)
are kept unchanged and selected as the typical values. ,e
phase portraits and the corresponding time-domain wave-
form are depicted in Figures 9(a) and 9(b), where the tra-
jectories of system (3) have a transition from a transient
hyperchaos to another steady hyperchaos with two totally
different amplitudes of the state variable X, and the LEs are
calculated as LE1 � 1.073, LE2 � 0.1981, LE3 � 0.0177,
LE4 � −0.0973, and LE5 � −25.3915. Secondly, by selecting
U(0)� −14 and keeping the other initial conditions and
system parameters unchanged, the trajectories of system (3)
change from a transient hyperchaotic attractor to another
steady chaotic attractor with the time evolution. At the
moment, the phase portraits and time-domain waveform are
shown in Figures 9(c) and 9(d), in which we can expressly
see that the two dynamic amplitudes of the state variable X
are quite different. ,e corresponding LEs are calculated as
LE1 � 0.5624, LE2 � 0, LE3 � −0.0242, LE4 � −1.9205, and
LE5 � −22.8422, implying that system (3) oscillates in chaotic
mode. ,erefore, the results shown in Figure 9 demonstrate
that transient hyperchaotic behavior occurs in system (3),
which leads to the generation of two attractors with different
amplitudes and topological structures.

3.5. Offset Boosting Control. In this subsection, another
distinctive trait of the novel no-equilibrium 5D mem-
ristive hyperchaotic system is the offset boosting control.
When a state variable has a single occurrence in the right
hand side of a nonlinear system, then adding a new
constant to that state variable might produce an offset and
thus give the freedom to transform the chaotic signal from
unipolar to bipolar or vice versa. ,is feature has been
reported in few chaotic systems previously [54, 55]. From
the perspective of engineering application, the offset
boosting control is important since it represents a useful
alternative to control the amplitude and voltage level of
the state variable for signal transformation and
transmission.

It is particularly exciting for us that the proposed 5D
memristive hyperchaotic system (3) can be offset-boosted in
at least two manners. Firstly, for c� f� 0, the state variable Z
appears just once in the second equation of system (3). ,e
state variable Z is flexibly offset-boosted by replacing Z with
Z+ n, where n is a new constant named as a controller. Now
the equations of system (3) can be rewritten as

_X � ρW(U)Y − aX,

_Y � bX − X(Z + n) + W + g,

_Z � XY − h,

_W � −dW − eX,

_U � Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

When the other system parameters are ρ� 25, a� 20,
b� 5, d� 0.2, e� 4, g � 1, h� 80, α � 1, β � 0.02, and the initial
conditions are selected as (1, 0, 1, 0, 1), we can acquire a
hyperchaotic hidden attractor. By selecting three different
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values of n, for n� −30 (green), n� 0 (blue), and n� 30
(magenta), the different positions with the same shape on the
X-Z and Y-Z planes of the new hyperchaotic hidden
attractors are exhibited in Figures 10(a) and 10(b). From
Figure 10, we can find that the negative or positive value of
the controller n will boost the state variable Z in the positive
or negative direction, respectively. Figures 10(c) and 10(d)
also show that the state variable Z is boosted from a
hyperchaotic bipolar signal to a hyperchaotic unipolar signal
by changing the value of the controller n, but the LEs remain
constant, which indicated that the controller n cannot in-
fluence the dynamics of system (5).

Secondly, when setting d� 0 and the other parameters as
ρ� 25, a� 20, b� 30, c� 4, e� 4, f� 0.1, g � 1, h� 1, α � 1, β
� 0.02 with the initial conditions unchanged, system (3) is
reduced to system (6) and the state variable W can be easily
boosted since it also appears just once in the second equation
of system (3). Now the equations of system (3) can be re-
written as

_X � ρW(U)Y − aX,

_Y � bX − XZ +(W + m) + g,

_Z � −cZ + XY − h,

_W � −eX − fXZ,

_U � Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

,us, the state variable W is offset-boosted by replacing
W with W+m, where m is a new constant. As depicted in
Figure 11, various positions of the phase portraits of system
(6) with hyperchaotic hidden attractors have been adjusted
depending on different values of m in the X-W and Y-W
planes, where the positive value ofm boosts the state variable
W in the negative direction or vice versa. Besides, as shown
in Figure 11, the controller m in the region of [−60, 60] can
merely change the average value of the state variable W and
keep the other four state variables (X, Y, Z and U) un-
changed. ,erefore, the controller m cannot influence the
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Figure 6: ,e phase portraits of the occurrence of infinitely many hidden attractors in the Y-Z plane and the Y-Z-U space with different
negative and positive U(0). (a), (b) U(0)� −7 (red), hyperchaos; U(0)� −20.5 (yellow), chaos; U(0)� −24.5 (blue) or U(0)� −30 (cyan),
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dynamics of system (6) which results in the constant LEs as
illustrated in Figure 11.

4. Circuit Implementation and
Experimental Results

Generally, the hardware circuit implementation of chaotic
system not only can validate the mathematical model but
also has been used in engineering applications such as
encryption, secure communication, and random signal
generation. In this section, to obtain the hyperchaotic
hidden attractor, Figure 12 shows a module-based analog
circuit with off-the-shelf discrete components on a
breadboard which is designed for implementation of sys-
tem (3).

,e operational amplifiers selected as LM741 and analog
multipliers chosen as AD633JN versions of AD633 with
±15V power supplies are utilized. ,e basic operations of
addition, subtraction, and integration are performed by the
operational amplifiers with the associated resistors or ca-
pacitors. ,e multiplication operation is performed by the
analog multipliers. Since AD633JN has an overall scale
factor of 1/10V, a factor of 0.1V needs to be put on each
nonlinear term. As shown in Figure 12, by replacing the
linear coupling resistor having VA and VB as terminals
voltages with the memristor emulator, system (3) is easily
implemented. ,e equivalent realization module of the flux-
controlled memristor W(U) is depicted in the dotted box of
Figure 12, where U is the inner state variable of capacitor
voltage in the memristor. ,e DC sources of V1 and V2 are
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Figure 7: Dynamics with respect to the other initial condition X(0): (a) the first three LEs, (b) the bifurcation diagram of the state variable Y.
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used to realize the constant terms g and h of system (3),
respectively. As denoted in Figure 12, X, Y, Z, W, and U
correspond to the voltages of C1, C2, C3, C4, and C5, re-
spectively. ,e initial conditions (X(0), Y(0), Z(0), W(0),
U(0)) of all the state variables of Figure 12 can be acquired by
turning on the hardware circuit power supply again.

Note that all the state variables of system (3) exceed the
saturation amplitude range of operational amplifiers LM741
and analog multipliers AD633JN; their values should be
scaled down. According to system (3), by changing the state
variables (X, Y, Z,W,U) to (10X, 10Y, 10Z, 20W, 2U), system
(3) can be expressed as

_X � −aX + ραY + 4ρβU
2
Y,

_Y � bX − 10XZ + 2W + 0.1g,

_Z � −cZ + 10XY − 0.1h,

_W � −dW − 0.5eX − 5fXZ,

_U � 5Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

By applying the voltage-current relations of circuit el-
ements, the Kirchhoff’s circuit laws, and the circuit prop-
erties of operational amplifiers, the circuit state equations of
Figure 12 can be described as

_X � −
1

C1R1
X +

1
C1R2

Y +
R22

100C1R3R21
U

2
Y,

_Y �
1

C2R4
X −

1
10C2R5

XZ +
1

C2R6
W +

V1

C2R7
,

_Z � −
1

C3R8
Z +

1
10C3R9

XY −
V2

C3R10
,

_W � −
1

C4R11
W −

1
C4R13

X −
1

10C4R12
XZ,

_U �
1

C5R14
Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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Comparing equation (7) with equation (8) and setting
the corresponding coefficients to be equal, we can obtain

a �
1

C1R1
,

ρα �
1

C1R2
,

4ρβ �
R22

100C1R3R21
,

b �
1

C2R4
,

10 �
1

10C2R5
,

2 �
1

C2R6
,

0.1g �
V1

C2R7
,

c �
1

C3R8
,

10 �
1

10C3R9
,

0.1h �
V2

C3R10
,

d �
1

C4R11
,

0.5e �
1

C4R13
,

5f �
1

10C4R12
,

5 �
1

C5R14
.

(9)

Let us take C1 �C2 �C3 �C4 �C5 �1uF and V1 �V2 �1V;
when ρ� 25, a� 20, b� 30, c� 4, d� 0.2, e� 4, f� 0.1, g � 1,
h� 1, α � 1, and β � 0.02, the value of the integrating resistor
can be obtained as R1 �R3 � 50 kΩ, R2 � 40 kΩ,
R4 � 33.333 kΩ, R6 �R13 � 500 kΩ, R7 �R10 �10MΩ,
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Figure 11: ,e offset boosting with m� −55 (green), m� 0 (blue), and m� 55 (magenta): (a) phase portrait in the X-W plane; (b) phase
portrait in the Y-W plane; (c) the average values of the variables X Y, Z, W, and U; (d) LEs spectrum.
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R8 � 250 kΩ, R11 � 5MΩ, R12 �R14 � 200 kΩ, R5 �R9 �10 kΩ,
and the value of the feedback resistance can be set as
R15 �R16 �R17 �R18 �R19 �R20 �R21 � 10 kΩ, R22 �100 kΩ.

,e experimental results are captured by an analog
oscilloscope (REK-620CH) as shown in Figure 13. Obvi-
ously, the experimental results are well consistent with the
numerical simulations in Figure 1, which have verified the
correctness and the physical realizability of this novel 5D
memristive hyperchaotic system.

5. Conclusion

In this paper, by utilizing a memristor to substitute a linear
coupling resistor and adding DC sources to realize two
constant terms in the realization circuit of an improved 4D
self-excited hyperchaotic system, a novel 5D memristive
hyperchaotic system without equilibrium points is pre-
sented. ,e complex nonlinear dynamical behaviors of the
novel 5D memristive hyperchaotic system are investigated
under the variation of its system parameters and the
memristor and other initial conditions, including hidden
hyperchaotic attractors, hidden extreme multistability, and
transient hyperchaotic behavior. More interestingly, by
using a single constant, the freedom of offset boosting of a
state variable of this system is obtained. Additionally, the
hardware experiments are performed to verify numerical
simulations. Since there is hidden extreme multistability in
the proposed 5D memristive hyperchaotic system, it means
that this system is especially suitable for engineering ap-
plications such as pseudorandom signal generation and
encryption field.
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