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In this paper, a heterogeneous diffusive prey-predator system is first proposed and then studied analytically and numerically.
Some sufficient conditions are derived, including permanence and extinction of system and the boundedness of the solution. )e
existence of periodic solution and its stability are discussed as well. Furthermore, numerical results indicate that both the spatial
heterogeneity and the time-periodic environment can influence the permanence and extinction of the system directly. Our
numerical results are consistent with the analytical analysis.

1. Introduction

Due to the complexity of ecosystems, prey-predator dy-
namics have always drawn interest among mathematical
ecologists, as well as experimental ecologists [1–3]. )e
significance of studying prey-predator dynamics is to gain
insights into the complex ecological processes. Prey-pred-
ator models, as the base of researching prey-predator dy-
namics, have attracted increasing attention [4–7]. Since
Holling [8] introduced the concept of the functional re-
sponse, a lot of studies have been devoted to the under-
standing of the effect of functional response on prey-
predator dynamics [9]. Usually, the functional response is
assumed to be either prey dependent or ratio dependent in
prey-predator models [10, 11].

A classical general prey-predator system can be written
as follows [12]:

dN

dt
� f(N)N − g(N, P)P, (1a)

dP

dt
� h(g(N, P), P)P, (1b)

where N and P denote the prey and predator densities,
respectively, f(N) is the prey growth rate, g(N, P) is the
functional response, and h(g(N, P), P) is the per capita
growth rate of predators. Let h(g(N, P), P) �

eg(N, P) − m(P), then equation (1b) can be rewritten as
follows:

dP

dt
� (eg(N, P) − m(P))P, (2)

where e is the conversion efficiency and m(P) is the specific
mortality of predators in absence of prey. For the function
m(P), the most widely accepted assumption [13] is
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m(P) � μ, where μ is a constant describing the death rate of
the predator. However, Cavani and Farkas [14] introduced
another function for m(P):

m(P) �
c + δP

1 + P
, (3)

where c is the mortality at low density and δ is the limiting,
maximal mortality (obviously, c< δ). )e specific mortality
(3) depends on the quantity of predators, which suggests that
the predator mortality is neither a constant nor an un-
bounded function, and increasing with quantity. Obviously,
when c � δ, equation (3) can be simplified to a constant
death rate type. Prey-predator systems with this nonconstant
death rate have been studied by some researchers [15–17].

Additionally, in order to understand patterns and the
mechanisms of spatial distribution of interacting species, the
dispersal process is taken into consideration [18–20]. )us,
the spatiotemporal dynamics of a prey-predator system can
be presented by a couple of reaction-diffusion equations
based on equations (1a) and (2) [10, 21, 22]:

zN

dt
� f(N)N − g(N, P)P + DNΔN, (4a)

zP

dt
� (eg(N, P) − m(P))P + DPΔP, (4b)

where DN and DP are the prey and predator diffusion co-
efficients, respectively, and the Laplace operator Δ describes
the spatial dispersal.

Because of the emergence of Lotka–Volterra models
[23, 24], a logistic type growth f(N) is usually assumed for
the prey species in the models. Some functional response
g(N, P) are taken into account in many works, such as
Holling type [25], Michaelis–Menten type [26, 27], and
Beddington–DeAngelis type [28, 29]. Especially, many bi-
ologists argued that the ratio-dependent theory is more
suitable for describing prey-predator systems in many sit-
uations [13, 30–32]. Since Ardini and Ginzburg proposed
the ratio-dependent prey-predator system, the prey-preda-
tor systems with ratio-dependent functional response are
widely studied [13, 33–36], and many interesting results are
obtained.

Based on model (4a) and (4b), in this paper, we employ
the ratio-dependent functional response and the noncon-
stant death rate (i.e., equation (3)) and assume that the
growth rate of prey population follows the logistic growth
type. Moreover, let u and v be the prey density and the
predator density, respectively. )en, the resulting system is

zu

zt
� ru 1 −

u

K
􏼒 􏼓 −

auv

bv + u
+ μ1Δu, x ∈ Ω, t> 0, (5a)

zv

zt
�

euv

bv + u
−

c + δv

1 + v
v + μ2Δv, x ∈ Ω, t> 0, (5b)

zu

zn
�

zv

zn
� 0, x ∈ zΩ, t> 0, (5c)

where Ω ∈ Rn is a bounded domain with smooth boundary
zΩ.

In system (5a)–(5c), when c � δ � μ, the system without
diffusion is so-called the Michaelis–Menten ratio-dependent
predator-prey system, which has been studied by many
researchers. Kuang and Beretta [37] systematically studied
the global behaviors of solutions and obtained some new and
significant results, but many important open questions re-
main to be unsolved. For these open questions, Hsu et al.
[38] resolved the global stability of all equilibria in various
cases and the uniqueness of limit cycles by transforming the
Michaelis–Menten-type ratio-dependent model. Xiao and
Ruan [39] investigated the qualitative behavior of the
Michaelis–Menten-type ratio-dependent model at the origin
in the interior of the first quadrant and confirmed that the
origin is indeed a critical point inducing rich and compli-
cated dynamics. Additionally, when the diffusion process is
considered, the Michaelis–Menten ratio-dependent preda-
tor-prey system with diffusion can produce rich spatial
patterns, which makes it a widely studied system for pattern
formation [10, 40–43].

While c< δ, Kovács et al. [44] incorporated delays into
system (5a)–(5c) and studied the qualitative behaviour of the
system without diffusion. Yun et al. [45] presented an ef-
ficient and accurate numerical method for solving system
(5a)–(5c) with a Turing instability and studied the existence
of nonconstant stationary solutions. Aly et al. [46] studied
Turing instability for system (5a)–(5c) and showed that
diffusion-driven instability occurs at a certain critical value
analytically. In these works, parameters in system (5a)–(5c)
are always considered as constants.

However, it seems that there is no research for con-
sidering spatial heterogeneity and time-periodic environ-
ment in system (5a)–(5c). It is well known that spatial
heterogeneity occurs at all scales of the environment [47].
Additionally, interactive populations often live in a fluctu-
ating environment [48], where some environmental con-
ditions such as temperature, light, availability of food, and
other resources usually vary in time. Specially, some data
depending on season in systems may be periodic functions
of time. )us, more realistic models to describe ecosystem
should be nonautonomous systems with spatial heteroge-
neity. With this mind, we propose the following system to
study effects of spatial heterogeneity and time-periodic
environment on prey-predator dynamics:

zu(t, x)

zt
� r(t, x)u(t, x) 1 −

u(t, x)

K(t, x)
􏼠 􏼡

−
a(t, x)u(t, x)v(t, x)

b(t, x)v(t, x) + u(t, x)
+ μ1Δu(t, x),

(6a)

zv(t, x)

zt
�

e(t, x)u(t, x)v(t, x)

b(t, x)v(t, x) + u(t, x)

−
c(t, x) + δ(t, x)v(t, x)

1 + v(t, x)
v(t, x) + μ2Δv(t, x),

(6b)

zu(t, x)

zn
�

zv(t, x)

zn
� 0, x ∈ zΩ , t> 0, (6c)
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where u(t, x) and v(t, x) represent the densities of the prey
and predator, respectively, at a space point x and time t; for
simplification, u(t, x) and v(t, x) are rewritten as u and v in
the rest of this paper, respectively; r(t, x) is the intrinsic
growth rate of prey population; K(t, x) denotes the envi-
ronmental carrying capacity of prey population; a(t, x) is the
capturing rate of the predator; b(t, x) is the half saturation;
and e(t, x) denotes the conversion rate. )e term c(t, x) +

δ(t, x)v(t, x)/1 + v(t, x) describes the specific mortality of
predators in absence of prey population, where c(t, x) is the
mortality at low density and δ(t, x) is the limiting, maximal
mortality. )e terms μ1Δu(t, x) and μ2Δv(t, x) with positive
diffusion coefficients μ1 and μ2 represent the nonhomoge-
neous dispersion of the prey and the predator, respectively.
Neumann boundary conditions (see equation (6c)) are
employed, which characterize the absence of migration.
Here, we assume that prey and predator populations are
confined to a fixed bounded space domain Ω ∈ Rn with
smooth boundary zΩ and Ω � Ω∪ zΩ.

)e rest of the paper is organized as follows. In Section 2,
some conditions and definitions are given. In Section 3,
dynamics of system (6a)–(6c) are studied, including
boundedness, permanence, extinction, and periodic solu-
tion. Moreover, a series of numerical simulations are carried
out for further study of the dynamics of system (6a)–(6c)
in Section 4. Finally, the paper ends with conclusion in
Section 5.

2. Preliminaries

Let R,Z, and N be the sets of all real numbers, integers, and
positive integers, repectively, andR+ � [0, +∞). We assume
that the following condition holds throughout the paper:

(H) )e functions r(t,x), K(t,x), a(t,x), b(t,x), c(t,x),

e(t,x), δ(t,x) are bounded positive-valued functions on
R×Ω, continuously differentiable in t and x, and are pe-
riodic in t with period τ>0.

Moreover, for a continuous function ϕ(t, x), we denote
ϕL � inf(t,x)ϕ(t, x) and ϕM � sup(t,x)ϕ(t, x).

Definition 1. Solutions of system (6a)–(6c) are ultimately
bounded if there exist positive constants N1 andN2 such
that for every solution (u(t, x, u0, v0), v(t, x, u0, v0), there
exists a moment of time T � T(u0, v0)> 0 such that

u t, x, u0, v0( 􏼁≤N1,

v t, x, u0, v0( 􏼁≤N2,
(7)

for all x ∈ Ω and t≥T.

Definition 2. System (6a)–(6c) is permanent if there exist
positive constants ζ and η such that for every solution with
nonnegative initial functions u0(x)≢0 and v0(x)≢0, there
exists a moment of time 􏽢t � 􏽢t(u0, v0) such that

ζ ≤ u t, x, u0, v0( 􏼁≤ η,

ζ ≤ v t, x, u0, v0( 􏼁≤ η,
(8)

for all x ∈ Ω and t≥􏽢t.

Consider the following equations:
zu

zt
− dΔu + f(t, x, u) � 0, (t, x) ∈ (0, T] × Ω, (9a)

zu

zn
� 0, (t, x) ∈ (0, T] × zΩ . (9b)

)en, we have the following definition.

Definition 3. A function 􏽢u: (0, T] ×Ω⟶ R is called a
lower solution of equations (9a) and 9b if it satisfies

z􏽢u

zt
− dΔ􏽢u + f(t, x, 􏽢u)≤ 0, (t, x) ∈ (0, T] × Ω, (10a)

z􏽢u

zn
≤ 0, (t, x) ∈ (0, T] × zΩ . (10b)

To analyze dynamics of system (6a)–(6c), the following
results will be needed.

Theorem 1 (Walter [49]). Suppose that vector-functions
v(t,x) � (v1(t,x), . . . ,vm(t,x)) and w(t,x) � (w1(t,x), . . . ,

wm(t,x)),m≥1, satisfy the following conditions:

(i) Cey are of class C2 in x, x ∈ Ω and of class C1 in
(t, x) ∈ [a, b] × Ω, where Ω ∈ Rn is a bounded do-
main with a smooth boundary;

(ii) vt − μΔv − g(t, x, v)≤wt − μΔw − g(t, x, w), where
(t, x) ∈ [a, b] × Ω, μ � (μ1, . . . , μm)> 0 (inequalities
between vectors are satisfied coordinate-wise), and
vector function g(t, x, u) � (g1(t, x, u), . . . ,

gm(t, x, u)) is continuously differentiable and qua-
simonotonically increasing with respect to
u � (u1, . . . , um):

zgi t, x, u1, . . . , um( 􏼁

zuj

≥ 0, i, j � 1, . . . , m, i≠ j; (11)

(iii) zv/zn � zw/zn � 0, (t, x) ∈ [a, b] × zΩ.

Cen, v(t, x)≤w(t, x) for (t, x) ∈ [a, b] × Ω.

Theorem 2 (Smith [50]). Assume that T and d are positive
real numbers, a function u(t, x) is continuous on [0, T] × Ω,
continuously differentiable in x ∈ Ω, with continuous de-
rivatives z2u/zxizxj and zu/zt on (0, T] × Ω, and u(t, x)

satisfies the following inequalities:
zu

zt
− dΔ u + c(t, x)u≥ 0, (t, x) ∈ (0, T] ×Ω,

zu

zn
≥ 0, (t, x) ∈ (0, T] × zΩ,

u(0, x)≥ 0, x ∈ Ω,

(12)

where c(t, x) is bounded on (0, T] × Ω. Cen, u(t, x)≥ 0 on
(0, T] × Ω.

Moreover, u(t, x) is strictly positive on (0, T] ×Ω if
u(t, x) is not identically zero.
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3. Main Results

3.1. Boundedness. From the biological and ecological view-
point, we are always interested in the nonnegative solutions.
)us, the following theorem is given first in system (6a)–(6c).

Theorem 3. Suppose that the condition (H) holds, then
nonnegative and positive quadrants of R2 are positively in-
variant for system (6a)–(6c).

Proof. Let (u(t, x, u0, v0), v(t, x, u0, v0)) be a solution of
system (6a)–(6c) with initial condition u0(x)≥ 0(≢0),

v0(x)≥ 0(≢0). Additionally, 􏽢u is a solution of the following
system:

z􏽢u

zt
− μ1Δ􏽢u − 􏽢u r

L
−

aM

bL
−

rM

KL
􏽢u􏼠 􏼡 � 0, 􏽢u(0, x) � u0(x).

(13)

From system (6a), we can obtain
zu

zt
− μ1Δu − r(t, x)u 1 −

u

K(t, x)
􏼠 􏼡 +

a(t, x)uv

b(t, x)v + u

≤
zu

zt
− μ1Δu − u r

L
−

aM

bL
−

rM

KL
u􏼠 􏼡,

(14)

which implies 􏽢u(t, x) is a lower solution of system (6a).
According to )eorem 2, it is obvious that 􏽢u(t, x)≥ 0 for all
x ∈ Ω and t> 0. Furthermore, due to u0(x)≥ 0(≢0),
􏽢u(t, x)> 0 holds for all x ∈ Ω and t> 0. )us, u(t, x)> 0
holds because u(t, x) is bounded from below by positive
function 􏽢u(t, x).

For system (6b), it can be simply verified that 􏽢v(t, x) is a
lower solution of system (6b), where 􏽢v(t, x) satisfies

z􏽢v

zt
− μ2Δ􏽢v + δM

􏽢v � 0,

􏽢v(0, x) � v0(x).

(15)

By the similar argument to u(t, x), we can prove the
positiveness of v(t, x).

)is completes the proof.
Based on )eorem 3, we will discuss ultimate bound-

edness of solutions in system (6a)–(6c), and then the fol-
lowing theorem can be obtained. □

Theorem 4. If the condition (H) holds, then all solutions of
system (6a)–(6c) with nonnegative initial conditions are ul-
timately bounded.

Proof. From system (6a), it can be found that the following
inequality holds:

0 �
zu

zt
− μ1Δu − r(t, x)u 1 −

u

K(t, x)
􏼠 􏼡 +

a(t, x)uv

b(t, x)v + u

≥
zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡.

(16)

Let u(t, x, u0) be a solution of

zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡 � 0, (17)

then

zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡 � 0

≥
zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡.

(18)

According to )eorem 1, we can get u(t,x,u0,v0)≤
u(t,Mu), where Mu satisfies ‖u0(x)‖C �max

x∈Ω
|u0(x)|≤Mu. By the uniqueness theorem, it is obvious that
the solution u(t,Mu) with initial conditions independent of
x does not depend on x for t>0. )erefore, u(t,Mu) is the
solution of the following ordinary differential equation:

du

dt
� u r

M
−

rL

KM
u􏼠 􏼡. u 0, Mu( 􏼁 � Mu. (19)

Hence, we have

u t, x, u0, v0( 􏼁≤ u t, Mu( 􏼁⟶
rMKM

rL
, as t⟶∞.

(20)

)us, there exists a positive constant M1 in system
(6a)–(6c) such that u(t, x)≤M1, starting with somemoment
of time.

For predator population v, by system (6b), we have

0 �
zv

zt
− μ2Δv − v

e(t, x)u

b(t, x)v + u
−

c(t, x) + δ(t, x)v

1 + v
􏼠 􏼡

�
zv

zt
− μ2Δv − v

e(t, x)u

b(t, x)v + u
− δ(t, x) −

c(t, x) − δ(t, x)

1 + v
􏼠 􏼡

≥
zv

zt
− μ2Δv + c

L
v −

eMM1

bL
,

(21)

which implies that v(t, x, u0, v0)≤ v(t, Mv), where v(t, Mv)

is a solution of the following initial value problem:

dv

dt
� − c

L
v +

eMM1

bL
, v 0, Mv( 􏼁 � Mv, (22)

and Mv satisfies ‖v0(x)‖C � max
x∈Ω|v0(x)|≤Mv. Obvi-

ously, we can obtain that

v t, Mv( 􏼁 � Mve
− cLt

+
eMM1

bLcL
⟶

eMM1

bLcL
, as t⟶∞.

(23)

)erefore, v(t, x, u0, v0) is also ultimately bounded.
)is completes the proof. □
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3.2. Permanence

Theorem 5. Under the condition (H), if the following
inequalities

r
L

−
aM

bL
> 0, (24a)

e
L

− δM > 0, (24b)

hold, then system (6a)–(6c) is permanent, i.e., there exist
positive constants mi and Mi (i� 1, 2) such that any solution
of system (6a)–(6c) with nonnegative initial functions
u0(x)(≢0) and v0(x)(≢0) satisfies (u(t, x), v(t, x)) ∈ S �

(u, v): m1 ≤ u􏼈 (t, x)≤M1, m2 ≤ v(t, x)≤M2}, starting with
a certain time.

Proof. Under the condition (H), we can know from )eo-
rem 4 that there exists Mi(i � 1, 2) such that
u(t, x)≤M1, v(t, x)≤M2, starting with some moment of
time. By comparison principle, if u0(x)≥ 0(≢0) and
v0(x)≥ 0(≢0), then u(t, x, u0, v0)> 0 and v(t, x, u0, v0)> 0
for all x ∈ Ω and t> 0.

)us, for some small ε> 0, we can get initial conditions
(u(ε, x, u0, v0), v(ε, x, u0, v0)) separated from zero by the
solution on the interval t≥ ε. Without loss of generality, we
assume that min

x∈Ωu0(x) � mu,min
x∈Ωv0(x) � mv. )en,

the following inequality holds:

0 �
zu

zt
− μ1Δu − u r(t, x) −

r(t, x)

K(t, x)
u􏼠 􏼡 +

a(t, x)uv

b(t, x)v + u

≤
zu

zt
− μ1Δu − u r

L
−

aM

bL
−

rM

KL
u􏼠 􏼡.

(25)

Obviously, we can get

0 �
z􏽢u

zt
− μ1Δ􏽢u − 􏽢u r

L
−

aM

bL
−

rM

KL
􏽢u􏼠 􏼡

≤
zu

zt
− μ1Δu − u r

L
−

aM

bL
−

rM

KL
u􏼠 􏼡.

(26)

Consequently, for t≥ 0, we have

u t, x, u0, v0( 􏼁≥ 􏽢u t, mu( 􏼁. (27)

)us, the solution u(t, x, u0, v0) is bounded from below
by a solution of the following logistic equation:

d􏽢u

dt
� 􏽢u r

L
−

aM

bL
−

rM

KL
􏽢u􏼠 􏼡, 􏽢u(0) � mu. (28)

)us, by)eorem 1 and condition (24a) and (24b), we have

u t, x, u0, v0( 􏼁≥ 􏽢u(t, x)⟶
KL rL − aM/bL( 􏼁

rM
, as t⟶∞

(29)

)erefore, there exists a positive constant m1 such that
u(t, x, u0, v0)≥m1 for t large enough.

By system (6b), the following inequality holds:
zv

zt
− μ2Δv − v

e(t, x)u

b(t, x)v + u
−

c(t, x) + δ(t, x)v

1 + v
􏼠 􏼡

≤
zv

zt
− μ2Δv + δM

− e
L

􏼐 􏼑v +
bMeL

m1
v
2
.

(30)

By a similar analysis to u, we have v(t, x, u0, v0)≥
􏽢v(t, mv), where 􏽢v(t, mv) is a solution of the following system:

z􏽢v

zt
− μ2Δ􏽢v + δM

− e
L

􏼐 􏼑􏽢v +
bMeL

m1
􏽢v
2
, 􏽢v(0) � mv. (31)

According to condition (24b), we can obtain that there
exists a positive m2 such that v(t, x, u0, v0)≥m2 for t large
enough.)us, system (6a)–(6c) is permanent, starting with a
certain time.

)is completes the proof. □

3.3. Extinction. In this section, we will discuss the extinction
of predator species, and then the following theorem arrives
in system (6a)–(6c).

Theorem 6. If the condition (H) holds, and

e
M

− c
L < 0, (32)

then, v(t, x)⟶ 0 as t⟶∞.

Proof. Suppose Mv is a fixed positive constant guaranteeing
Mv ≤ v0(x), and v(t, Mv) is the solution of the following
initial value problem:

zv

zt
� v e

M
− c

L
􏼐 􏼑,

v 0, Mv( 􏼁 � Mv.

(33)

By system (6b), we have

0 �
zv

zt
− μ2Δv + v −

e(t, x)u

b(t, x)v + u
+

c(t, x) + δ(t, x)v

1 + v
􏼠 􏼡

≥
zv

zt
− μ2Δv + c

L
− e

M
􏼐 􏼑v.

(34)

)us, according to )eorem 1, we can deduce that
v(t, x, u0, v0)≤ v(t, Mv)⟶ 0 as t⟶∞ if inequality (32)
holds.

)is completes the proof. □

3.4. Periodic Solution. In this section, we will study the
periodic solutions in system (6a)–(6c) by constructing a
proper Lyapunov function.

Theorem 7. Under the condition (H), assume that system
(6a)–(6c) is permanent, that is, there exist positive constants
N and M such that an arbitrary solution of system (6a)–(6c)
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with nonnegative initial functions not identically equal to zero
satisfies the condition:

(u(t, x), v(t, x)) ∈ E � (u, v): N≤ u(t, x)≤M,{

N≤ v(t, x)≤M},
(35)

starting with a certain moment of time. If

λM(W)< 0, (36)

where λM is the maximal eigenvalue of the following matrix:
E11 E12

E21 E22
􏼠 􏼡, (37)

where

E11 � 2 r
M

−
rL

KM
N −

aLbLN2

bMM + M( )
2􏼠 􏼡,

E22 � 2 − δL
+

δM − cL

(1 + N)2
+

eMM2

bLN + N( )
2􏼠 􏼡,

E12 � E21 � a
M

+
eM

bL
.

(38)

)en system (6a)–(6c) has a unique and strictly positive
τ-periodic solution, which is globally asymptotically stable.

Proof. Let (u(t, x), v(t, x)) and (u(t, x), v(t, x)) be two
solutions of system (6a)–(6c) bounded by constants N and

M from below and above, respectively. Consider the fol-
lowing function:

L(t) � 􏽚
Ω

(u(t, x) − u(t, x))
2

+(v(t, x) − v(t, x))
2

􏽨 􏽩dx.

(39)

By system (6a)–(6c), we can get its derivative:
dL(t)

dt
�2􏽚
Ω

(u − u)
zu

zt
−

zu

zt
􏼠 􏼡dx+2􏽚

Ω
(v − v)

zv

zt
−

zv

zt
􏼠 􏼡dx

� 2μ1􏽚
Ω

(u − u)Δ(u − u)dx+2μ2􏽚
Ω

(v − v)Δ(v − v)dx

+ 2􏽚
Ω

(u − u) u r −
r

K
u􏼒 􏼓 −

auv

bv+u
􏼒 􏼓􏼔 − u r −

r

K
u􏼒 􏼓 −

auv

bv+u
􏼒 􏼓􏼕dx

+ 2􏽚
Ω

(v − v)
euv

bv+u
−

c+δv

1+v
v􏼠 􏼡􏼢 −

euv

bv+u
−

c+δv

1+v
v􏼠 􏼡􏼣dx

� I1 +I2 +I3 +I4.

(40)

)en, from the boundary condition (6c),

I1 + I2 � − 2μ1􏽚
Ω
∇2(u − u)dx − 2μ2􏽚

Ω
∇2(v − v)dx

≤ − 2μ1􏽚
Ω

|∇(u − u)|
2dx − 2μ2􏽚

Ω
|∇(v − v)|

2dx≤ 0.

(41)

For other terms I3 and I4,

I3 + I4 � 2􏽚
Ω

(u − u) r(u − u) −
r

K
(u − u)(u + u) +

auv

bv + u
−

auv

bv + u
􏼒 􏼓dx

+ 2􏽚
Ω

(v − v) − δ(v − v) +
c − δ
1 + v

v −
c − δ
1 + v

v +
euv

bv + u
−

euv

bv + u
􏼠 􏼡dx

� 2􏽚
Ω

(u − u)
2

r −
r

K
(u − u) −

abvv

(bv + u)(bv + u)
􏼠 􏼡dx

+ 2􏽚
Ω

(v − v)
2 euu

(bv + u)(bv + u)
−

c − δ
(1 + v)(1 + v)

− δ􏼠 􏼡

+ 2􏽚
Ω

(u − u)(v − v)
ebvv

(bv + u)(bv + u)
−

auu

(bv + u)(bv + u)
􏼠 􏼡dx

≤ 2􏽚
Ω

(u − u)
2

r
M

−
rL

KM
N −

aLbLN2

bMM + M( )
2􏼠 􏼡dx

+ 2􏽚
Ω

(v − v)
2 eMM2

bLN + N( )
2 +

δM − cL

(1 + N)2
− δL

􏼠 􏼡

+ 2􏽚
Ω

|u − u||v − v| a
M

+
eM

bL
􏼠 􏼡dx

≤ λM􏽚
Ω

(u − u)
2

+(v − v)
2

􏽨 􏽩dx.

(42)
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By condition (36), we have

L(t)≤L(0)e
λMt⟶ 0, as t⟶∞, (43)

which implies that ‖u(t, x) − u(t, x)‖⟶ 0 and ‖v(t, x) −

v(t, x)‖⟶ 0 as t⟶∞, where ‖ · ‖ is the norm of the
space L2(Ω). Additionally, by condition (35), solutions of
system (6a)–(6c) are bounded in the space C1+v(Ω,R2),
where 0< v< 2l − (n/p) and (1/2) + (n/2p)< l< 1.

)erefore,

lim
t⟶∞

sup
x∈Ω

|u(t, x) − u(t, x)| � 0,

lim
t⟶∞

sup
x∈Ω

|v(t, x) − v(t, x)| � 0.
(44)

Consider the sequence (u(kτ, x, u0, v0), v(kτ, x,

u0, v0)) � W(kτ, W0), k ∈ N. )en, W(kτ, W0), k ∈ N􏼈 􏼉 is
compact in the space C(Ω) × C(Ω). Let W be a limit of this
sequence, then W(τ, W) � W.

Actually, because W(τ,W(knτ,W0)) � W(knτ,

W(τ,W0)) and W(knτ,W(τ,W0)) − W(knτ,W0)⟶ 0 as
kn⟶∞, we have

‖W(τ, W) − W‖C ≤ W(τ, W) − W τ, W knτ, W0( 􏼁( 􏼁
����

����C

+ W τ, W knτ, W0( 􏼁( 􏼁 − W knτ, W0( 􏼁
����

����C

+ W knτ, W0( 􏼁 − W
����

����C
⟶ 0 as n⟶∞.

(45)

)us, the sequence W(kτ, W0), k ∈ N􏼈 􏼉 has a unique
limit point. Otherwise, suppose that the sequence has two
limit points W � limn⟶∞W(knτ, W0) and
􏽥W � limn⟶∞W(knτ, W0), then we can get the following
result from (45) and 􏽥W � W(knτ, 􏽥W):

‖W − 􏽥W‖C ≤ W − W knτ, W0( 􏼁
����

����C

+ W knτ, W0( 􏼁 − 􏽥W
����

����C
⟶ 0, n⟶∞.

(46)

Hence,W � 􏽥W.)e solution (u(t, x, u, v), v(t, x, u, v)) is
the unique periodic solution of system (6a)–(6c), and it is
asymptotically stable using equation (44).

)is completes the proof. □

4. Numerical Results

In the previous section, we have obtained some interesting
results of system (6a)–(6c). However, due to the complexity
of system (6a)–(6c), it becomes much more difficult to
provide in-depth analysis. )us, here, we perform some
numerical simulations to investigate prey-predator dy-
namics further.

According to )eorem 5, when rL − aM/bL > 0 and eL −

δM > 0 holds, system (6a)–(6c) is permanent under condi-
tion (H). Figure 1 shows that system (6a)–(6c) is permanent,
where rL − aM/bL ≈ 0.1> 0 and eL − δM � 0.528> 0. When
e � 0.005 − 0.002 sin(π ∗ t/10), other parameters are the
same as the ones in Figure 1, and we can get a numerical
solution of system (6a)–(6c) (see Figure 2). It is obvious that
predator population v is extinct ultimately, which is con-
sistent with )eorem 6 because eM − cL � − 0.008< 0.

In section 3.4, the existence of periodic solution was
discussed, and its stability and uniqueness were analyzed as
well. In fact, Figure 1 has shown the existence of a periodic
solution. Yet, we here take another set of function corre-
sponding to the parameters of system (6a)–(6c), which is
only the periodic function of time t with period 200. )e
corresponding numerical solutions are shown in Figure 3.
Clearly, the numerical solution is periodic in t with the
period of 200 (see Figures 3(c) and 3(d)), but it is homo-
geneous in space (see Figures 3(a) and 3(b)). Compared to
Figure 3, we consider another situation that the parameters
of system (6a)–(6c) are functions with respect to both time t

and space x. We find the solution is still periodic, but it is
heterogeneous in space (see Figure 4). It is evident that the
spatial heterogeneity is the reason giving rise to the oscil-
lation of the solution in space.

Additionally, we find that the spatial heterogeneity can
promote the permanence of the system. Figure 5 indicates
that the extinction occurs in system (6a)–(6c). However,

1
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100

50x
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u

0 0
200 300 400

(a)
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4

3

2
100

100

50

0
x

v

t0 200 300 400

(b)

Figure 1: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) �

1.1 + 0.1 sin(π ∗ t/10), K(t, x) � 2 + 0.5 ∗ cos(π ∗ t/10), a(t, x) � 0.8 + 0.005 ∗ cos(π ∗ t/10), b(t, x) � 0.9 + 0.005 ∗ cos(π ∗ t/10),
e(t, x) � 0.7 − 0.002 ∗ cos(π ∗ t/10), c(t, x) � 0.02 + 0.005 ∗ cos(π ∗ t/10), δ(t, x) � 0.12 + 0.05 ∗ cos(π ∗ t/10), μ1 � 1, and μ2 � 1.
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when we set r(t, x) � 0.9 + 0.001 sin(5∗ π ∗ t/100) +

0.1 cos(5∗ π ∗ x/100) (other parameters are the same as the
ones in Figure 5), we get a very interesting result, that is,
system (6a)–(6c) becomes permanent (see Figure 6). Like-
wise, other parameters are explored by repeating the same
procedure, and similar results are obtained, which are

omitted here. Obviously, the spatial heterogeneity plays an
important role in dynamics of system (6a)–(6c).

Let all the parameters be constant, then there exists a
nonconstant stationary solution in system (6a)–(6c), as
shown in Figure 7. Furthermore, we consider the parameters
depending on time t based on Figure 7, but the result shows
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Figure 2: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v.
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Figure 3: Numerical solutions of system (6a)–(6c): (a) prey population u, (b) predator population v, (c) profile of u(t) at x � 50, and
(d) profile of v(t) at x �50. Here, r(t,x) �1.2+0.1sin(π ∗ t/100),K(t,x) �2+0.5cos(π ∗ t/100), a(t,x) �0.8+0.005cos(π ∗ t/100), b(t,x) �

0.9+0.005cos(π ∗ t/100), e(t,x) �0.7 − 0.005sin(π ∗ t/100), c(t,x) �0.02+0.01cos(π ∗ t/100), δ(t,x) �0.12+0.05cos(π ∗ t/100), μ1 �1,
and μ2 �1.
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that the extinction of both prey and predator occurs (see
Figure 8). However, when the parameter r depends on space
x except for time t, it can be found from Figure 9 that system

(6a)–(6c) is still permanent. Although both Figures 7 and 9
show the spatial heterogeneity of population distribution,
their natures are different. )e spatial heterogeneity in
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Figure 4: Numerical solutions of system (6a)–(6c): (a) prey population u, (b) predator population v, (c) profile of u(t) at x � 50, and
(d) profile of u(x) at t � 1200. Here, r(t,x) � 1.2+0.1sin(π ∗ t/100)+0.01cos(4∗π ∗ x/100)∗ sin(4∗π ∗ x/100), K(t,x) � 2 +

0.5cos(π∗t/100) + cos(4∗π∗x/100), a(t,x) � 0.8+0.005cos(π∗t/100) +0.1cos(4∗π∗x/100), b(t,x) � 0.9+0.005cos(π∗t/100) +

0.1cos(4∗π ∗ x/100), e(t,x) � 0.7 − 0.005sin(π∗t/100) +0.1cos(4∗π∗x/100), c(t,x) � 0.02+0.01cos(π ∗t/100) +0.001cos(4∗π∗x/100),
δ(t,x) � 0.12+0.05cos(π∗t/100) +0.01cos(4∗π∗x/100), μ1 � 1, and μ2 � 1.
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Figure 5: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) � 0.9+ 0.001 sin(5∗
π ∗ t/100), K(t, x) � 10 + 0.5 cos(5∗ π ∗ t/100), a(t, x) � 0.8 + 0.005 cos(5∗ π ∗ t/100), b(t, x) � 0.78 + 0.005 cos(5∗ π ∗ t/100),
e(t, x) � 0.7 − 0.005 sin(5∗ π ∗ t/100), c(t, x) � 0.02 + 0.001 cos(5∗ π ∗ t/100), δ(t, x) � 0.12 + 0.05 cos(5∗ π ∗ t/100), μ1 � 1, and μ2 � 1.
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Figure 6: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v.
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Figure 7: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) � 0.9, K(t, x) � 10,
a(t, x) � 0.8, b(t, x) � 0.8, e(t, x) � 0.7, c(t, x) � 0.02, δ(t, x) � 0.12, μ1 � 0.01, and μ2 � 20.
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Figure 8: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) �

0.9 + 0.001 sin(5∗ π ∗ t/100), K(t, x) � 10 + 0.5 sin(5∗ π ∗ t/100), a(t, x) � 0.8 + 0.005 sin(5∗ π ∗ t/100), b(t, x) � 0.8 + 0.005 sin(5∗
π ∗ t/100), e(t, x) � 0.7 − 0.005 sin(5∗ π ∗ t/100), c(t, x) � 0.02 + 0.001 sin(5∗ π ∗ t/100), δ(t, x) � 0.12 + 0.05 sin(5∗ π ∗ t/100),
μ1 � 0.01, and μ2 � 20.
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Figure 7 is induced by the diffusion, while in Figure 9 it
depends on the space variation of parameters. For other
parameters of system (6a)–(6c), we can obtain similar re-
sults, which are omitted here.

5. Conclusion

In this paper, we first propose a reaction-diffusion system
(6a)–(6c) to describe the interaction between the prey and
the predator, where the spatial heterogeneity and the time-
periodic environment are considered. In order to study the
boundedness of solution, the positive invariance of system
(6a)–(6c) is discussed, and the results demonstrate that
nonnegative and positive quadrants of R2 are always pos-
itively invariant for system (6a)–(6c) when the condition (H)
holds. Based on this, we find that all solutions of system
(6a)–(6c) are ultimately bounded as long as the initial
conditions are nonnegative. Also, we discuss the perma-
nence of system (6a)–(6c) and obtain the sufficient condi-
tions. Moreover, we derive the sufficient conditions for the
extinction of predator population. Obviously, these condi-
tions are very significant for studies of permanence and
extinction of the system. When system (6a)–(6c) is per-
manent, we discuss the existence of a periodic solution,
which suggests that a unique and strictly positive periodic
solution with fixed period exists under certain conditions.

According to theoretical analysis, some numerical results
are given, which show further dynamics in system (6a)–(6c).
Results from literature [45, 46] indicate that Turing patterns
can exist in system (5a)–(5c) (i.e., system (6a)–(6c) without
spatial heterogeneity and time-periodic environment). After
taking time-periodic environment into account, we find that
both prey population and predator population are extinct.
However, when the combination of spatial heterogeneity
and time-periodic environment is considered, it is dem-
onstrated that both prey population and predator pop-
ulation are permanent, which means that spatial
heterogeneity tends to enhance the persistence of prey and
predator population. Additionally, when prey population
and predator population are permanent, our results show
that solutions of system (6a)–(6c) seem to be periodic

because of the time-periodic environment and the spatial
heterogeneity. )us, we want to emphasize that spatial
heterogeneity and time-periodic environment indeed play a
significant role in prey-predator dynamics.
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