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Reliable assessment on the environmental impact of aircraft operation is vital for the performance evaluation and sustainable
development of civil aviation. A newmethodology for calculating the greenhouse effect of aircraft cruise is proposed in this paper.
With respect to both cruise strategies and wind factors, a genetic algorithm-optimized wavelet neural network topology is
designed to model the fuel flow-rate and developed using the real flight records data. Validation tests demonstrate that the
proposed model with preferred network architecture can outperform others investigated in this paper in terms of accuracy and
stability. Numerical examples are illustrated using 9 flights from Beijing Capital International Airport to Shanghai Hongqiao
International Airport operated by Boeing 737–800 aircraft on October 2, 2019, and the generated fuel consumption, CO2 and NOx
emissions as well as temperature change for different time horizons can be effectively given through the proposed methodology,
which helps in the environmental performance evaluation and future trajectory planning for aircraft cruise.

1. Introduction

As a typical manifestation of the negative externalities of air
transport, environmental impact is easily overlooked in
management decisions, while it greatly affects the sustain-
ability of operation. With the prosperity of global air
transport industry, the dramatically increasing flights have
resulted in prominent environmental issues [1]. Statistically,
aviation is responsible for 13% of fossil fuel consumption
related to transportation, 2% of the anthropogenic carbon
dioxide emissions [2], and 24% of global nitrogen oxide
emissions [3], and the climatic change caused by it will rise
3%–11% in the next 30 years [4]. Meanwhile, a further
increase of these figures can be foreseen for the expected
growth of global air traffic at an annual rate of 4.8% from
2011 to 2030 [5]. Under the determination in promoting
green civil aviation development of the international
community, it is imperative to focus on and study about the
environmental impact caused by aircraft operation.

In order to address and evaluate the aviation environ-
mental impact, current studies are conducted mostly from
the perspective of gas emissions. )e baseline emission
model provided by the International Civil Aviation Orga-
nization (ICAO) was applied to estimate the landing and
take-off (LTO) emissions of civil airports in China by Xia
et al. [6] and to predict the future CO2 and NOx emissions of
the air transportation by Owen et al. [7]. Wei et al. [8]
calculated pollutant emissions of aircraft in different cruise
conditions using Boeing Performance Software (BPS). Torija
and Self [9] proposed an Environmental Impact Aviation
Metric (EIAM) method to calculate the LTO emissions.
Recently, the 2018–2019 inventory of air pollutant emissions
for the Beijing-Tianjin-Hebei Airport group in China was
obtained by Han et al. [10] using operational data. )ese
studies have calculated the aircraft gas emissions from
different spatial and temporal dimensions, while little re-
search has been further conducted in terms of the tem-
perature change caused by them. Essentially, the
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environmental impact of gas exhausted is the greenhouse
effect that contributes to global warming, and the issue of
global warming has attracted public extensive attention
gradually [11]. In addition, it should be noted that cruise
phase should attract more attention because the time spent
on it accounts for the vast majority of the total, and the
greenhouse effect derived from exhaust emissions is am-
plified at a high altitude [12].

As is widely acknowledged, aircraft exhaust emissions
contributing to greenhouse effect derive from the fuel
combustion in aero-engines, meaning that the acquisition of
fuel consumption value is prominent in environmental
impact assessment. Numerous researches on fuel con-
sumption modeling have been carried out for its largest
portion of operational costs or significant detrimental im-
pact to environment.)e methods used are mainly classified
into two categories consisting of mathematical program-
ming and machine learning. For mathematical program-
ming methods, user manual for the Base of Aircraft Data
(BADA) [13] of Eurocontrol presents a method that cal-
culates the nominal FFR using the thrust and thrust-specific
fuel consumption, which functioned by the true airspeed.
And it was utilized tomodel the cruise fuel consumption and
improved through determining new empirical constants
with regard to the Mach number by Bartel and Young [14].
In the research of Senzig et al. [15], a model of fuel con-
sumption in terminal area was proposed and verified with
the consideration of temperature ratio, Mach number, and
net corrected thrust. Turgut and Rosen [16] investigated an
exponential relationship between fuel flow rate (FFR) and
altitude for the descent phase. And there were also a series of
regression models for fuel consumption estimation based on
the Gaussian and K-nearest neighbour (KNN) methods as
presented by Lawrance [17]. From the studies above, the
mathematical programming models are mostly based on the
engine thrust and rely on a large database of aircraft per-
formance and flight parameters with significant complexity
in calculating and limited accuracy of results.

In recent decades, another data-driven method of ma-
chine learning also shows efficiency in FFR modeling.
Backpropagation (BP) neural networks based on flight pa-
rameters for FFR prediction in different flight phases were
presented by Liu [18]. Although the application of neural
network significantly simplified the estimation process
compared with mathematical programming, there were a
series of defects such as its slow convergence speed and
easiness to fall into local optimum. Later, Zhang and Xu [19]
and Baklacioglu et al. [20] optimized the classical BP neural
networks using particle swarm and genetic algorithm, re-
spectively, allowing higher accuracy available, but the re-
quirement for detailed data about aircraft operation and
associated state greatly limited the practicality of the model.
For example, the data of aircraft pitch angle, roll angle, and
true airspeed set as input parameters in their models are
always difficult to obtain in application. In this regard,
trajectories parameters were employed to construct a BP
neural network for FFR by Wei and Zhang [21], through the
network the aircraft FFR was output given its ADS-B
tracking information which was much more accessible.

Zhou [22] explored the relationship between flight altitude,
ground speed, and true airspeed and developed a true air-
speed estimation model, based on which a FFR model was
further constructed using the deep belief network (DBN). It
should be noted that the meteorological factors playing
important parts in fuel consumption were excluded in their
models.

In summary, there are still deficiencies in the metrics and
accuracy of aviation environmental impact assessment. In
order to achieve the concept of “green flight”, it is practical
and far-reaching to develop an effective methodology of
greenhouse effect calculation for aircraft cruise, for which a
calculation method based on genetic algorithm-optimized
wavelet neural network (GA-WNN) is proposed in this
paper. )is paper contributes to aviation environmental
impact evaluation from three aspects. Firstly, a supervised
learning method based model considering the meteoro-
logical factors is constructed for aircraft FFR prediction,
contributing to reduced dependency on detailed operation
data and more conformance with the reality. Secondly, the
genetic algorithm is initiatively used to optimize the ar-
chitecture of wavelet neural network applied to FFR mod-
eling, which leads to a further improvement for network
performance. On top of the above improvements, a feasible
and reliable methodology focused on temperature change
metric for environmental impact assessment is formed,
providing supports for developing sustainable civil aviation.

)e reminder of this paper is organized as follows.
Section 2 formulates the calculation of the greenhouse effect
caused by aircraft cruise to a linear function. In Section 3, a
genetic algorithm-optimized wavelet neural network model
is proposed, and the developing procedure for it using real
raw flight records data of the aircraft type, and Boeing
737–800 is presented in detail. In Section 4, applications of
the developed model to 9 flights are represented as nu-
merical examples, followed by the last section, which
summarizes the research with concluding remarks and gives
an outlook to the future work.

2. Problem Formulation

For the environmental impact quantification, CO2 and NOx
are considered in this paper because a vast majority of the
greenhouse effect that aircraft causes when cruising comes
from them. Based on their emissions and using the global
absolute temperature change potential (AGTP) as a pa-
rameter, a linear function formulating the caused green-
house effect is developed in this section.

2.1. Greenhouse Gas Emission

2.1.1. CO2 Emissions. According to the Emissions and
Dispersion Modeling System (EDMS) published by Federal
Aviation Administration (FAA), the CO2 emissions can be
functioned by its emission index and FFR as follows:

ECO2
� EICO2

􏽚
Tc

0
FFR(t)dt, (1)
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where ECO2
is the value of CO2 emissions, EICO2

is the
emission index of CO2 and is only relevant to the engine
type, Tc is the total time (h) spent in cruise phase, and
FFR(t) (kg/h) is the value of FFR at the moment of t.

2.1.2. NOx Emissions. )e NOx emissions during cruise
phase is also closely related to FFR and NOx emission index
EINOx

, but the difference from CO2 emissions is that the
value of EINOx

depends additionally on the atmospheric
conditions and FFR besides the engine type. )erefore,
EINOx

changes with the moment t during the cruise phase.
In order to obtain the real-time EINOx

, a method com-
bining interpolation using the specific FFR with modifica-
tion according to atmospheric conditions is proposed in this
paper, and that includes the following three steps.

Step 1: convert the FFR value in actual operational
conditions to that in standard conditions (ISA, 0m)
according to

FFR′ �
FFR
δ

θ3.8
e
0.2

M
2
, (2)

where FFR′ is the converted value of FFR, δ is the ratio
of local atmospheric pressure to that on the standard
sea level (1013.2 hPa), θ is the ratio of local atmospheric
temperature to that on the standard sea level (288K), e
is the natural constant valuing about 2.72, and M is the
Mach number [8].
Step 2: get a fitting relationship between FFR and the NOx
emission index in standard conditions with the use of
basic emission data of engine so that the baseline NOx
emission index EINOx

′ can be valued from FFR′ through
the relationship. For example, the fitting formula for
CFM56-7B26 installed on Boeing 737–800 aircraft is as
follows when FFR′ values are between 300 and 5 000:

EINOx
′ � p1 + p2 · FFR′ + p3 FFR′( 􏼁

3
+ p4 ln FFR′( 􏼁,

(3)

where p1, p2, p3, and p4 are fitting coefficients valuing
− 0.0283, − 2.1745×10− 7, − 1.3976×10− 13, and 0.0055,
respectively. )ey are obtained by the universal global
optimization (UGO) algorithm and contribute to a R2

up to 0.9999 for (3).
Steps 3: modify EINOx

′ back to the value in actual op-
erating conditions using the following equation:

EINOx
� EINOx
′ δ0.51

θ1.65 exp 19.0 0.0063 −
0.622φpv

p − φpv

􏼠 􏼡􏼢 􏼣,

(4)

where φ (%) is the atmospheric relative humidity, pv

(Pa) is the saturated vapor pressure, and it can be
calculated through the atmospheric temperature T(K)
as follows:

lgpv �
10286T − 2148.4909

T − 35.85
. (5)

Once the emission indices at each moment EINOx
(t) are

obtained, combined with the fuel flow rates FFR(t), the NOx
emissions ENOx

can be derived as follows:

ENOx
� 􏽚

Tc

0
EINOx

(t) · FFR(t)dt. (6)

2.2. Greenhouse Effect Characterization. )ere are several
climate indicators to assess the impact of gas emissions. )e
absolute global temperature potential (AGTP), denoting the
mean change of surface temperature caused by per unit
greenhouse gases, is used in this paper to uniformly char-
acterize the environmental impact of various gases including
CO2 and NOx, which can result in different temperature
increases for their difference in radiative forcing and life
cycles.)e AGTP from gas G for the time horizon of H years
is expressed as AGTPG(H), and it can be calculated through

AGTPG(H) �

AG 􏽘

2

j�1
a0cj 1 − e

− H/dj( 􏼁
􏼒 􏼓 + 􏽘

3

i�1

aiαicj

αi − dj

e
− (H/α)

− e
− H/dj( 􏼁

􏼒 􏼓⎡⎣ ⎤⎦, G � CO2,

AG 􏽘

2

j�1

αcj

α − dj

e
− (H/α)

− e
− H/dj( 􏼁

􏼒 􏼓􏼢 􏼣, G � NOx,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where G represents the exhausted gas, namely, CO2 or NOx,
AG (Wm2/kg) is the radiative forcing change per unit G

causes, and a0, cj, dj, ai, αi, and α are all given parameters
[23].

)en the surface temperature change T(H) due to CO2
and NOx emissions during cruise phase can be formulated as
a linear function:

ΔT(H) � AGTPCO2
(H) · ECO2

+ AGTPNOx
(H) · ENOx

,

� AGTPCO2
(H) · EICO2

􏽚
TC

0
FFR(t)dt

+ AGTPNOx
(H) 􏽚

TC

0
EINOx

(t) · FFR(t)dt.

(8)
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3. GA-WNN Model for Fuel Flow-Rate

As the linear function developed previously, the aircraft FFR
at each moment during cruise phase is the most critical
factor for the greenhouse effect calculation. In this section, a
GA-WNN model for FFR based on the wavelet neural
network (WNN) technology is proposed, followed by a
detailed developing procedure using the real flight records
data of Boeing 737–800 aircraft.

3.1.Wavelet Neural Network. As discussed by Lai et al. [24],
the wavelet neural networks (WNNs) were developed based
on the technology of BP neural network and they were
similar in topology. However, the original sigmoid function
as the transfer function for hidden layer nodes was
substituted by the wavelet basis function in WNN, and the
shift and scaling factors were introduced to replace the
corresponding weights and thresholds respectively. Com-
bined with the time-frequency locality of the wavelet
analysis, the WNN has improved capability in self-learning,
robustness, and adaptability, resulting in a better prediction
performance.

In order to overcome the shortcomings of the previous
methods that depend too much on those less publicly
available data involved in airline operation details and to
further improve the performance of the supervised learning
based model, a three-layer WNN was constructed to model
FFR of the transport aircraft during cruise phase in this
paper. )e WNN topology is shown in Figure 1.

In the input layer X, there are five neurons defined based
on the aircraft state and meteorological wind factors af-
fecting FFR in cruise phase, including the pressure altitude,
the ground velocity, the heading of aircraft, and the speed
and direction of the wind. With the normalized input data h,
v, d, ws, and wd (see Figure 1), the output value of node yj

in the hidden layer Y, y(j) can be expressed as follows:

y(j) � fj 􏽘

5

i�1
wijxi

⎛⎝ ⎞⎠, j � 1, 2, . . . , J, (9)

where J is the total nodes number in Y, wij is the connection
weight between node xi in X and node yj in Y, and fj is the
wavelet basis function, derived from the scaling and shift
translation of a mother wavelet Ψj. Given a scaling factor aj

and a shift factor bj, the mathematical expression of y(j) can
be rewritten as

y(j) � Ψj

􏽐
5
i�1wijxi− bj

aj

⎡⎣ ⎤⎦, j � 1, 2, . . . , J. (10)

)e neuron in the output layer Z is the very factor that is
going to be modeled, namely, the aircraft FFR, and its
predicted value zpre output from the network is calculated by

z
pre

� 􏽘

J

j�1
wjky(j), k � 1, (11)

where wjk is the linked weight between node yj in Y and
node z in Z and k takes the constant value of 1 for there are
only one node in Z as Figure 1 shows.

Similar to BP neural network, the WNN begins working
with randomly initializing the connection weights between
layers and the factors of wavelet basis function, following
which the output value can be calculated forward layer by
layer according to (10) and (11). Later the output error e of a
single simple can be written as follows:

e � |z
pre

− z
exp

|, (12)

where zexp is the expected or actual value of FFR.
)rough the backpropagation of e, the initial weights

and factors are constantly corrected using a gradient
learning method as (13)–(16) describe, until e meets the
training goal or the iteration number reaches the upper limit.
)e parameter of training goal is a predefined threshold.
When the training error is less than this threshold, the it-
eration will stop even if the upper limit of iteration number
is not reached:

wij(s + 1) � − η1
ze

zwij(s)
+ wij(s), (13)

wjk(s + 1) � − η1
ze

zwij(s)
+ wjk(s), (14)

aj(s + 1) � − η2
ze

zaj(s)
+ aj(s), (15)

bj(s + 1) � − η2
ze

zbj(s)
+ bj(s), (16)

where s is the iteration number and η1and η2 are the defined
learning rates for adjusting weights and factors, respectively.

3.2. Genetic Algorithm-Optimized Wavelet Neural Network.
)e gradient learning method presented above enables the
network to gradually adjust along the direction of local
improvement, which means inappropriate initial weights
and factors can increase the possibility of falling into local
optimum or even failing because of the complexity and
nondifferentiability of the search space [25]. In this regard,
the genetic algorithm (GA) with global search capability is
employed to improve the model by optimizing the initial
weights and factors in this paper. )e specific steps to de-
velop GA-WNN are organized as follows.

Step 1: sample data normalization: normalize the
original sample data to an interval of 0–1 using (17) to
ensure the quantization uniformity.

xn
′ �

xn − xmin

xmax − xmin
, (17)

where xn
′ is the normalized value of simple n, xn is its

original value, and xmin and xmax are the minimum and
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maximum value among all simples of the same category
as xi, respectively.
Step 2: specific architecture determination: use the
normalized samples to further determine the archi-
tecture of the WNN, including the decision of nodes
number in the hidden layer and the selection of wavelet
basis functions, on which the network accuracy de-
pends much on prediction accuracy.
Step 3: population initialization: randomly generate an
initial set of solutions called population, each of which
includes the connection weights for different layers and
factors for wavelet basis function.
Step 4: fitness calculation: the fitness F is defined as the
mean squared output deviation of all samples in the
testing dataset, and the function can be expressed as
follows:

F �
1
N

􏽘

N

n�1
z
pre
n − z

exp
n( 􏼁

2
, (18)

where N is the sample number in the testing dataset
and z

pre
n and z

exp
n are the output and actual FFR value of

sample n, respectively.
Step 5: iterative evolution: update the population
through evolutionary manipulations including selec-
tion, crossover, mutation, and retention, and the best
individual in each generation is recorded. )is step is
repeated until a prespecified termination criterion.
Step 6: optimal initial weights and factors acquisition:
set the optimal weights and factors according to the
individual with the best fitness in Step 5 and assign
them to WNN.
Step 7: prediction using GA-WNN: train the model and
apply it to new data for reliable prediction results.

3.3. Development of the GA-WNN Model

3.3.1. Sample Processing and Division. Selected flight records
data of the medium-weight transport aircraft type, Boeing
737–800, were used in this study to develop and verify the
proposed GA-WNN model. )e raw data comes from
several flights operating in October, 2018, and includes the
information of aircraft altitude, Mach number, ground
speed, and fuel flow rate of the left and right engine, which is
recorded simultaneously by 4 sensors. By averaging the 4
sets, a new set was acquired and the required aircraft cruise
data as samples can be extracted from it according to the
operation data such as engine speeds and climb rates. Ad-
ditionally, the FFR(t) in total was calculated by summing
that of the left engine and the right one. After normalization,
the samples (2,500 in total) were randomly split into training
(60%), testing (20%), and validation (20%) sets, allowing a
supervised learning process to be performed.

3.3.2. Specific Architecture Determination. As is universally
acknowledged, the number of neurons in the hidden layer is
a significant parameter to determine the performance of
neural networks, and the application of wavelet basis
function distinguishes WNNs from traditional BP neural
networks and also contributes to a more prospective pre-
diction model. But it is not always better for a larger number
in nodes setting and the effect of wavelets differs from each
other. )erefore, how many nodes should be designed for
the hidden layer and which wavelet basis function is optimal
to reduce the gap between predicted outputs and expected
ones are critical problems to be considered.

In order to determine the best WNN architecture,
comparative tests were carried out by training the WNN for
each value in the nodes number range of 6–25 in the hidden
layer using different kinds of wavelet basis functions,

h
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Figure 1: Topology of the WNN for fuel flow rate.
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respectively. )e transfer functions involved in the tests
include the original sigmoid function and the following 4
mother wavelets: the Morlet wavelet, the Mexican Hat
wavelet (essentially the 2-order Gaussian wavelet), the 4-
order Gaussian wavelet, and the 6-order Gaussian wavelet,
which are formulated as follows:

Ψ(x) � cos(1.75x)e
− x2/2( ), (19)

Ψ(x) � 0.8763 1 − x
2

􏼐 􏼑e
− x2/2( ), (20)

Ψ(x) � 1.5 3 − 6x
2

+ x
4

􏼐 􏼑e
− x2/2( ), (21)

Ψ(x) �
− 1
���
2π

√ 15 − 45x
2

+ 15x
4

− x
6

􏼐 􏼑e
− x2/2( ). (22)

With the training goal of 0.001, each permutation was
executed for 50 runs of 500 epochs with the learning rate of
0.01 for linked weights (wij and wjk) and 0.001 for wavelet
basis function factors (aj and bj). Figure 2 shows the average
results of the trails.

As is shown in Figure 2, the constructed WNN performs
best when 22 neurons are designed in the hidden layer using
the wavelet basis function derived from Morlet wavelet, and
a minimum MSE of about 0.0071 for the testing output can
be obtained.

3.3.3. Optimal Initial Weights and Factors. Based on the
determined specific architecture of the WNN, the mecha-
nisms of natural selection and genetics were utilized fol-
lowing the steps shown in Section 3.2. For the GA
implementation in this paper, the parameters and values
were chosen based on the computational results in terms of
accuracy during plenty of experiments. Using binary
encoding, a population size of 100 was defined and a
maximum number of 100 was limited for generation. )e
evolution manipulations were carried out with the strategies
of Roulette-wheel selection, two-point crossover, discrete
mutation, and elitism, and the rates for crossover, mutation,
and retention were set to be 0.85, 0.01, and 0.85, respectively.
)e output fitness curve of GA is shown in Figure 3. When
the generation number is about 35, there comes a converged
solution and a minimumMSE approaching 0.0027, at which
time the optimal initial weights and factors can be obtained.
And compared with the original minimum MSE of 0.0071
(see Figure 2), a significant improvement of optimization is
well-founded.

3.3.4. Performance Measures and Comparation Analysis.
Figure 4(a) shows the predicted and actual FFR values for
100 sample exemplars in testing dataset (500 data points in
total), it is obvious that there is a good agreement between
them for each sample. )e output absolute percentage error
(APE) of all data points in the testing dataset is counted and
illustrated in Figure 4(b); it can be seen that the proportion
of output with error lower than 10% is about 70%, and that
figure rise to 90% when the error threshold is set to be 20%,

preliminarily indicating an acceptable accuracy of the
proposed GA-WNN model.

To further verify the reliability of the trained GA-WNN
model, the validation dataset was randomly divided into 5
groups (each contains 100 data points) and they were named
as G1, G2, G3, G4, and G5, respectively. As can be seen in
Figure 5, the predicted FFR values closely match the actual
ones in each group, demonstrating a prospective general-
izability of the model.

As mentioned previously, traditional BP neural net-
work usually uses the sigmoid function to get nodes output
from input. And in its recent application on similar
problems such as flight unpredictable fuel calculation [26]
and residual fuel prediction [27], a linear function was also
employed for this purpose. To assess the advantage of the
proposed GA-WNN model for FFR prediction, its per-
formance results were compared with those of the previous
models, including BP neural networks using sigmoid (sig)
or linear (lin) function to transfer between different layers.
Additionally, GA-optimized BP neural networks working
with different transfer functions were also compared with
using the 5 groups of validation data. Note that all tests were
conducted with the gradient method to learn from error so as
to correct parameters during iteration. In terms of perfor-
mance indicators, the mean square error (MSE), mean ab-
solute error (MAE), mean absolute percentage error (MAPE),
maximum absolute percentage error (Max-APE), and R2 were
counted and compared. Figure 6 illustrates the detailed
performance results using different marked models for each
data group. For example, GA-BP (sig-lin) represents a GA-
optimized BPmodel with a sigmoid transfer function between
the input and hidden layer and a linear transfer function
between the hidden and output layer.

From Figure 6, it can be concluded that GA-WNN shows
great advantages in any indicator for each group. Generally,
the traditional BP neural networks using different transfer
functions are ineffective and still questionable in reliability
even after being optimized by GA for their R2 are all less than
0.73. )e WNN performs better than them in all kinds of
errors and gets a significant improvement for R2 valuing
about 0.90 in average. Furthermore, compared with the
WNN, the GA-WNN model proposed in this paper reduces
various errors by more than a half, and R2 of it reaches a
reliable level up to 0.97, which reflects its commendable
performance in both accuracy and stability.

4. Numerical Examples

)is section employs a set of numerical examples applying
the GA-WNN model developed in Section 3.3 to verify the
feasibility, reliability, and superiority of the proposed
methodology.

4.1. Data Preparation. According to the statistical data of
Civil Aviation Administration of China (CAAC), valuing
about 30,452, the number of flights operating on the route
from Beijing Capital International Airport (ICAO code:
ZBAA) to Shanghai Hongqiao International Airport (ICAO
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code: ZSSS) during the air season from March 25, 2018, to
March 30, 2019, ranks the first among all domestic routes.
)at means ZBAA-ZSSS is the busiest flight route in China,
resulting in the greatest urgency to be evaluated and con-
trolled in regard of aviation environmental impact. )ere-
fore, 9 flights on this route operated by Boeing 737–800
aircraft on October 2, 2019, were taken as examples.

)rough the ADS-B tracking data from FlightAware on
https://zh.flightaware.com/, the historical all-stage records
information (including flight number, time, heading, air
pressure altitude, ground speed, longitude, and latitude) of
the 9 example flights were collected. Described in terms of
Beijing time (UTC+8), their operation durations and profile
trajectories are presented in Figure 7, from which the rel-
evant data during cruise phase can be further extracted.

According to the location information of key points on
ZBAA-ZSSS shown in Table 1, the meteorological data
(including atmospheric pressure, temperature, relative hu-
midity, wind speed, wind direction, etc.) of the sounding
spots around the route was gathered from University of
Wyoming on http://weather.uwyo.edu/upperair/. As Table 1
shows, there are 10 segments in the route ZBAA-ZSSS in
total. However, the first one from ZBAA to ELKUR and the
last one from SANSA to ZSSS are for aircraft climbing and
descending, respectively; only the middle 8 are for cruise
phase and are considered in this paper. Using the spatial
interpolation method of inverse distance weighted (IDW),
the values of each meteorological parameter at different
flight levels corresponding to points on the route were
obtained through (23) when the three nearest sounding sites
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around were selected as samples and the power exponent
was set to be 2:

R �
􏽐

3
m�1 Rm/l

2
m􏼐 􏼑􏼐 􏼑

􏽐
3
m�1 1/l2m􏼐 􏼑􏼐 􏼑

, (23)

where R is the needed parameter value on the point to be
interpolated; Rm and lm are the collected value at the sample
site m and its distance away from the point to be interpo-
lated, respectively.

After matching the trajectories information with me-
teorological data by latitude and longitude as well as nor-
malizing through (17), the vector vf(t) for each flight f at
the recorded time t written as (24) can be obtained and thus
the input data is ready for the proposed model:

vf(t) � hf(t), vf(t), df(t), wsf(t), wdf(t)􏽮 􏽯
T
. (24)

4.2. Numerical Results. Applying the GA-WNN model, the
FFR corresponding to each time point recorded by radar can

be predicted and then the fuel consumption can be obtained
through integration. Figure 8 shows the fuel consumption of
different flights in each of the 8 cruising segments.

)rough the total fuel consumption, the CO2 and NOx
emissions during cruise phase and the resulted surface
temperature change for different time horizon of 20, 50, and
100 years can be quantitatively calculated using the functions
formulated in Section 2. Table 2 presents the studied flights’
results.

4.3. Experimental Analysis. Using the developed method-
ology in this paper, the detailed results of each flight on all
cruise segments can be clearly given once their trajectory
data tracked by ADS-B is acquired, while, with fewer need of
large amount of operation and state data, the results include
the exact temperature change for different time horizons in
particular. In terms of evaluation metrics and models, the
proposedmethodology in this paper is better in investigation
depth, result accuracy, and application feasibility compared
with previous ones.
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From Figure 8, it can be seen that cruise flights operating
on the same route with various strategies resulted in a gap
about 494.69 kg between the minimum, 2706.94 kg, and
the maximum, 3201.63 kg, in fuel consumption, leading to
different economic benefits and environmental impact. Even
for the two flights cruising on similar profile trajectories with

analogous speeds and flight levels, such as CSF9102 (see
Figure 7(g)) and CHH7603 (see Figure 7(h)), there is also a
significant difference in results. Apart from their discrepancy
in payload, the atmospheric conditions differing with op-
erating durations contribute a lot to the difference. )is
effect can be also observed from the different results of the
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Figure 7: Operation durations and profile trajectories of the studied flights including (a) CCA1557, (b) CES515R, (c) CXA8178, (d)
CCA1549, (e) CSF9108, (f ) CCA1885, (g) CSF9102, (h) CHH7603, and (i) CES5158.

Table 1: Location information of key points on the route of ZBAA-ZSSS.

From To End latitude (° N) End longitude (° E) Segment length (km)
— ZBAA 40.07 116.60 0.00
ZBAA ELKUR 38.64 116.67 159.69
ELKUR OVNUG 38.11 116.70 59.93
OVNUG GUSIR 37.21 117.04 105.22
GUSIR ABTUB 36.00 117.37 139.06
ABTUB UDINO 34.82 117.80 136.96
UDINO OMUDI 33.97 118.27 105.41
OMUDI SUBKU 33.20 118.94 106.36
SUBKU XUTGU 32.46 119.58 100.97
XUTGU SASAN 31.59 120.32 120.02
SASAN ZSSS 31.20 121.34 105.94
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segments that are almost equal in distance and operated by
the same flight.

In terms of the generated greenhouse effect shown in
Table 2, the global surface temperature change derives from
fuel consumption but not always presents a positive cor-
relation with it, indicating a trade-off between economic
benefits and environmental contributions must be carefully
considered in cruise strategies decisions.

5. Conclusions

In order to analyze the environmental impact and sus-
tainability of modern air transport, a systematic method-
ology for calculating the greenhouse effect of aircraft cruise
is presented and performed in this paper. )e main research
conclusions are as follows.

(1) )e fuel flow rate is modeled with respect to both
cruise strategies and wind factors simultaneously and

developed using real flight records data based on a
supervised learning method, allowing the predicted
results more in line with actual operation.

(2) )is paper constitutes the first attempt to optimize
the initial parameters of WNN by using genetic
algorithm in fuel flow-rate modeling. A Morlet
wavelet and the number of 22 for hidden layer
neurons are proved to be preferred and the devel-
oped GA-WNN model shows a good agreement
between the predicted values and actual ones.

(3) Comparative tests with previous models conducted
in this study validate that the developed model is
outstanding in both accuracy and stability, with
significantly reduced errors for prediction and an
acceptable R2 up to 0.97 in average.

(4) )is paper employs 9 flights from ZBAA to ZSSS as
numerical examples to implement the proposed
methodology for greenhouse effect calculation.
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Figure 8: )e fuel consumption of studied flights in each segment.

Table 2: Numerical results for studied flights in terms of fuel consumption, gas emissions, and generated greenhouse effect.

Flight number Fuel consumption (kg)
Gas emissions (kg) Temperature change [10− 11 K]
ECO2

ENOx
ΔT (20) ΔT (50) ΔT (100)

(a) CCA1557 3047.40 9614.55 43.56 40.88 7.67 2.49
(b) CES515R 3123.07 9853.29 43.80 41.12 7.72 2.51
(c) CXA8178 3038.95 9587.89 42.40 39.81 7.48 2.43
(d) CCA1549 2942.22 9282.70 40.44 37.98 7.14 2.33
(e) CSF9108 3201.63 10101.14 43.50 40.86 7.69 2.51
(f ) CCA1885 2798.59 8829.55 37.29 35.04 6.60 2.16
(g) CSF9102 2873.14 9064.76 37.00 34.78 6.57 2.16
(h) CHH7603 2706.94 8540.40 34.89 32.80 6.19 2.03
(i) CES5158 2752.32 8683.57 36.32 34.13 6.43 2.11
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Results of each flight on all cruise segments can be
effectively given and clearly compared, from which
the factors affecting greenhouse effect generation
and how they function can be further figured out.

With less dependency on detailed operation data, more
improvements in the model accuracy, and numerical results
about the exact temperature change for different time ho-
rizons, the proposed methodology in this paper performs
better in investigation depth, result accuracy, and applica-
tion feasibility compared with previous ones. It also supports
a feasible, reliable, and superior assessment method for the
performance of practical applications, such as aircraft tra-
jectories planning, air traffic management, and operational
performance assessment involved with environmental
consideration. Future work can be carried out by taking
contrails into account as well as exploring an optimization
scheme for cruise strategies based on both economic and
environmental consideration.
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