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Data envelopment analysis (DEA) is a popular mathematical tool for analyzing the relative efficiency of homogenous decision-
making units (DMUs). However, the existing DEA models cannot tackle the newly confronted applications with imprecise and
negative data as well as undesirable outputs simultaneously. -us, we introduce undesirable outputs into modified slack-based
measure (MSBM) model and propose an interval-modified slack-based measure (IMSBM) model, which extends the application
of interval DEA (IDEA) in fields that concern with less undesirable outputs. -e novelties of the model are that it considers the
undesirable outputs while dealing with imprecise and negative data, and it is slack-based. Furthermore, the model with un-
desirable outputs is proven translation-invariant and unit-invariant. Moreover, a numerical example is provided to illustrate the
changes of the lower and upper bounds of the efficiency score after considering the undesirable outputs. -e empirical results
show that, without considering undesirable outputs, most of the lower bounds of the efficiency scores will be overestimated when
the DMUs are weakly efficient and inefficient. -e upper bound will also change after considering undesirable outputs when the
DMU is inefficient. Finally, an improved degree of preference approach is introduced to rank the DMUs.

1. Introduction

Data envelopment analysis (DEA) is a popular mathematical
tool for analyzing the relative efficiency of homogenous
decision-making units (DMUs). With multiple inputs and
outputs, DEA can measure the relative efficiency of DMUs
by using a ratio of the weighted sum of outputs to the
weighted sum of inputs. An efficient DMU always consumes
less input to produce a specific amount of outputs or
produces more outputs by consuming an equal amount of
inputs. However, the conventional DEA models of CCR [1]
and BCC [2] are based on two priori assumptions that limit
their application: the input and output data should be first
precise and, second, nonnegative.

Obtaining precise data in real-life situations is not always
possible, so bounded (interval), ordinal, and ratio-bounded
data are often used in applications [3, 4]. -is precise data
assumption can, in some cases, limit the applications of

conventional DEA models. Cooper et al. [5] first introduced
the imprecise (interval) DEA (IDEA) to cope with imprecise
data, and many scholars have since contributed to the
theoretical development of this method. Despotis and
Smirlis [6] transformed a CCRmodel to handle interval data,
and it gave a natural outcome in the form of lower and upper
bounds of efficiency scores. However, the transformation
was only applied to variables. Entani et al. [7] formulated
dual models of the IDEA with an interval efficiency obtained
from both optimistic and pessimistic viewpoints. Based on
this, Wang et al. [8] developed a pair of interval models to
convert ordinal preference information and fuzzy data into
interval data through scale transformation and an α-level set,
respectively.Wang et al. [9] further introduced a virtual anti-
ideal DMU into a bounded DEAmodel to unify the best and
the worst relative efficiencies under optimistic and pessi-
mistic situations. However, Azizi and Jahed [10] pointed out
that this assumed virtual anti-ideal DMUwill make no sense
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when the input is zero and proposed a pair of improved
IDEA models that make it possible to conduct a DEA
analysis using the concepts of the best and worst relative
efficiencies. Toloo et al. [11] constructed a pair of IDEA
models based on pessimistic and optimistic standpoints to
identify the unique status of each imprecise dual-role factor.
Amir et al. [12] addressed the managerial and technical
issues in allocating weights and in handling imprecise data
through a total cost of ownership- (TCO-) based DEA
approach. However, these models are not slack-based and
can only deal with nonnegative data, indicating that these
models can only measure radial efficiency with nonnegative
data.

In addition to the assumption of precise data, conven-
tional DEAmodels assume that all DMU inputs and outputs
are nonnegative. However, this is not always possible in real-
life problems when loss occurs, such as with profit or
noninterest income. Traditionally, negative data are elimi-
nated or transformed to positive through data transfor-
mation [13, 14]. However, eliminating the negative data will
lose some DMU information, and the solution of the object
function will be affected through the data transformation.
Pastor [15] was the first to use the translation invariance
property of DEA models when addressing negative data,
which does not require the data to be eliminated or
transformed. Halme et al. [16] introduced the property to
radial models for dealing with interval data, including
negative data. Hatamimarbini et al. [17] developed the in-
terval semioriented radial measure (SORM) model to
evaluate efficiency in the presence of interval data without
sign restrictions. Cheng et al. [18] developed a variant of
radial measure (VRM) to address variables, which could be
negative or nonnegative, for different DMUs, but the effi-
ciencies produced by the input-oriented VRMmodel may be
negative [19] and those from the output-oriented VRM
model can be in the range of [0.5, 1] [20]. To avoid such
drawbacks, Tung [20] further defined two efficiency mea-
sures for input-oriented and output-oriented VRM models.
Although the models mentioned above can deal with neg-
ative data, and some are translation-invariant and/or unit-
invariant, they are still not slack-based models and ignore
the inefficiency caused by nonradial slacks.

-us, most developed models have addressed only im-
precise data or only negative data rather than both simul-
taneously, and none are slack-based. Tone [21] proposed a
slack-based measure SBM (a) of efficiency that puts aside
assumptions about proportionate changes in inputs and
outputs and deals directly with the input excesses and the
output shortfalls of DMUs. Lotfi et al. [22] integrated the
SBM (a) model into IDEA to address interval data from the
optimistic perspective and defined the upper and lower
bounds of the SBM-efficiency scores, to classify DMUs into
three subsets. Azizi et al. [23] formulated SBM (a) models in
IDEA from both optimistic and pessimistic perspectives to
measure the overall performance of DMUs. -ese SBM (a)-
based IDEA models measure the nonradial efficiency with
interval data, but do not consider negative data. Sharp et al.

[24] introduced the idea of the range-possible improvement
into the SBM (a) model and developed a modified slack-
based measure (MSBM) model to evaluate DMUs with
negative data. -e MSBM considers input and output slacks
and possesses the property of being translation invariant.
Tone et al. [25] proposed base point SBM (BP-SBM) models,
which are consistent with ordinary SBM (a) models, to deal
with negative data. Both MSBMmodel and BP-SBMmodels
are slack-based and can handle negative data. However, they
ignore imprecise data. Yang and Mo [26] considered these
three characters simultaneously and extended the MSBM
model to the interval MSBM (IMSBM) model, to evaluate
the efficiency of particular DMUs with imprecise and
negative data, and is also slack-based. However, the IMSBM
model does not consider undesirable outputs. Tone [27]
developed a new SBM (b) model from the SBM (a) model to
measure efficiency in the presence of undesirable outputs.
However, SBM (b) cannot yet deal with imprecise data.

-is study develops the IMSBM model to address un-
desirable outputs, which extends the application of IDEA in
fields that concern with less undesirable outputs, such as air
pollutants, hazardous wastes, and nonperforming loans. Our
new IMSBM model is based on SBM (b), unlike the current
IDEA models, and thus it considers undesirable outputs and
both radial and nonradial efficiencies from the perspectives
of slacks. We also confirm that the new model is unit-in-
variant and translation-invariant. In Table 1, we compare the
new IMSBM model with the other DEA models mentioned
above.

-e remainder of this paper is organized as follows. In
Section 2, the IMSBM model with undesirable outputs is
presented. Section 3 classifies DMUs into three subsets, and
an improved degree of preference approach is introduced to
rank the interval efficiencies. -e IMSBM model with un-
desirable outputs is applied to evaluate the interval efficiency
of Chinese city commercial banks in Section 4. -e final
section presents our conclusions.

2. The MSBM and IMSBM Models with
Undesirable Outputs

Färe et al. [28] pointed out that the assumption of the
constant returns to scale (CRS) suggested that any DMU
could be radially expanded or contracted to form other
feasible DMUs, which causes inconsistency with negative
data. However, this is not the case under a variable returns to
scale (VRS), so the models mentioned below are therefore
assigned under the VRS.

2.1. &e MSBM Model with Undesirable Outputs. First,
we extend the MSBM proposed by Sharp et al. [24] to
deal with undesirable outputs. Consider a set of n ho-
mogenous units under analysis, and each consumes varying
amounts of m different inputs to produce s different outputs
(s � sr + sl), where sr is the number of good outputs and sl is
the number of bad (undesirable) outputs. Specifically,
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DMUj(j � 1, 2, . . . , n) consumes xij(i � 1, 2, . . . , m) of each
input to produce y

g

rj(r � 1, 2, . . . , sr) of each good output
and yb

lj(l � 1, 2, . . . , sl) of each bad output. -e inputs, good
outputs, and bad outputs can be represented by three vectors
X � (xij) ∈ Rm×n(j � 1, 2, . . . , n, i � 1, 2, . . . , m), Yg �

(y
g
rj) ∈ Rsr×n(r � 1, 2, . . . , sr), and Yb � (yb

lj) ∈ Rsl×n(l �

1, 2, . . . , sl), respectively. -en, the production possibility set
(P) under VRS assumption is defined as
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where λ � (λ1, λ2, . . . , λn)T is the intensity vector and
􏽐

n
j�1 λj � 1 keeps P under VRS assumption. A DMUk (xk,

y
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k , yb
k) is efficient in the presence of undesirable outputs if

there is no vector (xk, y
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k) ∈ P such that xk ≥ x, y
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and yb
k ≥yb with at least one strict inequality [27]. When

considering input and output slacks, i.e., input exceeds (s− ),
good output shortfalls (sg+), and undesirable outputs ex-
ceeds (sb− ), the production possibility set (P′) under VRS
assumption can be defined as
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(2)

We now introduce the ideal point into the MSBMmodel
with undesirable outputs. For a given dataset, the ideal point
is considered as I � (minjxij(i � 1, 2, . . . , m),maxjy

g

rj(r �

1, 2, . . . , sr),minjy
b
lj(l � 1, 2, . . . , sl)) . -erefore, for DMUk,

the range of possible improvement is defined as

R
−
ik � xik − minj xij􏽮 􏽯, i � 1, 2, . . . , m,

R
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(3)

Obviously, R−
ik, R
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rk , Rb−
lk ≥ 0. Replacing the correspond-

ing terms in the SBM (b) model with R−
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lk , the

MSBM model with undesirable outputs is thus
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(5)

According to Tone [29] and Cooper et al. [30], in for-
mula (4), the minimization of the numerator can be
interpreted as the MSBM-input-efficiency, that is,
ρI

k � min[1 − 􏽐
m
i�1(wis

−
ik)/R−

ik]. In addition, the reciprocal of
the maximization of the denominator can be interpreted as
the MSBM-output-efficiency, that is, ρO
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􏽐
sr

r�1(vrs
g+

rk )/Rg+

rk + 􏽐
sl

l�1(vls
b−
lk )/Rb−

lk ]. -erefore, the MSBM
nonoriented efficiency can be defined as min ρk through
multiplying ρI

k by ρ
O
k , and min ρk subjects to P′. In formulas

(4) and (5), s−
ik, s

g+

rk and sb−
lk are slacks in the ith input, rth good

output and lth bad output of DMUk, respectively. -e
weights of each input wi, good output vr, and bad output vl

are determined subjectively by decision-makers and subject
to 􏽐

m
i�1 wi � 1, 􏽐

sr

r�1 vr + 􏽐
sl

l�1 vl � 1, wi,vr, and vl > 0.
Note that when R−

ik � 0, R
g+
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[24].

2.2. &e IMSBM Model with Undesirable Outputs. -e
IMSBM model with undesirable outputs can be defined
based on the MSBM model with undesirable outputs.

For the IMSBM model with undesirable outputs, the
inputs, good outputs, and bad outputs are assumed to be
interval variables denoted as xij ∈ [xij, xij], y

g
rj ∈ [yg

rj
, y

g
rj],

and yb
lj ∈ [yb

lj
, yb

lj], where xij is the lower bound of xij, xij is

the upper bound of xij, yg

rj
is the lower bound of y

g
rj, y

g
rj is

the upper bound of y
g
rj, yb

lj
is the lower bound of yb

lj, and yb
lj

Table 1: Comparison of the new IMSBM model with other DEA models.

IDEA SBM (a)-based IDEA Interval SORM SBM (b) BP-SBM MSBM IMSBM New IMSBM
Interval data √ √ √ × × × √ √
Negative data × × √ × √ √ √ √
Slacks-based × √ × √ √ √ √ √
Undesirable outputs × × × √ × × × √
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is the upper bound of yb
lj. In this case, the ideal point in the

IMSBMmodel with undesirable outputs is considered as I �
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where ρk is interval data denoted as [ρ
k
, ρk]. Similarly, when

R−
ik(R

−

ik), R
g+

rk (R
g+

rk ) or Rb−
lk (R

b−

lk ) is zero, the corresponding
term is assumed to be dropped from the numerator or
denominator.

-e lower bound of the interval efficiency ρ
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most unfavourable situation for DMUk. -us, DMUk

consumes xik to produce y
g

rk and yb
lk, while DMUj consumes

xij to produce y
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lj
(j≠ k). Symmetrically, the upper

bound of the efficiency ρk is the most favourable situation for
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-erefore, models (7) and (8) interpret the IMSBM model
with undesirable outputs as a whole, including the relative
efficiencies under the most unfavourable and favourable
situations. Subsequently, they can be divided into a pair of
precise models, the lower efficiency models, and the upper
efficiency models. Models (9) and (10) interpret the lower
efficiency under the most unfavourable situation for DMUk;
inversely, models (11) and (12) interpret the upper efficiency
under the most favourable situation [26, 31]:
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According to the Charnesa and Cooper transformation
[32] and referring to [33–35], the IMSBM model with un-
desirable outputs can be transformed into a linear pro-
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both the numerator and the denominator of the objective
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sl

l�1

vlts
b−
lk􏼐 􏼑

R
b−

lk

,

txik � 􏽘
n

j�1,j≠k
xijtλj + xiktλk + ts

−
ik, i � 1,2, . . . ,m,

ty
g

rk
� 􏽘

n

j�1j≠k
y

g
rjtλj + y

g

rk
tλk − ts

g+

rk , r � 1,2, . . . , sr,

ty
b
lk � 􏽘

n

j�1,j≠k
y

b

lj
tλj + y

b
lktλk + ts

b−
lk , l � 1,2, . . . , sl,

􏽘

n

j�1
tλj � t, j � 1,2, . . . ,n,

s
−
ik, s

g+

rk , s
b−
lk ,λj≥0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Formula (14) is a nonlinear programming problem due
to its nonlinear terms, and some definitions are needed to
transform it into a linear programming problem. Assume

S
−

ik � ts
−
ik, S

g+

rk � ts
g+

rk , S
b−

lk � ts
b−
lk ,Λj � tλj. (15)

Obviously, S
−

ik, S
g+

rk , S
b−

lk ,Λj ≥ 0, and the transformed
problem is

minτk � t − 􏽘
m

i�1

wiS
−

ik

R
−

ik

, (16)

subjectto

1� t + 􏽘

sr

r�1

vrS
g+

rk

R
g+

rk

+ 􏽘

sl

l�1

vlS
b−

lk

R
b−

lk

,

txik � 􏽘
n

j�1,j≠k
xijΛj + xikΛk + S

−

ik, i � 1,2, . . . ,m,

ty
g

rk
� 􏽘

n

j�1j≠k
y

g

rjΛj + y
g

rk
Λk − S

g+

rk , r � 1,2, . . . , sr,

ty
b
lk � 􏽘

n

j�1,j≠k
y

b

lj
Λj + y

b
lkΛk + S

b−

lk , l � 1,2, . . . , sl,

􏽘

n

j�1
Λj � t, j � 1,2, . . . ,n,

S
−

ik,S
g+

rk ,S
b−

lk ,Λj≥0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Assuming the optimal solution of (16) and (17) to be
(τ∗k , t∗,Λ∗ , S

− ∗
ik , S

g+∗
rk , S

b− ∗
lk ), then, according to (15), the

optimal solution of (9) and (10) can be obtained numerically
as

ρ∗
k

� τ∗k , λ∗ �
Λ∗

t
∗ , s

− ∗
ik �

S
− ∗
ik

t
∗ , s

g+∗
rk �

S
g+∗
rk

t
∗ , s

b− ∗
lk �

S
b− ∗
lk

t
∗ .

(18)

Symmetrically, the transformed problem of (11) and (12)
is

minτk � t − 􏽘
m

i�1

wiS
−
ik

R
−
ik

, (19)

subjectto

1� t + 􏽘

sr

r�1

vrS
g+

rk􏼐 􏼑

R
g+

rk

+ 􏽘

sl

l�1

vlS
b−
lk􏼐 􏼑

R
b−
lk

,

txik � 􏽘
n

j�1,j≠k
xijΛj + xikΛk + S

−
ik, i � 1,2, . . . ,m,

ty
g

rk � 􏽘
n

j�1j≠k
y

g

rj
Λj + y

g

rkΛk − S
g+

rk , r � 1,2, . . . , sr,

ty
b

lk
� 􏽘

n

j�1,j≠k
y

b
ljΛj + y

b

lj
Λk + S

b−
lk , l � 1,2, . . . ·, sl,

􏽘

n

j�1
Λj � t, j � 1,2, . . . ,n,

s
−
ik, s

g+

rk , s
b−
lk ,λj≥0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)
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Assuming the optimal solution of (19) and (20) to be
(τ∗k , t∗,Λ∗ , S− ∗

ik , S
g+∗
rk , Sb− ∗

lk ), then, according to (15), the
optimal solution of (11) and (12) can be obtained numeri-
cally as

ρ∗k � τ∗k , λ∗ �
Λ∗

t
∗ ,

s
− ∗
ik �

S
− ∗
ik

t
∗ ,

s
+∗
rk �

S
g+∗
rk

t
∗ ,

s
− ∗
lk �

S
b− ∗
lk

t
∗ .

(21)

If the lower bound of DMUk is inefficient, it can be
improved to become efficient by

xik⟵xik − s
− ∗
ik , i � 1, 2, . . . , m,

y
rk
⟵y

rk
+ s

+∗
rk , r � 1, 2, . . . , sr,

ylk⟵ylk − s
− ∗
lk , l � 1, 2, . . . , sl.

(22)

Symmetrically, if the upper bound of DMUk is ineffi-
cient, it can be improved to become efficient by

xik⟵xik − s
− ∗
ik , i � 1, 2, . . . , m,

yrk⟵yrk + s
+∗
rk , r � 1, 2, . . . , sr,

y
lk
⟵y

lk
− s

− ∗
lk , l � 1, 2, . . . , sl.

(23)

2.3. Properties of the IMSBMModelwithUndesirableOutputs.
-e following properties are considered the bases of de-
signing an efficiency measure [1].

Property 1 (translation-invariant). -is is critical, particu-
larly when input-output data contain zero or negative values.

Property 2 (units-invariant). -is is considered an impor-
tant property in DEA, and in general mathematical terms,
this property is referred to as dimensionless.

Theorem 1. &e IMSBM model with undesirable outputs is
translation-invariant.

Proof. A measure is translation-invariant if and only if the
model is equivalent before and after the translation [36].

Transform the input data xij and xij by the real number
zi(i � 1, 2, . . . , m), transform the good output data y

rj
and

yrj(r � 1, 2, . . . , sr) by the real number tr(r � 1, 2, . . . , sr),
and transform the bad output data y

lj
and

ylj(l � 1, 2, . . . , sl) by the real number tl(l � 1, 2, . . . , sl),
where zi subjects to xij + zi ≥ 0(∀j � 1, 2, . . . , n), tr subjects
to yrj + tr ≥ 0(∀j � 1, 2, . . . , n), and tl subjects to
y

lj
+ tl ≥ 0(∀j � 1, 2, . . . , n) (without loss of generality, zi, tr,

and tl are assumed to be nonnegative). Models (9) and (10)
for the translated data are

minρ
k
′�

1 − 􏽐
m
i�1 wis

−′
ik􏼒 􏼓/R−′

ik

1+ 􏽐
sr

r�1 vrs
g+′
rk􏼒 􏼓/Rg+′

rk + 􏽐
sl

l�1 vls
b−′
lk􏼒 􏼓/Rb−′

lk􏼒 􏼓

, (24)

subject to

xik
′� 􏽘

n

j�1,j≠k
xij
′λj + x′ikλk + s

−′
ik, i � 1,2, . . . ,m,

y
g′

rk
� 􏽘

n

j�1j≠k
y

g′
rjλj + y

g′

rk
λk − s

g+′
rk , r � 1,2, . . . , sr,

y
b′
lk � 􏽘

n

j�1,j≠k
y

b′

lj
λj + y

b′
lkλk + s

b−′
lk , l � 1,2, . . . , sl,

􏽘

n

j�1
λj � 1, j � 1,2, . . . ,n,

􏽘

m

i�1
wi � 1,􏽘

sr

r�1
vr + 􏽘

sl

l�1
vl � 1,

wi,vr,vl, s
−
ik, s

g+

rk , s
b−
lk ,λj≥0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where xij
′ � xij + zi, xik

′ � xik + zi, yg′
rj

� yg

rj
+ tr,

y
g′
rj � y

g
rj + tr, yb′

lj
� yb

lj
+ tl, and yb′

lj � yb
lj + tl. It can be

verified that R
−′
ik � R

−

ik, R
g+′
rk � R

g+

rk and R
b−′
rk � R

b−

rk . As

􏽐
n
j�1 λj � 1, the constraints in (25) imply s−′

ik � s−
ik, s

g+′
rk � s

g+

rk ,
and sb−′

lk � sb−
lk . -erefore models (9) and (10) and (24) and

(25) are equivalent problems, and thus models (9) and (10)
are translation-invariant. Models (11) and (12) can similarly
be proven to be translation-invariant.-erefore, the IMSBM
model with undesirable outputs is translation-invariant.-is
proof is thus complete. □

Theorem 2. IMSBMmodel with undesirable outputs is unit-
invariant.

Proof. Consider the gth input, the hth good output, and the
qth bad output in the models (9) and (10), rescale both
bounds of the gth input by multiplying it by a scalar α> 0,
rescale both bounds of the hth good output by multiplying
it by a scalar β> 0, and rescale both bounds of the qth

bad output by multiplying it by a scalar c> 0. -e ideal point
is Iα,β,c � (minjxij(i � 1, 2, . . . , m, i≠g),minj(αxgj),

maxjyrj(r � 1, 2, . . . , s1, r≠ h),maxj(βyhj), minjylj
(l �

1, 2, . . . , s2, l≠ q),minj(cy
qj

)). It can be proven that

R
−

ik,α � R
−

ik(i≠g), R
−

gk,α � αR
−

gk, R+
rk,β � R+

rk(r≠ h),
R+

hk,β � βR+
hk, R

−

lk,c � R
−

lk(l≠ q), and R
−

qk,c � cR
−

qk. From the
constraints, we have s−

ik,α � s−
ik(i≠g), s−

gk,α � αs−
gk,

s+
rk,β � s+

rk(r≠ h), s+
hk,β � βs+

hk, s−
lk,c � s−

lk(l≠ q), and
s−

qk,c � cs−
qk. -e rescaling does not impact ρ

k
. -us, models

(9) and (10) are unit-invariant.
Models (11) and (12) can be similarly proven. -erefore,

the IMSBM with undesirable outputs is unit-invariant. -is
proof is thus complete. □
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3. Classification and Ranking of the DMUs

-e efficiency scores measured by the IMSBM model with
undesirable outputs are calculated in an interval form, and
thus a simple and practical approach is required to compare
and rank the performance of the DMUs.

Haghighat and Khorram [37] noted that DMUs can be
classified into three subsets according to the interval effi-
ciency. -e first is the strictly efficient subset, with

E++ � DMUj|ρj
� 1, ρj � 1, j � 1, 2, . . . , n􏼚 􏼛. -e second is

the weakly efficient subset, with E+ � DMUj|ρj
< 1,􏼚

ρj � 1, j � 1, 2, . . . , n}. -e third is the inefficient subset,

with E− � DMUj|ρj
< 1, ρj < 1, j � 1, 2, . . . , n􏼚 􏼛. Ranking

the DMUs in the same subset is obviously difficult when the
DMU number is greater than one. Wang et al. [38] proposed
the degree of preference approach for ranking interval data.
However, although this approach is suitable for a pairwise
comparison, it is less convenient in a complex system. -us,
we introduce an improved degree of preference approach to
rank interval efficiency scores.

Suppose there are two interval efficiencies, denoted as
ρi � [ρ

i
, ρi] and ρj � [ρ

j
, ρj]. -en, the degree of preference

of ρi over ρj (ρi≻ρj) can be defined as Pij � P(ρi≻ρj), which
reflects the interrelationship among ρi and ρj:

Pij � P ρi≻ρj􏼐 􏼑 �

1, ρ
i
≥ ρj,

ρi − ρj

ρi − ρ
i

+
ρj − ρ

i

ρi − ρ
i

·
ρ

i
− ρ

j

ρj − ρ
j

+
1
2

·
ρj − ρ

i

ρi − ρ
i

·
ρj − ρ

i

ρj − ρ
j

, ρ
j
< ρ

i
< ρj ≤ ρi,

ρi − ρj

ρi − ρ
i

+
1
2

·
ρj − ρ

j

ρi − ρ
i

, ρ
i
≤ ρ

j
< ρj ≤ ρi.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Accordingly, the degree of preference of ρj over
ρi(ρj≻ρi) can be defined as

Pji � P ρj≻ρi􏼐 􏼑 �

0, ρ
i
≥ ρj,

1
2

·
ρj − ρ

i

ρi − ρ
i

·
ρj − ρ

i

ρj − ρ
j

, ρ
j
< ρ

i
< ρj ≤ ρi,

ρ
j

− ρ
i

ρi − ρ
i

+
1
2

·
ρj − ρ

j

ρi − ρ
i

, ρ
i
≤ ρ

j
< ρj ≤ ρi.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Besides the above two options in (26) and (27) (ρi≻ρj and
ρi≺ρj), the interrelationship among ρi and ρj exists in the
third option, that is, ρi � ρj (ρi

� ρ
j
and ρi � ρj). It is easy to

verify that if ρi � ρj, then Pij � Pji � 0. According to (26)
and (27), if ∀i≠ j, such that Pij + Pji � 1, then the following
n × n matrix that consists of Pij is an antisymmetric matrix.

Pn×n �

− P12 · · · P1n

P21 − · · · P2n

· · · · · · · · · · · ·

Pn1 Pn2 · · · −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where Pik � P(ρi≻ρk) and Pik � P(ρi � ρk) � 0, i, k �

1, 2, . . . , n, i≠ k.
If Pρi≻ρj

≥ 0.5 and Pρj≻ρk
≥ 0.5 (k � 1, 2, . . . , n, k≠ i, j),

then Pρi≻ρk
≥ 0.5, indicating that the degree of preference

satisfies transitivity [38].
According to transitivity, it can be verified that the

degree of preference approach possesses the following
property.

Property 3. If ρi≻ρj, i, j � 1, 2, . . . , n, i≠ j, then ri > rj; in-
versely, if ρi≺ρj, i, j � 1, 2, . . . , n, i≠ j, then ri < rj; and if
ρi � ρj, then ri � rj, i, j � 1, 2, . . . , n, i≠ j.

Here, ri and rj denote the sum value of the degree of
preference of the deferent rows in matrix, that is,

ri � 􏽘
n

k�1
Pik, i, k � 1, 2, . . . , n, i≠ k,

rj � 􏽘
n

k�1
Pjk, j, k � 1, 2, . . . , n, j≠ k,

(29)

where ri and rj can be denoted by the vector
R � (r1, r2, . . . , rn)T. We can verify from the property that if
ρi≻ρj, then ri > rj, and if ρi � ρj, then ri � rj. -erefore, the
different interval efficiency scores in subsets E+ and E− can
be ranked through vector R � (r1, r2, . . . , rn)T due to the
transitivity.

Proof. For a 2 × 2 matrix, as P12 + P21 � 1, if ρ1 ≥ ρ2, then
P12 ≥P21 and r1 ≥ r2, and thus it possesses the property.

For an (n − 1) × (n − 1)(n≥ 3) matrix, if ρi � ρj, then
Pij � 0, and ri � rj. If ρi≻ρj, then 0<Pij ≤ 1 (when ρi > ρj,
Pij � 1), specifically.

(1) If ρ
i
≤ ρ

j
< ρj ≤ ρi, according to (26), then

Pij �
ρi − ρj

ρi − ρ
i

+
1
2

·
ρj − ρ

j

ρi − ρ
i

. (30)

When ρi − ρj � ρ
j

− ρ
i
, thus Pij � ρj + ρ

j
− 2ρ

i
/

2(ρi − ρ
i
) � ρi − ρ

i
/2(ρi − ρ

i
) � 0.5.

When ρi − ρj > ρj
− ρ

i
, thus Pij � 2ρi − (ρj + ρ

j
)/2(ρi −

ρ
i
) � ρi/ρi − ρ

i
− ρj + ρ

j
/2(ρi − ρ

i
), as ρi/ρi − ρ

i
> 1 and

ρj + ρ
j
/2(ρi − ρ

i
)< 1/2, then Pij > 0.5.

Likewise, when ρi − ρj < ρj
− ρ

i
, it can be verified that

Pij < 0.5.

(2) If ρ
j
< ρ

i
< ρj ≤ ρi, according to (26), then
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Pij �
ρi − ρj

ρi − ρ
i

+
ρj − ρ

i

ρi − ρ
i

·
ρ

i
− ρ

j

ρj − ρ
j

+
1
2

·
ρj − ρ

i

ρi − ρ
i

·
ρj − ρ

i

ρj − ρ
j

.

(31)

When ρi � ρj, thus Pij � 1/2 · (ρi − ρ
j
) + (ρ

i
− ρ

j
)/ρi − ρ

j
, as (ρi − ρ

j
) + (ρ

i
− ρ

j
)/ρi − ρ

j
> 1, then

Pij > 0.5.
When ρ

j
< ρ

i
< ρj < ρi, thus Pij � 1/2(ρi − ρj) + (ρi − ρ

i
)/

ρi − ρ
i
, as (ρi − ρj) + (ρi − ρ

i
)/ρi − ρ

i
> 1, then Pij > 0.5.

-erefore, if ρi≻ρj, it can be verified that 0<Pij ≤ 1,
according to the transitivity property, then ri � 􏽐

n
k�1 Pik �

Pi1 + Pi2 + · · · + Pin > rj � 􏽐
n
k�1 Pjk � Pj1 + Pj2 + · · · + Pjn,

i, k � 1, 2, . . . , n, i≠ j, i≠ k, j≠ k. -is proof is thus
complete. □

4. Application to Chinese City
Commercial Banks

In this section, we implement the proposed IMSBM model
with undesirable outputs to evaluate the efficiency scores and
the classification of Chinese city commercial banks in 2017.
Our study represents the first attempt to measure the in-
terval efficiency of these banks with both negative data and
undesirable outputs.

Based on the availability of data, we evaluate the interval
efficiency scores of 99 city commercial banks, each of which
is associated with two inputs (staff costs (COST) and total
assets (ASST)) and three outputs (noninterest income
(NINT), interest income (INTE), and nonperforming loan
(NPL)). To simplify the problem, the inputs and outputs are
weighted equally, as presented in Table 2 in the parentheses.
Due to space limitations, we only give the DMUs with
negative data in Table 2. Four DMUs have negative outputs
in all of the samples. DMU87 (Cang Zhou bank) has negative
noninterest income at both the lower and the upper bound.
-ree other banks (DMU66 (Xia Men bank), DMU77 (Ying
Kou bank), and DMU97 (Gui Zhou bank)) have negative
noninterest income at the lower bounds. -e remaining 95
banks have positive inputs and outputs at both bounds and
are not included in Table 2.

-e resulting interval efficiency scores and corre-
sponding classification evaluated by the IMSBM model with
undesirable outputs are shown in Table 3, and those for the
model without undesirable outputs are given in the two
adjacent columns for comparison.

Table 3 shows that, for the IMSBM model with unde-
sirable outputs, only DMU18 (Liang Shan Zhou bank) is
strictly efficient, 82 banks are weakly efficient, and the
remaining 16 are inefficient.

A comparison of the efficiency scores evaluated by the
IMSBMmodels with and without undesirable outputs shows
that the strictly efficient DMUs in the two models are the
same (i.e., DMU18). However, it is important to note that the
interval efficiency scores of the weakly efficient and the
inefficient DMUs changed after considering the undesirable
outputs. When the DMUs are weakly efficient, the lower
bound of the efficiency score decreased after considering
undesirable outputs except DMU3, DMU22, DMU71, and
DMU85, while the upper bounds of the efficiency score
remained unchanged. When the DMUs are inefficient, the
lower bound of the efficiency score also decreased after
considering undesirable outputs, while the change of the
upper bound of the efficiency score is complicated. -e
upper bounds of the efficiency score of 8 banks increased,
and for the other 13 banks, the opposite is observed.
-erefore, without considering the undesirable outputs, the
lower bound of the efficiency score will be overestimated as a
whole, when the DMUs are weakly efficient and inefficient.
In addition, the upper bound of the efficiency score will
change when considering the undesirable outputs when the
DMUs are inefficient.

-e details of the performance ranking are required, in
addition to the classification. According to (26) and (27), the
interrelationship among DMUs can be established through
the degree of preference Pij, which constitutes a 99 × 99
matrix. Due to space limitations, the matrix is not shown in
this paper. -e sum value r of the degree of preference can
then be calculated according to (29), and all of the DMUs are
ranked based on the value. -e r value and the corre-
sponding rank of each DMU are shown in Table 4, where r∗i
andR∗ denote the sum values of the degree of preference and
the rank of each DMU, respectively, with the IMSBMmodel
with undesirable outputs, and the contrasting ri and R with
the model without undesirable outputs are given in the
adjacent two columns.

As shown in Table 4, DMU18 is strictly efficient under
both models; therefore, the sum values r∗i and ri are both
equal to 98, excluding the value on the leading diagonal.
From r∗i and ri, DMU18 is found to be ranked in the top
position under both models. We can then examine the ranks
of the other 10 DMUs below DMU18. With the IMSBM
model with undesirable outputs, the relationship among the
10 DMUs is established as DMU71≻DMU85 ≻DMU2≻
DMU1 ≻DMU4≻DMU42≻DMU47≻DMU72≻DMU96≻
DMU91. For the IMSBMmodel without undesirable outputs,
the relationship is established as DMU71≻DMU85 ≻DMU2
≻DMU72≻ DMU1≻DMU42≻DMU4≻ DMU91≻
DMU70≻DMU96. -is indicates that the IMSBM model
with undesirable outputs leads the ranks of the weakly ef-
ficient and inefficient DMUs to change.
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Table 2: -e DMUs with negative outputs.

DMU
Inputs Outputs

COST (w1 � 0.5) ASST (w2 � 0.5) NINT (vr1
� 0.33) INTE (vr2

� 0.33) NPL (vl1
� 0.33)

DMU66 [628.00, 649.11] [188589.00, 212413.91] [− 539.00, 158.95] [8726.00, 9881.56] [731.07, 878.96]
DMU77 [615.00, 678.96] [126756.00, 156344.22] [− 55.90, 104.27] [5428.00, 7279.38] [665.09, 822.17]
DMU87 [676.00, 875.34] [111723.00, 123832.19] [− 23.08, − 22.94] [4524.00, 5671.94] [850.01, 1084.49]
DMU97 [1601.00, 1771.00] [229489.00, 286760.00] [− 91.46, 123.97] [11193.74, 12870.00] [1303.00, 1375.00]

Table 3: Results of the interval efficiency and classification.

DMU IMSBM with undesirable
Output Class IMSBM Class DMU IMSBM with undesirable

Output Class IMSBM Class

DMU1 [0.564, 1] E+ [0.596, 1] E+ DMU51 [0.382, 1] E+ [0.488, 1] E+

DMU2 [0.565, 1] E+ [0.611, 1] E+ DMU52 [0.287, 0.6] E−
[0.366,
0.744] E−

DMU3 [0.34, 1] E+ [0.31, 1] E+ DMU53 [0.293, 1] E+ [0.363, 1] E+

DMU4 [0.554, 1] E+ [0.547, 1] E+ DMU54 [0.253, 1] E+ [0.318,
0.986] E−

DMU5 [0.396, 1] E+ [0.481, 1] E+ DMU55 [0.267, 1] E+ [0.331, 1] E+

DMU6 [0.39, 1] E+ [0.458, 1] E+ DMU56 [0.297, 0.826] E−
[0.385,
0.949] E−

DMU7 [0.336, 1] E+ [0.393,
0.914] E− DMU57 [0.313, 1] E+ [0.387, 1] E+

DMU8 [0.383, 1] E+ [0.469, 1] E+ DMU58 [0.293, 1] E+ [0.335, 1] E+

DMU9 [0.198, 0.763] E−
[0.244,
0.838] E− DMU59 [0.241, 0.771] E−

[0.306,
0.853] E−

DMU10 [0.248, 0.935] E−
[0.312,
0.936] E− DMU60 [0.268, 0.595] E−

[0.345,
0.705] E−

DMU11 [0.37, 1] E+ [0.464, 1] E+ DMU61 [0.325, 1] E+ [0.421, 1] E+
DMU12 [0.316, 1] E+ [0.34, 1] E+ DMU62 [0.248, 1] E+ [0.313, 1] E+

DMU13 [0.214, 0.98] E−
[0.268,
0.977] E− DMU63 [0.284, 1] E+ [0.352, 1] E+

DMU14 [0.246, 1] E+ [0.255, 1] E+ DMU64 [0.333, 1] E+ [0.395, 1] E+
DMU15 [0.279, 1] E+ [0.347, 1] E+ DMU65 [0.325, 1] E+ [0.412, 1] E+
DMU16 [0.372, 1] E+ [0.461, 1] E+ DMU66 [0.404, 1] E+ [0.481, 1] E+
DMU17 [0.286, 1] E+ [0.311, 1] E+ DMU67 [0.323, 1] E+ [0.374, 1] E+

DMU18 [1, 1] E++ [1, 1] E++ DMU68 [0.318, 0.802] E−
[0.406,
0.954] E−

DMU19 [0.226, 1] E+ [0.257, 1] E+ DMU69 [0.325, 1] E+ [0.405, 1] E+

DMU20 [0.233, 0.845] E−
[0.299,
0.862] E− DMU70 [0.415, 1] E+ [0.508, 1] E+

DMU21 [0.403, 1] E+ [0.48, 1] E+ DMU71 [0.753, 1] E+ [0.713, 1] E+
DMU22 [0.386, 1] E+ [0.386, 1] E+ DMU72 [0.5, 1] E+ [0.603, 1] E+
DMU23 [0.384, 1] E+ [0.469, 1] E+ DMU73 [0.209, 1] E+ [0.27, 1] E+

DMU24 [0.235, 0.765] E−
[0.299,
0.833] E− DMU74 [0.245, 0.775] E−

[0.299,
0.876] E−

DMU25 [0.303, 1] E+ [0.375, 1] E+ DMU75 [0.229, 1] E+ [0.244,
0.997] E−

DMU26 [0.364, 1] E+ [0.454, 1] E+ DMU76 [0.337, 1] E+ [0.402, 1] E+
DMU27 [0.282, 1] E+ [0.326, 1] E+ DMU77 [0.278, 1] E+ [0.344, 1] E+
DMU28 [0.295, 1] E+ [0.357, 1] E+ DMU78 [0.344, 1] E+ [0.43, 1] E+

DMU29 [0.199, 0.667] E−
[0.255,
0.844] E− DMU79 [0.363, 1] E+ [0.432, 1] E+

DMU30 [0.316, 1] E+ [0.399, 1] E+ DMU80 [0.251, 1] E+ [0.305, 1] E+
DMU31 [0.405, 1] E+ [0.499, 1] E+ DMU81 [0.346, 1] E+ [0.426, 1] E+
DMU32 [0.327, 0.737] E− [0.41, 0.857] E− DMU82 [0.347, 1] E+ [0.416, 1] E+
DMU33 [0.293, 1] E+ [0.374, 1] E+ DMU83 [0.371, 1] E+ [0.457, 1] E+
DMU34 [0.267, 1] E+ [0.333, 1] E+ DMU84 [0.372, 1] E+ [0.454, 1] E+
DMU35 [0.36, 1] E+ [0.419, 1] E+ DMU85 [0.635, 1] E+ [0.635, 1] E+
DMU36 [0.382, 1] E+ [0.466, 1] E+ DMU86 [0.35, 1] E+ [0.385, 1] E+

DMU37 [0.315, 1] E+ [0.324, 1] E+ DMU87 [0.244, 0.902] E−
[0.309,
0.883] E−
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5. Conclusion and Discussion

-is study develops the IMSBM model to address unde-
sirable outputs, which extends the application of IDEA in

fields that concern with less undesirable outputs, such as air
pollutants, hazardous waste, and nonperforming loan.
Several models in the literature have been developed to
handle problems of imprecise and (or) negative data, but few

Table 3: Continued.

DMU IMSBM with undesirable
Output Class IMSBM Class DMU IMSBM with undesirable

Output Class IMSBM Class

DMU38 [0.25, 1] E+ [0.303, 1] E+ DMU88 [0.322, 1] E+ [0.37, 1] E+
DMU39 [0.296, 1] E+ [0.333, 1] E+ DMU89 [0.273, 1] E+ [0.32, 1] E+

DMU40 [0.406, 1] E+ [0.425, 1] E+ DMU90 [0.282, 0.915] E−
[0.357,
0.862] E−

DMU41 [0.376, 1] E+ [0.442, 1] E+ DMU91 [0.419, 1] E+ [0.519, 1] E+
DMU42 [0.548, 1] E+ [0.581, 1] E+ DMU92 [0.278, 1] E+ [0.351, 1] E+
DMU43 [0.326, 1] E+ [0.38, 1] E+ DMU93 [0.22, 1] E+ [0.262, 1] E+
DMU44 [0.379, 1] E+ [0.435, 1] E+ DMU94 [0.317, 1] E+ [0.354, 1] E+

DMU45 [0.261, 1] E+ [0.333,
0.954] E− DMU95 [0.268, 1] E+ [0.323, 1] E+

DMU46 [0.247, 1] E+ [0.311, 1] E+ DMU96 [0.428, 1] E+ [0.506, 1] E+
DMU47 [0.522, 1] E+ [0.482, 1] E+ DMU97 [0.284, 1] E+ [0.345, 1] E+
DMU48 [0.334, 1] E+ [0.406, 1] E+ DMU98 [0.247, 1] E+ [0.293, 1] E+

DMU49 [0.294, 0.596] E−
[0.373,
0.772] E− DMU99 [0.264, 1] E+ [0.322, 1] E+

DMU50 [0.25, 1] E+ [0.315,
0.978] E−

Table 4: -e sum values of the degree of preference and ranks of the DMUs.

DMU r∗i R∗ ri R DMU r∗i R∗ ri R DMU r∗i R∗ ri R

DUM1 67.614 5 66.477 6 DUM34 46.561 60 46.003 57 DUM67 50.244 43 48.869 44
DUM2 67.687 4 67.716 4 DUM35 52.820 30 52.222 31 DUM68 35.789 77 47.615 48
DUM3 51.417 35 44.491 67 DUM36 54.388 22 55.896 18 DUM69 50.381 42 51.159 35
DUM4 66.886 6 62.451 8 DUM37 49.699 47 45.403 61 DUM70 56.769 12 59.275 10
DUM5 55.395 17 57.096 15 DUM38 45.511 65 44.045 69 DUM71 81.049 2 76.080 2
DUM6 54.962 18 55.261 21 DUM39 48.429 50 46.003 57 DUM72 62.947 9 67.055 5
DUM7 51.139 37 43.453 71 DUM40 56.117 13 52.683 29 DUM73 43.138 71 42.047 75
DUM8 54.459 21 56.135 17 DUM41 53.958 24 54.002 24 DUM74 29.352 80 34.134 85
DUM9 26.096 83 28.222 91 DUM42 66.448 7 65.240 7 DUM75 44.267 68 40.360 79
DUM10 40.860 74 39.648 82 DUM43 50.449 40 49.305 42 DUM76 51.209 36 50.933 36
DUM11 53.530 27 55.737 19 DUM44 54.173 23 53.456 25 DUM77 47.258 57 46.752 54
DUM12 49.767 46 46.478 55 DUM45 46.186 62 42.422 74 DUM78 51.696 34 53.069 27
DUM13 42.036 72 40.179 80 DUM46 45.330 66 44.555 66 DUM79 53.032 29 53.224 26
DUM14 45.270 67 41.192 78 DUM47 64.551 8 57.176 14 DUM80 45.572 64 44.172 68
DUM15 47.322 56 46.959 52 DUM48 51.001 38 51.234 34 DUM81 51.835 33 52.760 28
DUM16 53.672 25 55.498 20 DUM49 19.360 85 30.506 89 DUM82 51.905 32 51.993 32
DUM17 47.775 53 44.555 66 DUM50 45.511 65 43.114 73 DUM83 53.601 26 55.181 22
DUM18 98.000 1 98.000 1 DUM51 54.388 22 57.659 13 DUM84 53.672 25 54.944 23
DUM19 44.094 69 41.304 77 DUM52 19.243 86 27.784 92 DUM85 72.728 3 69.697 3
DUM20 33.659 78 33.029 86 DUM53 48.232 52 48.081 46 DUM86 52.116 31 49.671 41
DUM21 55.900 16 57.015 16 DUM54 45.694 63 43.928 70 DUM87 38.306 75 35.288 84
DUM22 54.675 19 49.744 40 DUM55 46.561 60 45.869 58 DUM88 50.176 44 48.581 45
DUM23 54.531 20 56.135 17 DUM56 36.151 76 45.662 59 DUM89 46.939 58 45.139 64
DUM24 28.095 82 30.738 88 DUM57 49.564 48 49.818 39 DUM90 41.548 73 36.710 83
DUM25 48.893 49 48.941 43 DUM58 48.232 52 46.138 56 DUM91 57.058 11 60.168 9
DUM26 53.103 28 54.944 23 DUM59 28.846 81 32.730 87 DUM92 47.258 57 47.236 51
DUM27 47.516 55 45.535 60 DUM60 17.848 87 23.376 93 DUM93 43.752 70 41.587 76
DUM28 48.363 51 47.656 47 DUM61 50.381 41 52.376 30 DUM94 49.835 45 47.446 49
DUM29 19.527 84 29.226 90 DUM62 45.390 66 44.684 65 DUM95 46.624 59 45.337 62
DUM30 49.767 46 50.709 37 DUM63 47.645 54 47.306 50 DUM96 57.711 10 59.113 11
DUM31 56.045 14 58.546 12 DUM64 50.932 39 50.410 38 DUM97 47.645 54 46.821 53
DUM32 31.646 79 40.082 81 DUM65 50.381 41 51.689 33 DUM98 45.330 66 43.422 72
DUM33 48.232 52 48.869 44 DUM66 55.972 15 57.096 15 DUM99 46.373 61 45.271 63
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models consider handling imprecise and negative data si-
multaneously.-esemodels also ignore undesirable outputs.
-us, we first propose the IMSBM model with undesirable
outputs. -e model is novel as it considers undesirable
outputs while dealing with imprecise and negative data, and
it is slack-based, which ensures efficiency is obtained when
considering both radial and nonradial slacks.

-is study establishes that the IMSBM model with
undesirable outputs is translation-invariant and unit-in-
variant. -e model is applied to evaluate the interval effi-
ciency scores of Chinese city commercial banks, which are
compared with those evaluated by the IMSBM model
without considering undesirable outputs. -e empirical
results show that the IMSBM model with undesirable
outputs reduces the lower bounds of the efficiency scores of
the weakly and inefficient DMUs as a whole. -erefore,
without considering undesirable outputs, most of the lower
bounds of the efficiency scores will be overestimated when
the DMUs are weakly efficient and inefficient. In addition,
the model leads to changes in the upper bounds of the ef-
ficiency scores of inefficient DMUs. Finally, the interval
efficiency scores are ranked with an improved degree of
preference approach.

-e proposed IMSBMmodel with undesirable outputs is
assigned under the VRS, but not the CRS. -erefore, the
interval efficiency scores evaluated by the right model are
pure technical efficiencies (PTE). In addition, the resulting
interval efficiency scores are in the range of [0, 1], and the
upper bound of each cannot be greater than one, so the
strictly efficient DMUs cannot be ranked. -us, in future
studies, we will focus our attention on the IMSBM model
with undesirable outputs under the CRS to evaluate the
technical efficiency (TE). In addition, we will develop a
superefficiency model from our model to rank the strictly
efficient DMUs.
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