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,e study of evacuation for buildings with limited space is an important part of improving evacuation efficiency and preventing
stampedes. A building evacuation model was proposed based on cellular automata simulation considering different crowd states.
Different flow sizes under layout environments with the same facilities as well as evacuation efficiency, bottleneck area density, and
escape routes choice under the orderly and disorderly distribution conditions have also been analyzed. ,e results show that the
initial disorderly distribution state is superior to the orderly distribution state in terms of the evacuation efficiency index. ,e
former provides evacuees with maximum room for the corridor and the exit, with the overall evacuation density being lower than
that of the latter. Evacuation along the central corridor provides more room compared to that of the two flanks, which explains
why evacuees prefer to occupy the central area when space is limited, and this is detrimental to the moving capacity.

1. Introduction

Evacuation within limited spaces has always been one of the
popular issues that allow for professional research. ,e
objective of the building evacuation is to minimize the
evacuation time and optimize the escape route and facility
layout. In specific disasters, such as fires and earthquakes,
the evacuation could be a complex process due to lots of
evacuees and differentiating decision behaviors. Some lit-
erature has exhibited an interest in investigating this issue in
conjunction with the safety of some buildings [1, 2]. Because
of limited space facilities, there are many uncertain factors in
the process of flow evacuation, including physical conflicts
that lead to evacuation chokepoints, where secondary di-
sasters like stampede frequently occur. Past events showed
that unless appropriate guidance is given, pedestrians may
select inappropriate escape routes, which may result in push
and squeeze or trample. It is important to study the choice of
escape routes and the layout of facilities within the limited
space, which is also a key factor in ensuring the safety of the

evacuation, the reasonable layout of building facilities, and
the improvement of the congestion management level.

Several methods have been proposed to optimize and
evaluate the evacuation process. ,e predominant para-
digms of simulation-based approaches [3–5] and optimi-
zation models [6, 7] are widely used to optimize and evaluate
evacuation plans. ,e simulation method is usually used to
test the evacuation performance of complex buildings and
transportation hubs and to evaluate the dynamic evacuation
process. ,erefore, it is also suitable to simulate pedestrian
flow and escaping the behavior of crowds. Some simulation
tools, such as Legion, VISSWALK, SimWalk, and AnyLogic,
having been developed are suitable to simulate decision-
making, human cognition, and social behavior [8], but many
aspects of human behavior are not well understood and
analyzed, particularly in design schemes optimization and
emergency scenarios [9, 10]. Simulations can identify key
points that can lead to confusion and disorientation to
identify the poor design of the built environment and
emergency response systems. However, most models do not
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provide solutions for the optimization of the overall evac-
uation process.

,e comprehensive research regarding existing specifi-
cations for building facilities layout and the choice of escape
routes are still in the exploratory stage. For all these reasons,
it is believed that the reliability and accuracy of the existing
crowd simulation programs for practical design purposes are
still limited.

In this paper, we proposed a model for crowd evacuation
in limited space based on different crowds gathering mode.
In the limited architectural space, due to evacuation time,
space, obstacle layout, and other factors, it maybe makes the
problem complex that the heterogeneity of the human be-
havior that different individuals may exhibit in a certain
evacuation scenario. ,e proposed model is calibrated on
simulation and applied to real case studies.

2. Literature Review

Many works within the recent years have been carried out to
analyze pedestrian behavior and enhance the safety strat-
egies of limited architectural space [11–13]. ,e analysis of
the egress behavior is the key link to ensure the evacuation
safety, optimize the facilities layout, and keep the high level
of congestion management [14, 15]. ,e human escaping
behavior could be represented in many ways by simulation
[16]. Earlier models simulated the evacuees as a continuous
homogeneous mass that behaves as a fluid flowing along the
corridors [17, 18], as far as both pedestrian movement and
trip maker decision were concerned [8, 19]. ,ese simu-
lation models were typically less accurate in describing
pedestrian movement [19]. ,e individual behavior of
people is determined by their own characteristics and
external environment, and the influence of surrounding
obstacles and the interaction of the crowd play a very
important role. ,e microsimulation focuses on the
movement and interaction of the crowd [20, 21]. Typical
microscopic models include agent-based simulation
[22–24], social force model [25, 26], cellular automata
model [27, 28], multigrid model [29], floor fluid model
[30], and particle model [31]. ,e pedestrians may have a
differentiated level of familiarities with the architectural
space and choose their escape routes, which are not nec-
essarily the shortest path [32, 33].

One of the essential tasks of evacuation in a building is to
represent the inherent link between facilities layout and
human behavior [34, 35]. ,e pedestrians’ path finding
behaviors in buildings and channels have been mainly fo-
cused on [36, 37], and the behavior differences in path
finding regarding the dynamic spatial availability have been
considered [38, 39]. Rogsch et al. considered the difference
in spatial knowledge of people in the building and analyzed
the evacuation efficiency [12, 40]. Pedestrians may escape
according to the optimal route they choose and constantly
judge and adjust the route according to their physical and
psychological characteristics [33]. Scholars have looked at
this problem from different perspectives, such as pedestrian
simulation in the different facilities [40, 41], investigating
features analysis of crowd behavior in complex maneuvers

[10, 42]. ,e lack of empirical data and the closure of in-
dustry data are the main reasons for this phenomenon,
hindering the validation and calibration of existing models
[43, 44]. Previous studies have partially addressed the lack of
interpretive data by providing selective data, conducting
experimental studies in relatively simple geometries, or
monitoring the actual movement of pedestrians in a crowd
[45]. In addition, some scholars have analyzed the feedback
mechanism from the perspective of dynamics and uncer-
tainty theory [46–48].

However, the spatial accessibility of the building could be
varied due to overcrowds or uncertain conditions, and in-
dividualized path choices concerning the human awareness
of the predictable change were not fully described.,e study
on the facilities layout of the building is still in the ex-
ploratory stage, and there is an obvious difference in pe-
destrian behavior under different schemes, which has a
direct effect on the evacuation efficiency.

Based on relevant studies and existing norms, there is
little consideration given to the group behavior and indi-
vidual behavior of evacuated people, and the study on the
utility and behavior of route selection is insufficient. In this
paper, a pedestrian safety evacuation model in finite space is
established, and the evacuation efficiency, bottleneck den-
sity, and path decision-making of pedestrians in different
clustering modes under different schemes are simulated and
analyzed.

3. The Crowd Evacuation Model Based on the
Cellular Automata considering the Different
Crowd Gathering Modes

,is section presents the basic pedestrian evacuation model
we defined for investigating different crowd gathering sit-
uations. ,e model is essentially based on the cellular
automata (CA) model approach; nonetheless, for simplicity,
we will adopt the agent term to discuss the behavior of
pedestrians.

,is section gives the basic pedestrian evacuation model
we defined for investigating different crowd congregations.
,e model is based on cellular automata (CA); however, for
simplicity, we will use proxy terms to discuss pedestrian
behavior.

3.1. &e Setting of the Visual Areas and Moving Directions.
,e model environment is represented by discrete square
cells, such as the CA model, whose size is 40 cm× 40 cm.
Each cell is connected to other cells according to neigh-
borhood functions. In the basic model, we assume that the
Moore neighborhood includes all the units around the unit
under consideration, even in the diagonal direction. How-
ever, we separate out the subset of neighbors.

,e status of the unit cell is either occupied or vacant.
,emodel annotates the space with different tags.,ese tags
areM groups of unit C and have the ability to assign roles to
these units. ,e model assumes the following: (i) the initial
area and location (unit) of pedestrian are generated at one
time or have a certain frequency distribution; (ii) destination
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is the place where the pedestrian wants to go, final or
intermediate.

,e destination is associated with the path field, which
indicates the path between each cell in the environment and
the destination. Start areas are more complicated: they
contain indications for a pedestrian generation. ,e start
area also contains information about the type of pedestrian it
must generate, such as destination and related parameters.
Each cell can take different forms of wall, facilities, and flow
and own 8 neighborhoods. In each simulated step, the entity
can only be moved into an adjacent cell or remain in the
original cell (see Figure 1):

Env � Cell(i, j)  , ∀Cell(i, j) ∈ Cell,

μi,j �
1, occupied,

0, unoccupied.


(1)

3.2. &e Setting of Strategy. ,e simulation time is set to
discrete. According to the step size, we set the maximum
speed of pedestrians to 1 cell per step. ,erefore, we can
calculate the number of seconds of a single time step [9].
Based on these assumptions, we have a ratio of 3 to 4 steps
per second. In order to better simulate the high-density
population, we adopted a disorderly sequential update
scheme to activate the behavior of agents [49].

In addition to identifiers, pedestrian characteristics can
be identified by two pieces of information about their
current and past locations:

pedestrian: id, position, oldDirection, path . (2)

,e location is the current cell of the agent. ,e old-
Direction is the last action selected. Path is a specific path
field indicating the destination of the pedestrian.

3.3. &e Function: Linking Perceptions to Actions. At each
time step t, agents select their next action by assessing the
effectiveness of all acceptable actions L(x, y). ,e calcula-
tion method of action probability adopted by the model is
different from the traditional CA model. Moreover, we
separate utility probability and action probability so that
different types of pedestrians can realize different selection
functions.

According to the rules of the moving direction of cell
automata, there are eight-cell visual areas that include
Vk

ij, k � 1, 2, . . . , 8 on behalf of the eight clockwise. For
example, V3

ij cell (i, j) points in the direction of the eastern
visual area containing vacant cell automata and the visual
area referred to that visible to pedestrians. For instance, the
eastern visual area mainly contained 12 cells, among which 4
were occupied; V3

ij � 8 (see Figure 2).
For each step, the rate is calculated as follows regarding 8

directions moving into a yet unoccupied cell:

PV
k
ij � exp ωDDi−1,j + ωVV

k
i−1,j + 

m∈k
ωCC

m
r +

ωE

E
m
i−1,j

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ 1 − μi−1,j ξi−1,j,

P
k
ij �

PV
k
ij

∀kPV
k
ij

, k � 1, 2, . . . , 8,

D(i, j) �
L(x, y) − L(m, n)
�����������������

(m − x)
2

+(n − y)
2

 ,

(3)

where L(x, y) is the estimated optimal utility between
Cell(i, j) and exit. Di,j is the directional parameter, while the
weight coefficient value is ωD ∈ [0, 1]. ,e former is not
subject to time but to the decision-making ability of evac-
uees. It is dependent on two circumstances: if evacuees are
completely familiar with the exit direction and the sur-
rounding environment ωD � 1; conversely, ωD � 0. Di,j

depends on the exit or the location of the labeled exit, which
is the direction all evacuees may move towards. When the

escaping direction is too crowded to leave a vacant cell,
evacuees may be misled by the visual area Vi−1, jk to make a
personalized escape route. Cm

r referred to moving capacity
per unit of time, which is defined by available cells within the
unit of time under the influence of radius areas. ωC refers to
its corresponding sensitivity parameters, for a single exit,
ωC � 0. Em

i,j refers to the Euclidean distance. Based on the
model, simulation analysis is carried out in different envi-
ronments as there is a conflict between the exit and escape

Figure 1: Moving setting and distributive rate.
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routes choice. When few persons simultaneously enter the
same cell, the optimal synthetic distribution principle is
followed: the closer to the cell, the more likely to occupy it.

3.4. Personalized Evacuation Utility Function. In the process
of crowd evacuation within the limited space, there are some
differences as regards the judgment of section resistance: due
to individuality, there are obvious response differences. ,e
calculation of L(x, y) involves three factors, namely, relative
service level, barrier resistance, and physical factor. Given
that these three factors are in a linear relationship with
optimal utility (see equation 4), the nonlinear relationship
can also be adopted in practice:

L(x, y) � 
k

ckLk(x, y). (4)

Lk(x, y) represents the utility value of the different path
attributes. ck refers to the relative weight, that is, the im-
portance of each factor. Not all weight coefficients in the
model are determined by observed behaviors as the weight
only reflects relative importance. ck is mirrored in the groups
of evacuees: different groups lead to different exits and
variant ck.

3.4.1. Congestion Degree. Evacuees may take the congestion
degree of the path ahead into consideration before deciding
which way to move ahead. Congestion degree is mainly
related to low density and speed within the channel. ,e
density difference between designated areas and the inter-
mediate point of the path ahead should be used to judge how
crowded it is, considering that the flow speed is greatly
affected:

L1(x, y) �
ρL

ρA

. (5)

ρL is the evacuees-centered average density of i within
currently limited areas; ρA is the average flow density within
the adjacent areas ahead. ,e greater the density difference
between adjacent areas and currently limited areas, the
greater the congestion index.

3.4.2. Barrier Resistance Factor. During the evacuation,
there are all kinds of barriers within the model area, such as
walls, desks, chairs, and benches. Within a certain distance
and in the direction of moving, barrier resistance utility
L2(x, y) and distance between the barrier and the flow refer
to monotone decreasing function (see Figure 3). Within the
limited space, given the strong barrier resistance impact,
barrier resistance factor and barrier distance should be
defined as an exponential function (see equation 6):

L2(x, y) � gm d Om, x( ( , (6)

L2(x, y) � am exp −
d Om, x( 

bm

 ,

d Om, x(  � min
y∈Om

|x − y| .

(7)

As seen from the equation, the distance d(Om, x) be-
tween evacuees and barriers are the shortest and most ef-
fective. Parameters am > 0 and bm > 0 refer to barrier-affected
areas and their values depend on the barrier type.

Considering the various factors mentioned above, per-
sonalized evacuation utility function under any exigency is
as follows:

L(x, y) � c1
ρL

ρA

+ c2 ω1am exp −
d Om, x( 

bm

  . (8)

Functions c1 and c2 can be defined by the actual value.

3.5. Experimental Scheme

3.5.1. Condition for the Initial Layout of Building Facilities.
,e building is 8.4m long and 7.55m wide (see Figure 4).
,ere are 41 tables and 41 chairs. ,e width of the aisles is
1.25m. ,e width of the door is 0.8m, and the capacity is 41
persons under normal conditions.

3.5.2. Initial Gathering Mode for Crowd Evacuation. In the
initial state, there are two kinds of crowd layout: orderly
distribution and disorderly one. ,e former refers to a
sedentary state including meeting and lecture (see Figure 5),
and the latter refers to a restless state including those
randomly distributed in various parts of the building during
free time (see Figure 6). Based on different distribution
states, there are six situations where the initial numbers of
the crowd are 10, 15, 20, 25, 30, and 35, respectively.

4. Results and Discussion

,e features of the evacuating crowd show that evacuees
prefer the most convenient exit or channel. In the same
building space, different gathering modes and crowd dis-
tribution conditions lead to personalized evacuation with
different places to occupy.

4.1. Different Gathering Modes and Flow Size-Based Evacu-
ation TimeDensity Analysis. ,e difference between orderly
distribution and disorderly distribution is analyzed in terms

Figure 2: Moving direction and cell visual areas calculation layout.
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Figure 5: ,e initial numbers of the crowd for orderly gathering modes. (a) 10p. (b) 15p. (c) 20p (d) 25p. (e) 30p. (f ) 35p.
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of evacuation time and density. As shown in Figure 7, the
average evacuation time under the disorderly distribution is
lower than that under the orderly distribution. When there are
35 evacuees with the orderly distribution, it takes 21 seconds to
evacuate and is 9.3% higher than that of disorderly distribution.
In the entire process of evacuation, partial maximum flow
density of orderly distribution reached 1.2/m2; flow
density subject to two-thirds of all required time is greater than
1.0/m2; flow density of disorderly distribution is significantly
less than that of orderly distribution, with the highest density
being 0.92 people/m2 (see Figure 8). ,e maximum flow
density figures of disorderly and orderly gathering modes are
shown in Figures 9 and 10.When the number of evacuees is 10
or 15 during evacuation, there are no significant differences for
evacuation density of the door and the corridor between two
statuses. Once the number of evacuees is over 20, the maxi-
mum flow density under orderly distribution in the corridor
and door is significantly higher than that of disorderly dis-
tribution. Along with increased flow size, the evacuation

efficiency of disorderly distribution is higher than that of
orderly distribution. Evacuees along the corridor or in each
corner can sense and avoid the danger more quickly. Besides,
randomly distributed evacuees are less hindered by tables and
chairs, which undermine the moving capacity.

4.2. &e Escape Route Choices Based on Different Crowd
Gathering Modes and Crowd Size. Personalized evacuation
and spatial utilization rates are shown in Figures 11 and 12.
,ere is obvious aggressive and competitive behavior con-
cerning the choice of main escape routes. Less than 20
persons in the space lead to a smaller space utilization gap
under orderly and disorderly state, and the main bottleneck
is located at the exit. More than 25 persons lead to the
restless state under orderly and disorderly distribution, and
the utilization rate of the one-sided corridor is significantly
higher than that of the other sided corridor, particularly with
centered corridor utilization rate at best. It indicates that

(a) (b) (c)

(d) (e) (f )

Figure 6: ,e initial numbers of the crowd for disorderly gathering modes. (a) 10p. (b) 15p. (c) 20p. (d) 25p. (e) 30p. (f ) 35p.
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Figure 7: Contrast of evacuation time between different gathering modes and flows.
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Figure 10: Continued.
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(d) (e) (f )

Figure 10: Flow size-based cumulative maximum density under orderly distribution conditions. ,e space utilization illustrates the space
using of pedestrians in an emergency.,emore the routes are chosen, the higher the space utilization is, and the deeper the color is.,e blue
color denotes the less choice, and the red color denotes the more choice. (a) 10. (b) 15. (c) 20 (d) 25. (e) 30. (f ) 35.

(a) (b) (c)

(d) (e) (f )

Figure 11: Flow size-based space use rate under disorderly distribution conditions. ,e space utilization illustrates the space using of
pedestrians in an emergency. (a) 10. (b) 15. (c) 20 (d) 25. (e) 30. (f ) 35.

(a) (b) (c)

Figure 12: Continued.
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evacuees within the limited space tend to occupy the central
area, which greatly affects themoving capacity. Evacuees under
the orderly distribution quickly leave their seat before flocking
to the corridor and the exit (see Figure 12), where evacuees
mainly and conveniently occupy under the disorderly distri-
bution, rendering the flow more balanced, and the exit and
corridor density is lower than that of orderly distribution.

5. Conclusions

,e simulation results discussed in this section show that the
two considered gathering modes influence the evacuation
efficiency in limited space. Our conclusions are as follows.

First of all, the simulation model shows that it benefits
evacuees more from initial disorderly distribution than from
the orderly distribution as shown from the indicators (i.e.,
evacuation efficiency). Especially when it comes to more
than 25 persons, it leads to the obvious difference between
the two distribution conditions.

Moreover, the spatial utilization of the corridor and the
exit is better under the disorderly distribution than under
the orderly one, and the overall evacuation density is also
lower than that under the orderly distribution. Under dif-
ferent circumstances, there are conflicts concerning the
choice of escape routes. ,e exit and the surrounding areas
are mostly congested.

Finally, the utilization rate of the central corridor is
higher than that of either-sided corridors, which indicates
that evacuees within the limited space tend to occupy the
central area and this is detrimental to the moving capacity.

In this paper, we study the generally limited building
space before launching research on a large sports venue and
a railway waiting hall. Findings hereof are of great use for
similar research on building facilities layout.

Data Availability

Data are available in the supplementary materials.

Additional Points

A safety evacuation model for pedestrians within limited
spaces was proposed. It integrates individual behavior into
the evaluation model, builds personalized evacuation utility

functions based on different factors, and analyzes the
evacuation efficiency of different position distribution and
flow sizes.
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