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With the wide adoption of social collaborative coding, more andmore developers participate and collaborate on platforms such as
GitHub through rich social and technical relationships, forming a large-scale complex technical system. Like the functionalities of
critical nodes in other complex systems, influential developers and projects usually play an important role in driving this technical
system to more optimized states with higher efficiency for software development, which makes it a meaningful research direction
on identifying influential developers and projects in social collaborative coding platforms. However, traditional ranking methods
seldom take into account the continuous interactions and the driving forces of human dynamics. In this paper, we combine the
bursty interactions and the bipartite network structure between developers and projects and propose the BurstBiRank model.
Firstly, the burstiness between each pair of developers and projects is calculated. Secondly, a weighted developer-project bipartite
network is constructed using the burstiness as weight. Finally, an iterative score diffusion process is applied to this bipartite
network and a final ranking score is obtained at the stationary state. )e real-world case study on GitHub demonstrates the
effectiveness of our proposed BurstBiRank and the outperformance of traditional ranking methods.

1. Introduction

Social collaborative coding is now a popular paradigm
among software developers, and collaborations of devel-
opers from all over the world can be easily conducted with
the social and technical functionalities provided by such
kind of platforms like GitHub. For example, in GitHub,
developers can follow each other to form a social network,
keep track of the updates of a project by the star and watch
functionalities, contribute codes by the commit and pull
request functionalities, or participate in the discussions of
new features design or bug fix by the issue functionality. Rich
social and technical functionalities connect developers and
projects to form a large-scale complex technical system. It is
known that critical nodes usually play important role in
operation management and optimization of complex

systems. )e same goes for complex technical systems such
as GitHub, which is usually driven by influential developers
and projects to more optimized states with higher efficiency
for software development. For example, in addition to direct
collaboration, developers always seek popular developers
and projects for improving coding ability and technical
selection, which in turn makes collaborations more efficient.
)us, identifying influential developers and projects is of
great significance for the improvement of developer’s ability
and the prosperity of open source community and also has
important applications in service recommendations [1, 2]
and quality of service prediction [3–6].

Existing work on influence analysis in open source
software community often simply employs basic properties
[7], network structural metrics [8], or traditional unipartite
graph ranking model [9–12]. )e influence of developers
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and projects, two major and tightly coupled components of
open source software community, is usually evaluated
separately although many new graph ranking methods for
complex network structures like bipartite network [13] have
been proposed. On the other hand, abundant activities of
developers are not utilized effectively while our previous
study [14] indicates the statistical characteristics of devel-
opers’ behavior is useful for distinguishing elite and com-
mon developers. Figure 1 shows a comparison of
contributions between an elite developer Taylor Otwell and a
common developer Franz Liedke, which shows different
statistical characteristics of their behavior.

In this paper, we aim at mutually identifying influential
developers and projects in GitHub by adopting a combi-
nation of the burstiness behavior of developers and the
bipartite network topology of developer-project interac-
tions. )e contributions of this paper are listed as follows:

(1) We propose a burstiness-weighted bipartite network
model to incorporate bursty behaviors between
developers and projects into network topology.

(2) We combine the diffusion-based ranking method
BiRank and the burstiness-weighted bipartite net-
work and propose a new ranking method called
BurstBiRank for mutually identifying influential
developers and projects in GitHub.

(3) We apply the proposed model to a real-world
GitHub dataset, showing that burstiness can cor-
rectly measure developers’ attention to projects and
our model outperforms baseline models.

)e remainder of the paper is organized as follows.
Section 2 introduces the related works on graph ranking
methods and human dynamics. )e details of our proposed
BurstBiRank method are illustrated in Section 3. )en, the
experiment results and discussions are given in Section 4.
Finally, we briefly summarize our work and explain future
directions in Section 5.

2. Related Work

Influential node identification has been a hot topic in net-
work science research for decades, and many graph ranking
methods have been proposed from different views of net-
work structures or information diffusion mechanisms on
various kinds of complex networks [15–18]. PageRank [19]
and HITS [20] are the most popular ones. PageRank [19] is a
random walk-based ranking method and uses the proba-
bility a random surfer appears on a web page as the influence
score of the web page, while HITS [20] distinguishes au-
thority and hub features of a web page and ranking a web
page with both authority score and hub score.

Many graph ranking methods are based on PageRank
and HITS. Considering individual’s preference, Haveliwala
et al. [21] proposed a personalized PageRank algorithm, and
a personalized vector was introduced for expressing indi-
vidual’s preference for certain topics, novelty, and sensitivity
of individuals’ generated contents. Inspired by the discrete-
time Markov process interpretation of PageRank, Liu et al.

[22] proposed BrowseRank based on continuous-time
Markov processes and used user behavior data to rank the
importance of pages. In order to overcome parameter tuning
of PageRank which is caused by dangling nodes in the
network, Lu et al. [23] introduced a ground node connecting
to all other nodes and proposed LeaderRank. )en, Li et al.
[24] extended LeaderRank to weighted network.

In addition to ranking on unipartite network, recent
research studies also extend graph ranking methods of
unipartite network to bipartite network. In contrast to
random walk-based graph ranking methods, He et al. [13]
proposed BiRank, an optimization based rankingmethod for
bipartite network. Xu et al. [25] applied singular value de-
composition to bipartite network and proposed SVDRank
and SVDARank. Morone et al. [26] extended the k-core
decomposition method to the bipartite network and pointed
out that in the ecological symbiosis network, the extinction
of the maximum k-core node would make the ecosystem
reach the critical point of collapse.

)e rapid development of graph ranking models also
promotes the research in influence analysis for open source
software community. Xuan et al. [9] modeled the com-
munications between developers in Apache as networks and
analyzed developers’ influence using degree, PageRank, and
HITS. Joblin [8] et al. classified developers into core and
peripheral with several network metrics. From the view of
software projects, Inoue et al. [11] constructed a component
graph with use relations for ranking software components.
Pan et al. [27] constructed a multilayer complex network by
extracting structural information from Java software systems
and proposed a weighted PageRank algorithm for ranking
classes or packages.

Although network structure plays an important role in
identifying influential nodes in online social network, based
on previous human dynamics study, Yan et al. [14] found
that bursty behavior is a good indicator for distinguishing
influential developers from common ones. Human dy-
namics studies the statistical characteristics of spatial or
temporal behaviors of human beings and the potential laws
behind it. Goh et al. [28] proposed the burstiness metric to
measure to which extent the behavior deviates from periodic
behavior.

3. Method

In this section, we will present a novel bipartite network
ranking framework incorporating burstiness interactions,
called BurstBiRank, for mutually identifying influential
developers and projects in GitHub. First, we will introduce
the definition of burstiness, which plays an important role in
our proposed method for measuring how much attention a
developer pays on a project. )en, a thorough description is
given about the definition and construction of the bursti-
ness-weighted developer-project bipartite network, and a
diffusion-based ranking process is applied on this bipartite
network. Finally, the overall algorithm is proposed and its
time complexity is analyzed. )e notations we will use
throughout the article are summarized in Table 1.
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3.1. Burstiness. In many real-world or online systems,
people’s activity is often intermittent, displaying intense
activity during a short period followed by a long period of
reduced activity or even no activity. For example, you may
spend a total afternoon searching YouTube for videos about
husky when you are free, but then seldom visit YouTube in
weekdays. )is pattern of human behavior and the laws
behind it have been studied extensively in the field of human
dynamics, and Goh et al. [28] proposed the burstiness metric
to measure to which extent the behavior deviates from
periodic behavior, which is defined as

B �
στ − mτ

στ + mτ
, (1)

where στandmτ represent the standard deviation and themean
of the time interval series of human activities, respectively. It can
be concluded from the definition: (1) the value of B ranges from
−1 to 1; (2) B>0 indicates the behavior is bursty, and the larger
B is, the stronger the burstiness is; (3) B<0 indicates cyclical
trend, and the smaller B is, the stronger the periodicity is.

3.2. Burstiness-Weighted Developer-Project Bipartite Network

Definition 1. Burstiness-weighted developer-project bipar-
tite network: a burstiness-weighted developer-project bi-
partite network is a weighted bipartite network G� (U ∪ P,
E), where U and P denote two disjoint sets of nodes, that is,
set of developers and set of projects, respectively, and E
represents edges between developers and projects. )e
burstiness-weighted developer-project bipartite network can
be described by a bipartite weight matrix W (∈ R|U|×|P|) with
elementswij (1i≤ |U|, 1j≤ |P|) indicating tie strength be-
tween developer i and project j, which is a function of the
burstiness of interactions between developer i and project j,
that is,

wij � f Bij . (2)

Figure 2 shows a sample burstiness-weighted de-
veloper-project bipartite network. Multiple interactions
between each pair of developer and project are group-
ed and burstiness is calculated first. )en, the bipartite
weight matrix W is constructed using equation (2).
Essentially, the function in equation (2) can be any
form, linear or nonlinear. According to the character-
istics of burstiness, to ensure edge weights are positive
and cyclical interactions have larger weight, we choose a
linear form of function f shown in equation (3) for
simplicity.

wij � f Bij  � −Bij + 1. (3)

3.3. BiRank. Score diffusion is a general idea behind many
popular ranking methods as PageRank [19] and BiRank
[13], which employ an iterative process of diffusing score
to neighbors until the stationary state. )e final scores at
stationary state are regarded as the ranking scores. )e
process of score diffusion can be formulized as equations
(4) and (5), and scores of developers and projects are
updated in turns.

Table 1: Notations and explanations.

Symbol Explanation
ui Ranking score of developer i
pj Ranking score of project j
u0

i Query vectors for developer i
p0

j Query vectors for project j

du
i , Du du

i degree of developer i
Du diagonal matrix with Du

ii � du
i

d
p
j , Dp d

p
j degree of project j

Dp diagonal matrix with D
p

jj � d
p

j

Bij

Burstiness of interactions
between developer i and project j

wij, W
Weight matrix of burstiness-weighted
bipartite network; wij is its element

α, ß Infection rate and recovery rate
in SIR simulation, respectively

c, λ Hyperparameters for balancing
diffusion scores and prior beliefs

S Symmetric normalization of weight matrix W

Mon
Wed

Fri

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Less MoreLearn how we count contributions

Taylor Otwell
taylorotwell

Cerator of @laravel. 
Follow Sponsor ...

20.3k follows•0 following•☆192

(a)

Mon
Wed

Fri

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Less MoreLearn how we count contributions

Franz Liedke
franzliedke

SponsorFollow ...

507 follows•35 following•☆1.1k

(b)

Figure 1: A comparison of two developer behaviors.
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ui � 

|P|

j�1
wijpj, (4)

pj � 

|U|

i�1
wijui. (5)

To ensure the convergence and stability, BiRank adopts
symmetric normalization.

ui � 

|P|

j�1

wij
��
d
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i

 ���
d

p
j

 pj,

pj � 

|U|

i�1

wij
��
d

u
i

 ���
d

p
j

 ui.

(6)

BiRank also adopts a query vector in the ranking model
to utilize prior beliefs on rankings of nodes as shown in
equations (7) and (8). Prior beliefs and diffusion scores are
balanced with hyperparameters c and λ for developers and
projects, respectively.

ui � c 

|P|

j�1

wij
��
d

u
i

 ���
d

p

j

 pj +(1 − c)u
0
i , (7)

pj � λ

|U|

i�1

wij
��
d

u
i

 ���
d

p
j

 ui +(1 − λ)p
0
j . (8)

Finally, the equivalent matrix form of BiRank [7] can be
obtained as equations (9) and (10)

u � cSp +(1 − c)u
0
, (9)

p � λS
T

u +(1 − λ)p
0
, (10)

where S is the symmetric normalization of weight matrixW.

S � D
u

( 
(− 1/2)

W D
p

( 
(− 1/2)

. (11)

3.4. Overall Algorithm. Combing Sections 3.1, 3.2, and 3.3,
we finally propose the BurstBiRank, and the overall algo-
rithm is shown in Algorithm 1.

3.5. Time Complexity Analysis. )e time complexity of
BurstBiRank consists of two parts. )e first part is the
calculation of time intervals, burstiness, and edge weights, so
the time complexity is O(NI + 2∗NG), where NI is the
number of interactions and NG is the number of developer-
project groups. )e second part is the iterative process of
BurstBiRank algorithm, and the time complexity of equa-
tions (9) and (10) is O(|U|·|P|). However, most real-world
networks are usually very sparse and only nonzero elements
(which correspond to existing edges) should be stored and
computed regarding matrix multiplication of STu and Sp.
)us, the time complexity of the second part is O(c|E|),
where c is the number of iterations and |E| is the number of
edges. )e overall time complexity of BurstBiRank is
O(NI + 2∗NG+c|E|).

4. Experiment

In this section, the performance of BurstBiRank is evaluated
against real-world GitHub dataset [29]. All experiments are
run on a Windows 10 PC with a corei7-4790 3.6GHz CPU
and 16GB memory.

4.1. Datasets. GHTorrent dataset is an offline mirror of data
offered through the GitHub REST API and a subset of it
about PHP development community is used in this ex-
periment. GHTorrent dataset as of November 1, 2018, is
selected and preprocessed as follows: (1) commit interac-
tions between developers and PHP projects are selected; (2)
commit date is extracted from commit timestamp; (3)
multiple commit interaction records of the same date are
merged as one record; (4) developers who have equal or less
than 10 records are excluded; (5) follow relationship be-
tween developers and watch interactions between developers
and projects are extracted. )e statistics of the dataset after
preprocessing are shown in Table 2.

u1 u2 u3

p1 p2 p3

w
12 = f(

) w 21 = f(
)

w
22 = f(

)

w
23 = f(

) w 32 = f(
)

w
33 = f(

)

w
11 = f(

)

Figure 2: Burstiness-weighted developer-project bipartite network. )e edge weight is function of burstiness which can be calculated using
interaction sequences.
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4.2. Evaluation Metrics. Correlation analysis and SIR (sus-
ceptible-infected-removed) simulation are usually adopted
for evaluation of graph ranking methods.

In correlation analysis, ranking results are compared
with the ground truth using correlation coefficients. Ken-
dall’s tau [30] is one of such correlation coefficients and
compares ranking orders instead of exact ranking scores or
ground truth values.)e definition of Kendall’s tau is shown
in the following equation:

τ(X, Y) �
2(C − D)

n(n − 1)
. (12)

X and Y are two different lists with length n, which are
usually the predicted ranking list and the ground truth
ranking list. C and D are the numbers of concordant and
discordant pairs between X and Y, respectively. Let
xi, xj ∈ Xand yi, yj ∈ Y; if sign(xi − xj)sign(yi − yj) > 0,
then (xi, yi) and (xj, yj) are called a concordant pair, and if
sign(xi − xj)sign(yi − yj)< 0, then (xi, yi) and (xj, yj) are
called a discordant pair. In case of sign(xi − xj)sign(yi−

yj) � 0, the pair is neither concordant nor discordant.
For the complexity of measuring influence, the ground

truth for correlation analysis uses simply the degree of
developer-developer following network or developer-project
watching network. As we know, degree is local centrality
metric which can only roughly measure node’s influence
from a local view while influence of a node in network
mainly relates to its ability of spreading information to the

whole network. Generally, a node with higher influence will
spread information to more nodes in a network. )us, we
adopt the SIR model [31], a classical epidemic model, in our
experiment to evaluate the performance of our proposed
ranking method. As shown in Figure 3, in the SIR model,
nodes in a network have three statuses, that is, susceptible
(S), infected (I), and removed (R). Initially, a node is selected
as infected node and the others are susceptible nodes. )en,
an iterative transmission process is applied. At each itera-
tion, infected nodes infect one of its susceptible neighbors
with the probability α, and infected nodes recover to re-
moved status with the probability β. )e iterative trans-
mission process stops when there are no infected nodes in
the network. )e final number of recovered nodes can be
regarded as the influence of the node which is initially se-
lected as infected.

4.3. Baseline Methods. To show the effectiveness of our
proposed BurstBiRank, we compare it with several baseline
ranking methods. In addition to burstiness-weighted de-
veloper-project bipartite network, two other developer-
project bipartite networks are also constructed with un-
weighted edge (UW) and commit number-weighted edge
(CN), and all baseline methods are evaluated on these two
bipartite networks with corresponding suffix such as Pag-
eRank-UW. )e hyperparameters of BurstBiRank c and λ
are both set to 0.85, and the query vectors u0 and p0 are set to
the degrees of developers and projects over total number of
nodes of each type, respectively, which can be calculated
using equations (13) and (14).

u
0
i �

d
u
i

|U|
, (13)

p
0
j �

d
p
j

|P|
. (14)

Input:
Developer-project interaction set (DP); query vectors u0, p0; and hyperparameters c, λ

Output:
Ranking vectors u, p;

(1) Group developer-project interactions by developer and project;
(2) for developer-project interactions group in all groups do
(3) Sort developer-project interactions by commit time in descending order;
(4) Calculate time intervals between successive records;
(5) Calculate burstiness Bij;
(6) Calculate edge weight wij according to equation (3);
(7) end for
(8) Construct weight matrix W;
(9) Symmetrically normalize W according to equation (11);
(10) Randomly initialize u and p;
(11) while Stopping criteria are not met do
(12) Update u and p in turn according equations (9) and (10);
(13) end while
(14) return u and p

ALGORITHM 1: BurstBiRank algorithm.

Table 2: )e statistics of the dataset.

Data Count
Developers 129649
Projects 171296
Follows 41881
Watchers 27154
Developer-project commit interactions 8327263
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BiRank [13] employs a diffusion-based way of utilizing
mutual reinforcement between different types of nodes
in bipartite network for mutually ranking two different
types of nodes and adopts a normalization strategy in
the iterative process. )e hyperparameters are both set
to 0.85 in our experiment.
SVDRank and SVDARank [25] apply singular value
decomposition to bipartite network and select the first
eigenvector as the final ranking vector. )e difference
between them is that SVDRank runs on the original
bipartite network while SVDARank introduces two
ground nodes to the original bipartite network before
applying singular value decomposition in order to solve
the problem of dangling nodes.

PageRank [19] regards ranking in network as a score
diffusion process and ranks nodes by iteratively dif-
fusing scores on the network. In our experiment, we
directly apply PageRank on the developer-project bi-
partite networks ignoring types of nodes. )e hyper-
parameter is set to 0.85 in our experiment.

4.4. Results

4.4.1. Correlation Analysis. In the experiment of correlation
analysis, the number of followers of a developer in devel-
oper-developer following network is chosen as the ground
truth for the rankings of developers, and the number of
watchers of a project in developer-project watching network
is chosen as the ground truth for the rankings of projects.
Kendall’s tau is calculated for developers and projects
separately and is shown in Table 3.

From the results of correlation analysis in Table 3, we
have the following observations:

(1) Our proposed BurstBiRank outperforms all base-
line methods in identifying Top-20, Top-50, and
Top-100 influential developers and projects except
for Top-100 developers. )is indicates the effec-
tiveness of employing burstiness as the weight
between developers and projects for measuring the
influence of both developers and projects instead of
ignoring edge weight or simply using commit
number as edge weight. )is result not only agrees
with previous study [14] but also conforms to
practical intuitions that developers pay more at-
tention on important projects with continuous and
regular work on them.

(2) For random walk-based ranking methods (i.e.,
PageRank and BiRank), higher performance can be
obtained with unweighted edges than commit
number-weighted edges for identifying high

influential (i.e., Top-20) developers and projects,
while it is just the opposite for decomposition-based
ranking method (i.e., SVDRank and SVDARank). It
indicates that how to measure the edge weight is
important to model continuous interactions between
developers and projects for influence analysis. )is is
also a key motivation why we model the edge weight
as a function of burstiness, and future improvement
can be applied on the form of the function.

(3) Almost all baseline methods have negative correla-
tion results which indicate that the ranking orders by
these methods are negatively correlated with the
ground truth ranking orders, that is, influential
developers or projects are usually ranked after less
influential ones by these methods, while our pro-
posed method always shows good positive correla-
tion with the ground truth ranking orders, indicating
good stability of our method.

4.4.2. SIR Simulation. In this section, the SIR model [31] is
adopted to evaluate the performances of our proposed
BurstBiRank and the baseline methods by comparing the
ability of information spreading of Top-k developers and
projects ranked by each method. In the experiment,
BurstBiRank is compared with each baseline method sep-
arately. Because two comparing ranking methods usually
rank a common group of nodes which will show equal effect
in SIR simulation, for each pair of comparison, Top-50
developers (projects) ranked by each method are selected
and only those developers (projects) not ranked by both
methods are set as initial infected nodes. In each iteration t

of SIR simulation, infected nodes randomly select one of
their susceptible neighbors and infect it with probability
α� 0.5, and infected nodes recover to removed status with
probability β, which is the reciprocal of the average of all
node degrees. )e accumulative number of infected nodes
NI is recorded for each iteration. Iteration stops when there
is no infected nodes. To avoid the randomness of SIR
simulation, 10 experiments are conducted for each pair of
methods and the results are averaged as the final result. )e
final results are shown in Figures 4–7, and several significant
observations are found:

(1) BurstBiRank outperforms all baseline methods
which indicates the effectiveness of burstiness in
identifying influential developers and projects. )is
finding will inspire developers to work continuously
and regularly to obtain high influence in open source
software community.

(2) )e difference of performance between BurstBiR-
ank and PageRank is larger than that between
BurstBiRank and BiRank/SVDRank/SVDARank.
As we know, PageRank is designed for unipartite
network while BiRank, SVDRank, and SVDARank
are special ranking methods for bipartite network
which distinguish types of nodes and employ the
mutual reinforcement between different types of
nodes during ranking. )is means it is better to

S I Rβα

Figure 3: SIR model (source: figure is adapted from Pastor-
Satorras et al. [32]).
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Figure 4: Performance comparison between BurstBiRank and PageRank. (a) BurstBiRank vs. PageRank-UW. (b) BurstBiRank vs.
PageRank-CN.
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Figure 5: Performance comparison between BurstBiRank and BiRank. (a) BurstBiRank vs. BiRank-UW. (b) BurstBiRank vs. BiRank-CN.

Table 3: Correlation analysis.

Method
Top-20 Top-50 Top-100

Project Developer Project Developer Project Developer
PageRank-UW 0.1618 −0.0526 0.0211 0.0378 0.1190 0.0244
PageRank-CN −0.0686 −0.1297 −0.0462 0.0299 0.1232 0.0272
SVDRank-UW −0.2480 −0.0897 −0.3631 0.0197 0.0105 0.0773
SVDRank-CN 0.0831 0.1221 0.0173 0.0092 0.0428 0.0321
SVDARank-UW −0.2000 0.0011 −0.3669 0.0200 0.0121 0.0700
SVDARank-CN 0.1024 −0.0263 0.0305 0.0121 0.0503 0.0435
BiRank-UW 0.0390 −0.0263 0.0296 0.0395 0.1195 0.0071
BiRank-CN −0.0474 −0.2054 0.0207 0.0201 0.0314 0.0534
BurstBiRank 0.1633 0.1604 0.0315 0.1221 0.1257 0.0843
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mutually co-rank developers and projects than to
simply mix them up.

4.5. Case Study. In addition to correlation analysis and SIR
simulation, we further do a detailed case study to show the
effectiveness of our model in identifying influential devel-
opers and projects. Top-20 developers and projects ranked

by BurstBiRank are shown in Tables 4 and 5, respectively,
with their rankings in baseline methods.

From Table 4, we can see some major contributors to
famous projects can be identified by BurstBiRank but they
have lower rankings in baseline methods. For example,
Marco Pivetta (GitHub ID: Ocramius), a major contributor
of both ZendFramework and Doctrine ORM, is not ranked
in Top-20 by BiRank-CN, SVDRank-UW, SVDRank-CN,
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Figure 6: Performance comparison between BurstBiRank and SVDRank. (a) BurstBiRank vs. SVDRank-UW. (b) BurstBiRank vs.
SVDRank-CN.
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Figure 7: Performance comparison between BurstBiRank and SVDARank. (a) BurstBiRank vs. SVDARank-UW. (b) BurstBiRank vs.
SVDARank-CN.
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SVDARank-UW, and SVDARank-CN. Taylor Otwell (GitHub
ID: taylorotwell), the creator and major contributor to Laravel,
is only identified by our BurstBiRank and BiRank-CN.

As for projects, famous PHP projects like Symfony (GitHub
ID: symfony/symfony) andMediaWiki (GitHub ID:wikimedia/
mediawiki) can also be identified as Top-20 influential projects
by our method but with lower rank by baseline methods.

BurstBiRank and the baseline methods all can identify
several influential developers and projects, but some less
popular developers and projects are also given a high rank
because the dataset is a real-world dataset and only a little
filtering operations are applied to it. To sum up about
correlation analysis, SIR simulation, and case study, our

proposed BurstBiRank outperforms baseline methods and
can identify some influential developers and projects of real-
world open source software community. But further im-
provement should be conducted.

4.6. Parameter Analysis. In this section, we investigate how
the performance varies with the hypermeters that balance
the prior beliefs and diffusion scores. For simplicity, we
constrain c to be equal to λ, and Kendall’s tau is adopted to
indicate the model’s performance. Figure 8 shows the raking
performance by varying the balance parameters c and λ from
0.6 to 1. For best ranking performance, the balance
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Figure 8: Parameter analysis for (a) developers’ ranking performance and (b) projects’ ranking performance.

Table 4: Top-20 developer ranking.

Developer
Ranking

BurstBiRank PageRank-UW PageRank-CN BiRank-UW BiRank-CN SVDRank-UW SVDRank-CN SVDARank-
UW

SVDARank-
CN

web-flow 1 1 1 1 1 1 1 1 1
StyleCIBot 2 4 6 4 5 2 16 2 16
QUVAUNKR 3 2 2 2 2 8 3 6 5
translatewiki 4 7 7 7 9 — 11 — —
dereuromark 5 8 8 8 7 4 8 4 11
invalid-email- 6 3 4 3 3 — — 20 —
weierophinney 7 6 5 6 4 9 — — 7
fabpot 8 5 3 5 6 — 12 15 —
GrahamCampbell 9 14 16 14 — 3 7 3 4
s-nakajima 10 16 14 16 11 6 — 8 —
freekmurze 11 — — — — 15 — — 13
CTYLOQFP 12 17 19 — — 10 9 — 9
Nyholm 13 — — — — 7 — 9 —
legoktm 14 — — 20 — — — 17 —
yunosh 15 10 9 10 13 — — — 20
FaustBrian 16 — — — 19 20 18 19 —
FHWXWWSE 17 — 13 — — — 20 — 19
Ocramius 18 19 12 18 — — — — —
taylorotwell 19 — — — 20 — — — —
stronk7 20 12 10 15 14 17 — — —
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parameters c and λ are set not equal to 1, indicating the prior
beliefs are useful for ranking developers and projects.

5. Conclusions

In this work, we aim at identifying influential developers and
projects in open source software community. Continuous
interactions between developers and projects are modeled as
a burstiness-weighted bipartite network, and an iterative
diffusion process is applied on it to calculate ranking scores
for developers and projects. )e proposed BurstBiRank is
evaluated against four baseline methods on a real-world
GitHub dataset. Extensive experimental analysis and case
study show BurstBiRank outperforms baseline methods in
both correlation analysis and SIR simulation.

)e basic idea behind BurstBiRank is measuring the tie
strength between developers and projects by the burstiness
of the continuous interactions between them with an in-
tuitively reasonable assumption that more regular interac-
tions mean stronger ties. Under our framework, burstiness
can be employed into the developer-project bipartite net-
work by any linear or nonlinear functions, but in our ex-
periment, a linear function is adopted for simplicity. In
addition to burstiness, there are other metrics in human
dynamics like memory, which may reflect the tie strength
between developers and projects. Attributes of developers
and projects such as programming language also affect
rankings of them. In future work, we will adopt more types
of functions, more metrics in human dynamics, and more
attributes of developers and projects in our framework.

Data Availability

)e data used in this study can be accessed via https://
ghtorrent.org/.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is study was supported by the National Natural Science
Foundation of China (grant no. 61872002), the University
Natural Science Research Project of Anhui Province (grant
no. KJ2019A0037), the University Collaborative Innovation
Program of Anhui Province (grant no. GXXT- 2019-013),
and the Doctoral Scientific Research Foundation of Anhui
University (grant no. Y040418194).

References

[1] Y. Zhang, G. Cui, S. Deng, F. Chen, Y. Wang, and Q. He,
“Efficient query of quality correlation for service composi-
tion,” IEEE Transactions on Services Computing, 2018.

[2] Y. Zhang, C. Yin, Q. Wu, Q. He, and H. Zhu, “Location-aware
deep collaborative filtering for service recommendation,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 99,
pp. 1–12, 2019.

[3] M. Tang, Z. Zheng, G. Kang, J. Liu, Y. Yang, and T. Zhang,
“Collaborative web service quality prediction via exploiting
matrix factorization and network map,” IEEE Transactions on
Network and Service Management, vol. 13, no. 1, pp. 126–137,
2016.

[4] Y. Zhang, K. Wang, Q. He et al., “Covering-based web service
quality prediction via neighborhood-aware matrix factor-
ization,” IEEE Transactions on Services Computing, p. 1, 2019.

[5] S. Wan, Y. Xia, and L. Qi, “Automated colorization of a
grayscale image with seed points propagation,” IEEE Trans-
actions on Multimedia, vol. 22, pp. 1756–1768, 2020.

[6] Y. Zhang, J. Pan, L. Qi, and Q. He, “Privacy-preserving quality
prediction for edge-based IoT services,” Future Generation
Computer Systems, vol. 114, pp. 336–348, 2021.

[7] H. Borges, A. Hora, and M. T. Valente, “Predicting the
popularity of github repositories,” in Proceedings of the 12th
International Conference on Predictive Models and Data
Analytics in Software Engineering, pp. 1–10, Ciudad Real,
Spain, 2016.

[8] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying
developers into core and peripheral: an empirical study on
count and network metrics,” in Proceedings of the 2017 IEEE/
ACM 39th International Conference on Software Engineering
(ICSE), pp. 164–174, Buenos Aires, Argentina, 2017.

[9] Q. Xuan, C. Fu, and L. Yu, “Ranking developer candidates by
social links,” Advances in Complex Systems, vol. 17, no. 07n08,
Article ID 1550005, 2014.

[10] Y. Hu, S. Wang, Y. Ren, and K. K. R. Choo, “User influence
analysis for github developer social networks,” Expert Systems
with Applications, vol. 108, pp. 108–118, 2018.

[11] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto, “Ranking significance of software components
based on use relations,” IEEE Transactions on Software En-
gineering, vol. 31, no. 3, pp. 213–225, 2005.

[12] S. Ding, S. Qu, Y. Xi, and S. Wan, “Stimulus-driven and
concept-driven analysis for image caption generation,”
Neurocomputing, vol. 398, pp. 520–530, 2020.

[13] X. He, M. Gao, M.-Y. Kan, and D. Wang, “Birank: towards
ranking on bipartite graphs,” IEEE Transactions on Knowledge
and Data, vol. 29, no. 1, pp. 57–71, 2016.

[14] D.-C. Yan, Z.-W.Wei, X.-P. Han, and B.-H.Wang, “Empirical
analysis on the human dynamics of blogging behavior on
github,” Physica A: Statistical Mechanics and Its Applications,
vol. 465, pp. 775–781, 2017.
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