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With the emergence of numerous link prediction methods, how to accurately evaluate them and select the appropriate one has
become a key problem that cannot be ignored. Since AUCwas first used for link prediction evaluation in 2008, it is arguably themost
preferred metric because it well balances the role of wins (the testing link has a higher score than the unobserved link) and the role of
draws (they have the same score). However, in many cases, AUC does not show enough discrimination when evaluating link
predictionmethods, especially those based on local similarity. Hence, we propose a newmetric, calledW-index, which considers only
the effect of wins rather than draws. Our extensive experiments on various networks show that the W-index makes the accuracy
scores of link predictionmethodsmore distinguishable, and it can not only widen the local gap of thesemethods but also enlarge their
global distance. We further show the reliability of the W-index by ranking change analysis and correlation analysis. In particular,
some community-based approaches, which have been deemed effective, do not show any advantages after our reevaluation. Our
results suggest that the W-index is a promising metric for link prediction evaluation, capable of offering convincing discrimination.

1. Introduction

Link prediction is one of the most fundamental problems of
complex networks, which aims to infer the network link
formation process by predicting missed or future relation-
ships based on currently observed links [1]. Being able to
effectively and efficiently predict unobserved links will allow
us to mine future interactions among members in the social
network [2, 3], conduct successful recommendation in user-
item bipartite networks [4, 5], provide guidance for the
planning process of infrastructure systems [6], optimize
asset allocation in the stock market [7], discover drug-target
interactions or identify targeting drugs for new target-
candidate proteins [8, 9], and save costs and reduce oper-
ational risks for manufacturing companies [10, 11]. Up to
the present, various methods have been proposed for link
prediction [12–16], most of which can be classified with
heuristic-based approaches and learning-based approaches
[17]. However, there are many long-standing challenges in
the evaluation of link prediction methods.

Many quantitative evaluation metrics used in link pre-
diction are adopted from binary classification tasks [18].

)ey can be divided into two broad categories: fixed-
threshold metrics and threshold curves [19, 20]. As a typical
fixed-threshold metric, the precision [21] is used commonly
in link prediction literature studies. However, like other
fixed-threshold metrics, it suffers from the limitation that it
is difficult to select an appropriate threshold in the score
space. In other words, the precision only focuses on the L
links with the top ranks or the highest scores. )us, the
accuracy of link prediction varies according to the choice of
L. Besides, Clauset et al. [22] presented that using the
precision to evaluate prediction algorithms has a significant
disadvantage. )at means the precision may be high, con-
sidering the top L links with the highest scores, whereas an
algorithm’s overall performance is unsatisfactory because
some missing connections are much easier to predict than
others. For instance, if a network has a heavy-tailed degree
distribution, the chances are excellent that two high-degree
vertices have a missing connection, and such a connection
can be easily predicted.

Due to these problems with fixed-threshold metrics, it is
recommended to use threshold curves as an alternative
[19, 23]. )reshold curves are especially suitable for class
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imbalance tasks and hence are used increasingly commonly
in link prediction evaluation [24–26]. AUC, the area under
the receiver operating characteristic (ROC) curve [27], is a
standard metric in the evaluation of link prediction. AUC
evaluates a method’s performance according to the whole list
of all unobserved links and testing links. It is equivalent to
the probability of a randomly selected testing link appearing
above a randomly selected unobserved link in the score
space. With the use of the AUC metric, the severe class
imbalance problem in link prediction is largely mitigated,
i.e., the number of testing links is much smaller than the
number of unobserved links.

Although AUC is a good measure for link prediction
evaluation [28], it has certain shortcomings. In the liter-
ature of data mining and machine learning [29–31], an
important drawback is that the AUC measure ignores the
scores of instances and only considers their ranking order.
)e result is that it is unreliable because the difference
between scores of instances is ignored. Another conse-
quence is the AUC can remain unchanged when the
predicted scores change, as long as the ranking of instances
remains the same. More importantly, it has been found that
when using the AUC for link prediction evaluation, the
discrimination between some methods is poor, especially
for those neighborhood-based predictors, such as common
neighbors (CN), Jaccard, and Sørensen (Sor) [1, 32]. Here,
we argue poor discrimination is an inherent defect of the
AUC because draws are considered in the calculation of the
AUC. According to the AUC index, if a test link and an
unobserved link are given the same score, they are in a
draw, with a score of 0.5, but draws are, of course, less
important than wins and losses for evaluation, and draws
mean undiscriminating. )erefore, an intuitive idea is that
we should paymore attention to wins and losses rather than
draws. Even if the difference in scores is small, the method
that assigns different scores to a testing link and an un-
observed link is better than giving them the same score.

Briefly speaking, we deem it is the wins rather than the
draws that count. )e purpose of this paper is to present a
new metric, called W-index, which only cares about who
wins more between the testing link and the unobserved link,
not about how many times they draw, to obtain discrimi-
native evaluation of link prediction methods.

)e rest of this paper is organized as follows. In Section
2, we briefly review commonly used evaluation metrics of
link prediction and detail the proposed W-index metric.
Link prediction problem and various predictors are illus-
trated in Section 3. Section 4 presents experimental results
on six real-world networks followed by the discussion of the
W-index in Section 5. Finally, we conclude the work in
Section 6.

2. W-Index

In this section, we first introduce two widely used evaluation
metrics, i.e., the precision and AUC. )en, we present a
novel evaluation metric named W-index which only con-
siders the number of wins that the testing link has a higher
score than the unobserved link.

2.1. Precision. Given the ranking of all unobserved links and
testing links, the precision is defined as the ratio of relevant
links selected to the number of links selected.)at is to say, if
we take the top-L links as the predicted ones, among which
m links are right (i.e., there are m links in the testing set
ETest), then the precision value is given by

precision �
m

L
. (1)

Higher precision means higher prediction accuracy.

2.2. AUC. Given the rank of all unobserved links and testing
links, the AUC value can be viewed as the probability that a
randomly chosen testing link (a link in ETest) is given a
higher score than a randomly chosen unobserved link (a link
in ENon). Considering the computational complexity of
large-scale networks, we usually implement sampling ex-
periments to calculate this value. If, among n-times inde-
pendent experiments, there are n′ times the testing link
having a higher score than the unobserved link and n″ times
they have the same score, the AUC value is given by

AUC �
n′ + 0.5n″

n
. (2)

Higher precision means higher prediction accuracy. If all
scores are generated from independent and identical dis-
tributions, then the AUC value should be approximately 0.5.
)erefore, the degree to which the AUC value exceeds 0.5
indicates how much better an algorithm performs than a
pure chance. Both the precision and the AUC metric are
considered in most recent studies due to their different
focus. If two link prediction methods have the same AUC
score, the one with a higher precision score is considered
better.

2.3. W-Index. In link prediction evaluation, draws are
common. We consider draws as a byproduct of the “state
degradation” problem, which was found by Lu et al. [32, 33],
in many link prediction algorithms, the aforementioned
neighborhood-based predictors in particular. )e “degen-
eracy of the states” problem is that two node pairs are of high
probability to be assigned the same similarity scores. )is is
because the state of the structural information is finite and is
less distinguishable, especially for the unobserved links with
little information, so the unobserved links are highly likely to
obtain the same similarity score. As for some testing links
connected by two low-degree nodes, they also have little
information. )us, the difference between scores of some
testing links and the unobserved link is not obvious, and
draws are not uncommon. Taking the Metabolic network
[34] as an example, there are more than 105 unobserved
node pairs, 62% of which are assigned score 0 by the CN
algorithm. For all unobserved node pairs having scores
higher than 0, 68% score 1, and 21% score 2. And the testing
links with scores of 0, 1, and 2 account for 3%, 12%, and 28%
of the total testing links, respectively. )erefore, when
comparing the score of a randomly selected testing link with
that of a randomly selected unobserved link, the possibility
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of a draw exceeds 7%. Actually, in the experiments imple-
mented in Section 4, there are more than 750 draws out of
10,000 independent experiments.)ereby, for the evaluation
result, draws matter.

Here, we consider the side effects of draws in Figure 1 on
three cases. In the following analysis, it is supposed that the
A predictor outperforms the B predictor under the AUC
metric. Case 1 shows that both the number of wins and the
number of draws of the A predictor far exceed the corre-
sponding number of the B predictor. In this case, ignoring
the draws may widen or narrow the performance difference
between the two predictors, depending on the difference in
the number of draws between the two predictors.

In case 2, the number of draws of the B predictor is much
larger than that of the A predictor, but the number of wins of
B is less than that of A. If we do not reward 0.5 points for a
draw, it yields a better distinction between the two pre-
dictors.)erefore, a side effect of the draws is that it narrows
the difference in accuracy between the two predictors,
making the predictors less distinguishable. In most appli-
cations, finding out a predictor that performs remarkably
better than others is nontrivial. Taking protein-protein in-
teraction networks as an example, they can reduce the ex-
perimental costs and speed the pace of uncovering the truth
[35, 36]. )us, a good link prediction evaluation metric
needs to be not only effective but also discriminative.

Tomakematters worse, draws can bemisleading, as shown
in case 3. Predictor A with more draws is considered better
than predictor B with clear wins and losses. Assuming in one
case, using predictor A, the number of times that the similarity
score of the testing link is higher than, equal to, and lower than
the unobserved link makes up 88%, 6%, and 6% of the total
times, respectively.)e corresponding three proportions in the
B predictor are 90%, 0.8%, and 9.2%, respectively. )en, the
AUC score of predictor A is 0.91, and that of predictor B is 0.90,
whichmeans that A is better than B.However, predictor Bwins
more times than predictor A. It is doubtful whether predictor A
is really better than predictor B.

To alleviate the two side effects of the draws, we propose
a new metric, called W-index, for evaluating link prediction,
which depends only on the number of wins, regardless of the
number of draws. It is defined as

W − index �
n′
n

. (3)

Apparently, the value of the W-index ranges from 0 to 1.
)e new scoring criteria may reduce the impact of the
“degeneracy of the states” and make the accuracy scores
more discriminative.

3. Link Prediction Method

In this section, we mainly depict the basic definitions and
related concepts about the link prediction problem and then
introduce ten link prediction predictors employed later.

3.1. Definitions. Consider an undirected network G(V, E),
where V is the set of nodes and E is the set of links. Multiple

links and self-connections are not allowed. Consider the
universal set, denoted by U, containing all (|V|(|V| − 1))/2
possible links between the pair of nodes in V, where |V|

denotes the number of nodes in V. )e basic task of link
prediction is to find out the missing links (or the links that
will appear in the future) in the unobserved set U − E.

Generally, we do not knowwhich links are themissing or
future links; otherwise, we do not need to do prediction.
)erefore, to test the algorithm’s accuracy, the observed
links, E, are randomly divided into two parts: the training
set, ETrain, is treated as known information, while the testing
set, ETest, is used for testing, and no information in this set is
allowed to be used for prediction. )e set of unobserved
links is ENon, which is equal to the set U − E. )e set of links
to be validated is EP. Clearly, ETrain ∪ETest � E and
ETrain ∩ETest � ∅ and ETest ∪ENon � EP and ETest ∩ENon

� ∅.
Each link in the set U − ETrain, say (x,

y)∈(x, y) ∈ U − ETrain, where x, y ∈ V are a pair of dis-
connected vertices, is assigned a score Sx,y to quantify its
existence likelihood by one link prediction method, i.e., the
score Sx,y measures the similarity between nodes x and y.
)us, the likelihood connected with nodes x andy is in-
creasing as the score raises and vice versa.

3.2. Benchmark Prediction Algorithm. )e simplest frame-
work of link prediction algorithms is the similarity-based
algorithm. Due to the high computational complexity of
global similarity predictors [32], we only select predictors
based on local and quasi-local similarity in our experiments.
)e definitions of these predictors are shown in Table 1 in
detail.

3.2.1. Local Similarity Predictors. Here, we consider three
classical predictors based on local information: common
neighbors (CN), Leicht–Holme–Newman (LHN) index [37],
and resource allocation (RA) [38]. Let k(x) be the degree of
node x, Γ(x) be the neighbor set of node x, | · | be the
cardinality of the set, and Λx,y � Γ(x)∩Γ(y) be the set of
common neighbors of the pair of unconnected nodes (x, y).

Considering that every common neighbor contributes
differently to the connection likelihood, some predictors
based on community information are proposed. Conse-
quently, we must apply a clustering scheme to the graph
before computing these predictors. Here, we select five local
similarity predictors based on community information
predictors: WIC [39], intracommunity-based resource al-
location (ICRA) [40], and the other three are theW-forms of
CN, LHN, and RA [41], that is to say, they are CN-W, LNH-
W, and RA-W. Note that xc is vertex x ∈V belonging to a
cluster with label C, ΛW

x,y � z ∈ Λx,y|xC, yC, zC􏽮 􏽯 is the set of
within-cluster (W) common neighbors, ΛICx,y � Λx,y/ΛW

x,y is
the set of intercluster (IC) common neighbors, and δ is a
small value constant close to zero.

3.2.2. Quasi-Local Similarity Predictors. Quasi-local simi-
larity predictors take consideration of local paths that
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provide a little bit more information than local ones. Here,
we consider two predictors: local path (LP) [33, 38] and local
random walk (LRW) [41]. Note that A is the adjacency
matrix, α is a free parameter, πxy(t + 1) � PTπxy(t), where
πxy(0) � ex and P is the transition matrix with Pxy � 1/kx if
x and y are connected, and Pxy � 0, otherwise, and q is the
initial configuration function; here, we apply a simple form
determined by the node degree, namely, qx � (kx/2|E|).

4. Experiments and Results

In this section, we implement experiments to validate the
proposed W-index metric on six real-world networks from
different fields. Firstly, we explore the prediction accuracy of
each predictor under AUC andW-index. Next, we verify the
accuracy and stability of the W-index through ranking
change analysis and typical correlation analysis. )irdly, we
analyze the local and global distances between predictor
performance. We further rethink the selection of link pre-
diction methods from the perspective of W-index evalua-
tion. Finally, we figure out the impact of the network
structure and training set length on the performance of these
predictors under W-index and AUC.

4.1. Datasets. We consider six representative real-world
networks from typical domains of network science, in-
cluding collaboration, transportation, biological, web, and
social networks.

Note that all the similarity predictors considered here
will give score 0 to a pair of nodes located in two discon-
nected components. )erefore, we do not consider those
isolated nodes, and all the networks above are strong-
connected. )e detailed structural features of these real-
world networks are shown in Table 2, where |E| is the
number of edges, k is the average degree of the network, p is
the average short path length of the network, C is the
clustering coefficient of the network, and r is the degree of
the assortativity coefficient of the network.

(1) Jazz: a collaboration network between jazz musi-
cians. Each node is a jazz musician, and an edge
denotes that two musicians have played together in a
band [42].

(2) USAir: a network of flights among the commercial
airports in the United States [43].

(3) Metabolic: a metabolic network of the nematode
C. elegans [35].

Table 1: Similarity-based algorithm.

Predictors Equation
CN Sx,y � |Λx,y|

LHN Sx,y � (|Λx,y|)/(k(x)k(y))

RA Sx,y � 􏽐z∈Λx,y
(1/(k(z)))

CN-W Sx,y � |ΛW
x,y|

LHN-W Sx,y � (|ΛW
x,y|/(k(x)k(y)

RA-W Sx,y � 􏽐z∈ΛW
x,y

(1/k(z))

WIC Sx,y � |ΛW
x,y|/(|ΛIC

x,y| + δ)

ICRA Sx,y � ((|ΛW
x,y|/|Λx,y|)) + 􏽐z∈Λx,y

((max k(x), k(y)􏼈 􏼉)/k(z)

LP S � A2 + αA3

LRW Sx,y(t) � qxπxy(t) + qyπyx(t)

0.882
0.912

0.845
0.864

0.827
0.878

AUC score

Potentially 
mislead

Subtle 
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AUC score

AUC score

A predictor

B predictor
Case 1

B predictor
Case 2

B predictor
Case 3

AUC score

0 1

Objective
rating

Wins
Draws
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0.900
0.904
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AUC-wins and draws
W-wins only

AUC-wins and draws
W-wins only

AUC-wins and draws
W-wins only

AUC-wins and draws
W-wins only

Figure 1: Two side effects of the draws for the evaluation of link prediction methods.
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(4) PB: a network of the US political blogs during the
2004 US election. A node represents a blog, and an
edge represents a hyperlink between two blogs. )e
original edges are directed; here, we treat them as
undirected ones [44].

(5) Tvshow: a social network of Facebook pages about
television shows. Nodes represent the pages, and
edges are mutual likes among them [45].

(6) Yeast: a biology network of thousands of interactions
between proteins [46].

4.2. Experimental Settings. To evaluate the validity of our
evaluation metric, the set of observed edges, E, is randomly
divided into two parts in each division: the training set ETrain

and the testing set ETest; |ETrain|: |ETest| � 9 : 1. For each
network, we use the training set to generate communities
using the Louvain community detection algorithm [47].
)en, we use theW-index, AUC, and the precision metric to
measure the prediction accuracy of these predictors men-
tioned in Table 2. In our experiments, we keep n � 10000
times independent experiments in the W-index and AUC
and L � ETest in the precision metric for all networks. Each
value is obtained by averaging over 20 implementations with
independently random divisions of the training set and the
testing set. Note that we choose α � 0.01 for LP according to
Lu and Zhou [32] and t � 3 for LRW due to the limitation of
the running time.

4.3. Prediction Accuracy. In Table 3, we present the pre-
diction accuracy results measured by AUC and W-index on
the six networks. )e entries corresponding to the highest
accuracy for each network are marked in bold. )en, we
calculate the difference in accuracy for each predictor under
AUC and W-index, which is shown in Figure 2. Overall
speaking, Table 3 and Figure 2 reveal that using the W-index
metric does affect the performance of these predictors, and
the accuracy scores of all predictors are reduced. However,
the accuracy of the same predictor in different networks
varies greatly. We find that the sparser the network is, the
lower the accuracy evaluated by the W-index, which shows
that the performance of a predictor is largely influenced by
the network structure. For example, both average degree and
clustering coefficient of Tvshow are extremely small, so the
accuracy scores of all predictors are extremely low, while the
Jazz network is the opposite.

4.4. Reliability of the W-Index. Whether the W-index can
maintain reliability in different contexts is an important
issue. We exploit two common methods based on empirical
data for comparative analysis to verify the accuracy and
stability of the W-index. Firstly, Figure 2 shows that, under
the W-index metric, the performance ranking of these
predictors in each network is almost the same as their
ranking under the AUC metric. )is means that if AUC is
considered to be able to effectively evaluate the pros and cons
of predictors, W-index has the same ability. Next, we
compare the correlation coefficient between W-index and
precision (see Figure 3) with that of AUC and precision on
six networks. FromTable 4, it can be seen that the correlation
coefficient between W-index and precision is closely similar
to that of AUC and precision in all six networks. Moreover, if
we do not consider the CN-W, LHN-W, RA-W, and WIC
predictors due to their poor performance, the correlation
coefficient between W-index and precision is almost the
same as that of AUC and precision (see Table 5). )e
consistency of correlation coefficient changes in different
contexts indicates that the W-index has a similar evaluation
effect as AUC. )e above two comparative analyses can
demonstrate the reliability of the W-index.

4.5.Performanceof theW-Index. In link prediction, we argue
evaluation serves two purposes. One is to quantify the
performance of algorithms, which is called absolute evalu-
ation. )e other is to quantify the extent to which one
predictor is better than another, which is called relative
evaluation. Here, we use the prediction accuracy as the
absolute evaluation score, e.g., a score of 1 measured by the
AUC means a perfect predictor, and a score of 0.5 measured
by the AUC means the predictor is not better than a pure
chance. Besides, we use prediction accuracy differences
between two predictors as the relative evaluation score, e.g.,
under the AUCmetric, the accuracy of RA is 0.97 and that of
CN is 0.95, and then the relative evaluation score is 0.02.

Generally, using the W-index metric, there is a larger
separability between evaluated methods on these six real-
world networks than using the AUC metric, which is caused
by the following two reasons. Firstly, when measured by the
W-index, the absolute evaluation score of the highest ac-
curacy for each network is still high enough. In other words,
there is no significant decrease in the highest score measured
by the W-index compared with the AUC. Specifically, the
difference of the highest accuracy does not exceed 0.01 on
four of six networks. Secondly, when measured by the
W-index, the relative evaluation score of the highest accu-
racies for each network becomes higher. )at is to say, the
prediction accuracy differences between different predictors
measured by the W-index are larger than those measured by
the AUC. For example, the prediction accuracy difference
between RA and CN is 0.018 on Jazz under the AUC, while it
is 0.024 under the W-index. )erefore, the W-index metric
can better distinguish the performance of these link pre-
diction methods.

Furthermore, we discuss the total distance between the
predictor performance, which is given by

Table 2: Structural features and basic information of six real-world
networks.

Networks |V| |E| k p C r

Jazz 198 2742 27.70 2.24 0.62 0.02
USAir 332 2126 12.81 2.74 0.63 −0.21
Metabolic 453 2025 8.94 2.66 0.65 −0.22
PB 1222 16714 27.36 2.74 0.32 −0.22
Tvshow 3892 17239 8.86 6.28 0.37 0.56
Yeast 6008 156945 52.25 2.54 0.17 −0.08
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d � 􏽘
1≤ i< j≤ |N|

dist xi, xj􏼐 􏼑,
(4)

where |N| is the number of predictors analyzed and dist(·, ·)

is one distance metric. We choose two standard distance
metrics here: Manhattan distance and Euclidean distance.
)e total distance between the predictor performance
measured by the W-index is consistently much larger than
that measured by the AUC on all datasets, as shown in
Figure 4. According to the above discussion, the W-index
metric explicitly encourages a larger separability between
evaluated methods.

4.6. Reevaluation of Link Prediction Methods. Since the
W-index encourages discriminative evaluation of link pre-
diction methods, it offers another perspective to observe the
performance of the predictors. Specifically, we use the
evaluation scores of CN and LP for comparison. Compared
with LP, which uses high-order path information, CN only
considers its second-order path. As a result, its state is
generally too limited to tell the differences between testing
links and unobserved links, and it is easier to draw.
)erefore, one natural guess is that the performance of the
CN is likely not as accurate as LP. However, we can find in
Figure 2 that, under the AUCmetric, CN is better than LP on
Jazz and Metabolic. And although it is inferior to LP in the
other four networks, the gap is acceptable. )is is somewhat
different from our assumption, but under the W-index,
except for the similar performance on Jazz, the CN is always
worse than the LP, and the difference is much larger. It is
particularly noteworthy that, under the two evaluation
metrics, the performance of CN and LP on Metabolic and
USAir is reversed. )is shows that LP can indeed alleviate
the problem of “degeneracy of the states.” By reducing the
number of draws to gain more wins or losses, LP provides a
more fine-grained score than CN.

From our definition of W-index in Section 2, the dif-
ference in prediction accuracy lies in draws. Based on our
assumption that wins are much more convincing than
draws for evaluating the superiority of a method, the
smaller the difference, the more reliable the method. We
can find in Figure 2 that LP has the smallest difference in
five of six networks followed by LRW and ICRA. On the

contrary, WIC, CN-W, LHN-W, and RA-W have the
biggest difference among all six networks. Meanwhile, from
the results of Table 3, the average prediction accuracy
differences between local similarity measures and their
W-forms measured by the W-index on these six networks
are 3.76 times as those measured by the AUC. Besides, the
average prediction accuracy difference between CN and LP,
CN and LRW, and CN and ICRAmeasured by theW-index
is 2.55, 2.41, and 2.21 times as that measured by the AUC.
For example, the average prediction accuracy difference
between CN and CN-W is 0.127 and 0.238 on Jazz mea-
sured by AUC and W-index, respectively; therefore, the
difference measured by the W-index is 1.869 times than
that measured by the AUC.

Hence, by using W-index, we can explicitly figure out
that LP, LRW, and ICRA have superior overall prediction
performance, whereas CN-W, LHN-W, RA-W, and WIC
perform poorly. As we expected, under the W-index metric,
quasi-local similarity predictors show more evident ad-
vantages over local similarity predictors. To our surprise,
community information does not necessarily improve the
accuracy of link prediction. For example, the W-form of CN
does not show excellent performance as in the previous
study, but there is no significant difference in the perfor-
mance of ICRA, which indicates that the way of introducing
community information has a great impact on the perfor-
mance of the predictor. More intuitively, we show the
statistical distributions of the performance of all predictors
measured by AUC andW-index on six networks in Figure 5.
Evidently, under the W-index, the performance between the
methods is easier to distinguish. )e performance scores of
outstandingmethods, such as LP and LRW, will have a larger
mean and smaller variance, which remarkably outperform
others.

4.7. Varying Network Structure. As mentioned in Section
4.3, the performance of a predictor is largely affected by the
network structure, such as network size (node number),
network density, average shortest path length, average
centrality, clustering coefficient, and network diameter. To
clarify the relationship between the W-index and the net-
work structure, we conduct experiments to investigate this in
extensive networks with different structures.

Table 3: )e prediction accuracy on six networks.

CN CN-W LHN LHN-W RA RA-W WIC ICRA LP LRW

Jazz AUC 0.953 0.826 0.902 0.796 0.971 0.829 0.809 0.956 0.945 0.912
W 0.946 0.708 0.901 0.680 0.970 0.712 0.690 0.956 0.945 0.912

USAir AUC 0.933 0.778 0.770 0.741 0.951 0.783 0.768 0.950 0.923 0.908
W 0.909 0.604 0.755 0.570 0.937 0.613 0.594 0.936 0.919 0.902

Metabolic AUC 0.920 0.748 0.739 0.731 0.956 0.753 0.744 0.956 0.917 0.869
W 0.881 0.532 0.730 0.520 0.946 0.542 0.528 0.948 0.915 0.868

PB AUC 0.917 0.893 0.762 0.770 0.922 0.895 0.890 0.927 0.931 0.937
W 0.890 0.843 0.745 0.725 0.904 0.851 0.840 0.910 0.930 0.936

Tvshow AUC 0.905 0.892 0.904 0.891 0.907 0.892 0.892 0.906 0.952 0.946
W 0.813 0.786 0.814 0.786 0.815 0.786 0.785 0.815 0.912 0.899

Yeast AUC 0.883 0.673 0.706 0.662 0.892 0.673 0.669 0.894 0.907 0.906
W 0.843 0.383 0.682 0.374 0.868 0.386 0.379 0.871 0.907 0.906
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Figure 2: Difference in accuracy for each predictor under AUC andW-index metrics. (a) Jazz accuracy changeW-AUC. (b) USAir accuracy
change W-AUC. (c) Metabolic accuracy change W-AUC. (d) PB accuracy change W-AUC. (e) Tvshow accuracy change W-AUC. (f ) Yeast
accuracy change W-AUC.
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Figure 3: Accuracy of ten predictors quantified by precision on six networks. (a) Jazz. (b) USAir. (c) Metabolic. (d) PB. (e) Tvshow. (f) Yeast.

Table 4: )e correlation coefficient betweenW-index score and precision score and that of AUC score and precision score on six networks.

Networks Jazz USAir Metabolic PB Tvshow Yeast
W-precision 0.373 0.412 0.695 0.880 0.236 0.295
AUC-precision 0.491 0.601 0.845 0.954 0.253 0.435
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Table 5: )e correlation coefficient between W-index score and precision score and that of AUC score and precision score on six networks
without considering the CN-W, LHN-W, RA-W, and WIC predictors.

Networks Jazz USAir Metabolic PB Tvshow Yeast
W-precision 0.840 0.995 0.898 0.956 −0.295 0.774
AUC-precision 0.853 0.995 0.902 0.967 −0.311 0.748
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Figure 4: Total distance between the measure performance calculated by (a) Manhattan distance and (b) Euclidean distance.
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Figure 5: Statistical distributions of the performance of all measures measured by (a) AUC and (b) W-index. )e line inside each box
indicates the median of the prediction accuracies on six networks.
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)e Watts–Strogatz (WS) small-world network is a
common network model, often used to describe real-world
social networks. To vary the network structure, a series of
WS small-world graphs are constructed as follows. First, a
ring over n nodes is created, and then each node in the ring is
joined to its k-nearest neighbors. Next, a series of rewirings
are performed: for each edge (u, v) in the underlying “n-ring
with k-nearest neighbors” with probability p, replace it with
a new edge (u, w) with uniformly random choice of existing
node w.

Table 6 shows the network structure of six groups of WS
small-world networks used in the following experiments,
namely, WS-Group1 to WS-Group6. Since network char-
acteristics are closely related, a change in one characteristic
will cause another change accordingly. For example, as the
network size becomes smaller, the average shortest path of
the network will inevitably become smaller. )erefore, we
only list the fluctuation range of the independent variable of
each group of networks and ignore the change of the de-
pendent variable, which is marked by “—.” Note that |V| is
the number of nodes, |E| is the number of edges, k is the
average degree of the network, d is the density of the net-
work, p is the average shortest path length of the network, B

is the average betweenness centrality of the network, C is the
average clustering coefficient of the network, and D is the
diameter of the network.

4.7.1. Network Size. We constructed ten networks with an
average degree of 10, but the number of nodes varies from
100 to 1000, as shown in WS-Group1 in Table 6. Figure 6
shows the performance of each predictor for different
networks in WS-Group1.

It can be seen that, under the AUC metric, as the
number of nodes increases, the performance of com-
munity-based local similarity predictors increases sig-
nificantly at first and then grows slightly. Figure 6 shows
that the turning point is 600 nodes. )e performance of
other predictors rebounds after a moderate decline and
eventually fluctuates within a narrow range after network
size exceeds 400. Similarly, under W-index, the perfor-
mance of community-based local similarity predictors
surges first and then goes up steadily after the network size
exceeds 600. Meanwhile, the trend of other local similarity
predictors is consistent with that under the AUC metric,
but the change range is greater. Exceptionally, the per-
formance of quasi-local similarity predictors gradually
goes down as the network size increases.

4.7.2. Network Density. Network density describes the
portion of all potential connections in a network that are
actual connections. We constructed eight networks with
1000 nodes, and the density of networks varies from 0.002 to
0.05, as shown in WS-Group2 in Table 6. As can be seen in
Figure 7, when the density is extremely small, the perfor-
mance of the predictors has a huge leap as the density in-
creases whether measured by the AUC metric or the
W-index. However, after the network density reaches a
certain value, the predictors’ performance shows different

trends as the network density continues to go up. Specifi-
cally, under the AUC metric, the performance of commu-
nity-based local similarity predictors drops slightly, while
the performance of other predictors remains the same.
Under the W-index, the trend of community-based local
similarity predictors is consistent with that under the AUC
metric, but the change range is greater. Unlike the previous
trend, the performance of other predictors, especially quasi-
local similarity predictors, is gradually increasing.

4.7.3. Average Shortest Path Length. )e shortest path be-
tween two nodes is defined as the path with the minimal
length. )e average shortest path length of a network is
defined as the mean of the shortest path of all pairs of nodes.
We constructed ten networks with 1000 nodes and 5000
edges. )e average shortest path length of these networks
varies from 3.26 to 50.45, as shown inWS-Group3 in Table 6.

Figure 8 shows that no matter whether it is measured by
the AUC metric or W-index, the performance of these
predictors will quickly reach its peak as the average shortest
path length increases. Since then, the performance of these
predictors is in a stable state. )e only difference is that,
under the W-index, the performance changing range of
these predictors is greater than that under the AUC metric.

4.7.4. Centrality. Centrality expresses the degree to which a
node is at the centre of the entire network, which can help
identify the vital nodes. )ere are several common centrality
algorithms; here, we take betweenness centrality as an ex-
ample. Betweenness centrality measures the fraction of the
shortest paths passing through a node. We constructed ten
networks with 2000 nodes and 10000 edges. )e average
betweenness centrality of these networks varies from 0.001 to
0.008, as shown in WS-Group4 in Table 6. It can be revealed
from Figure 9 that when measured by the AUC metric and
W-index, the performance of the predictors shows a rapid,
exponential increase as the average betweenness centrality
increases followed by a level off. Again, the performance
changing range under theW-index is greater than that under
the AUC metric.

4.7.5. Clustering Coefficient. Clustering coefficient is a co-
efficient used to describe the degree of clustering between the
nodes of a graph. Specifically, it is the degree to which the
adjacent nodes of a node are connected to each other. )e
average clustering coefficient of a graph is the arithmetic
average of the local clustering coefficient values of all nodes,
which measures the agglomeration degree of a graph on the
whole. We constructed ten networks with 1000 nodes and
5000 edges. )e average clustering coefficient of these
networks varies from 0.09 to 0.67, as shown in WS-Group5
in Table 6. Figure 10 shows that, under AUC and W-index,
the performance of predictors increases in proportion to the
average clustering coefficient of the networks, but after the
average clustering coefficient is over a certain value, the
growth rate decreases. )ese mean that the average
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Table 6: Network structure of six groups of WS small-world networks.

Networks |V| |E| k d p B C D

WS-Group1 100–1000 500–5000 10 — — — — —
WS-Group2 1000 1000–25000 — 0.002–0.05 — — — —
WS-Group3 1000 5000 — — 3.26–50.45 — — —
WS-Group4 2000 10000 — — — 0.001–0.008 — —
WS-Group5 1000 5000 — — — — 0.09–0.67 —
WS-Group6 1000 5000 — — — — — 5–100
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Figure 6: Performance of each predictor under AUC andW-index inWS-Group1. (a) Accuracy measured by AUC. (b) Accuracy measured
by W-index.
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Figure 7: Performance of each predictor under AUC andW-index inWS-Group2. (a) Accuracy measured by AUC. (b) Accuracy measured
by W-index.
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clustering coefficient of networks has an incredibly im-
portant impact on the performance of these predictors.

4.7.6. Diameter. )e diameter of a graph is defined as the
maximum distance between all pairs of nodes. We con-
structed ten networks with 1000 nodes and 5000 edges. )e
diameter of these networks varies from 5 to 100, as shown in
WS-Group6 in Table 6. Figure 11 shows that, in the initial
range, whether measured by AUC or W-index, with the
increase of the diameter of the network, the performance of

predictors takes off, and after that point, the growth is
negligible. Besides, the performance changing range is
greater under the W-index than that under the AUC metric.

4.7.7. Summary. It can be seen from the above analysis that
in addition to the number of nodes, other network structures
have a greater impact on the performance of the predictors.
Since these network structures are highly correlated, for
example, the larger the network diameter, the larger the
network clustering coefficient and the larger the edge
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Figure 8: Performance of each predictor under AUC andW-index inWS-Group3. (a) Accuracy measured by AUC. (b) Accuracy measured
by W-index.
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Figure 9: Performance of each predictor under AUC andW-index inWS-Group4. (a) Accuracy measured by AUC. (b) Accuracy measured
by W-index.
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betweenness, so the experimental results on these networks
look very similar, showing a trend of gradual improvement
in the performance. Of course, due to the characteristics of
the W-index itself, its range of change will be larger than the
AUC. Besides, although it is not very obvious, it can be seen
that only three lines can be clearly seen in these 10 curves.
)is shows that these predictors are almost divided into
three categories, namely, local similarity predictors (in-
cluding ICRA), local similarity predictors based on com-
munity information predictors (except ICRA), and quasi-
local similarity predictors. And the gap under theW-index is
larger than the gap under the AUC, which is similar to our
previous conclusion.

4.8. Varying Proportion of the Testing Set. As we all know, in
machine learning and deep learning communities, it is
important to reasonably divide the training set and testing
set, and the same is true for the link prediction problem.
Here, we carry out experiments to study the performance of
predictors under different ratios of the training set when
usingW-index and AUC for evaluation.)e datasets used in
the experiments are the same as those in Section 4.1, and the
experimental settings are the same as those in Section 4.2,
except the ratio of the training set ETrain to the testing set
ETest which is not fixed at 9 : 1. We evaluate the performance
of each predictor in the six networks when the ratio of the
training set ETrainto the set of links E ranges from 50% to
90%, as shown in Figure 12. )e value in the figure is the
difference in accuracy for each predictor under AUC and
W-index.

It can be seen that, as the proportion of the training set
increases, the change in the predictor performance is related
to the network structure. For example, in Tvshow, the
performance of all predictors has been significantly im-
proved, and the growth rate is decreasing as the proportion

of the training set increases. )e same happens in Metabolic
and Yeast, except for the LHN predictor. However, in USAir,
under both AUC and W-index metrics, the performance of
all predictors fluctuates as the proportion of the training set
increases, reaching the highest peak when the proportion of
the training set is 0.7. Apart from the LHN predictor, so does
Jazz.)e PB network combines the above two situations.)e
performance of the LHN, LHN-W, LRW, and LP predictors
oscillates as the proportion of the training set changes, while
the performance of the remaining predictors improves as the
proportion of the training set increases, and the growth rate
is gradually decreasing. Besides, the improvement in the
predictor performance under the W-index is greater than
that under the AUC evaluation.

)rough the above observations, it is not difficult to
figure out that the predictors have adaptability to the net-
work; whether the predictor performance can be improved
as the lengths of the training set increase is also related to the
nature of the predictor. For example, in most cases, the
change of the LHN index is different from other local
similarity predictors. Besides, the performance of quasi-local
similarity predictors is much less sensitive to the sampling
ratio than that of local similarity predictors.

5. Discussion

5.1. Properties of theW-Index. )e properties of theW-index
are compared with those of the AUC in the following:

(1) As mentioned in Section 2, the range of the W-index
is 0 to 1, while the value of the AUC ranges from 0.5
to 1. )is means that the limit on the values that the
W-index can take is greater than the AUC. However,
the AUC score of a link prediction method may also
be lower than 0.5 [48], which indicates that the
approach fails to predict the missing links and
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Figure 10: Performance of each predictor under AUC and W-index in WS-Group5. (a) Accuracy measured by AUC. (b) Accuracy
measured by W-index.
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cannot explain the evolution mechanism of the
network.

(2) Randomprediction (pure chance) is the benchmark for
judging the pros and cons of link prediction methods.
However, the W-index score of random prediction is
no longer a fixed value, like 0.5 points scored by the
AUC. Specifically, the score of random prediction
varies with the way where a random score is generated.
For example, if all testing links and unobserved links
are given the same score, theW-index score of random
prediction is 0. Alternatively, if the distribution of
random scores is normal, theW-index score of random
prediction is close to 0.5, or if the random scores are
generated from a discrete uniform distribution, the
W-index score of random prediction is a positive
number less than 0.5. Briefly, the W-index score of
random prediction ranges from 0 to 0.5.

(3) 0.5 points is still a benchmark score in the W-index,
but its meaning has changed. Under the AUC metric,
0.5 points means the same number of wins and losses,
that is, giving scores by pure chance. )is means that
the performance of a link predictor is better than
chance only when its AUC is greater than 0.5. Unlike
this, under theW-index, the score of pure chance is no
longer a fixed value, but its upper limit is 0.5 points.
)erefore, a link prediction method with a score
higher than 0.5 must be better than the pure chance.
Besides, when the number of wins is equal to the sum
of the draws and losses, the W-index value is 0.5
points. Obviously, a competitive approach should
have more wins than draws and losses. Taken to-
gether, only a link prediction method with score
above 0.5 is effective. )e greater the degree exceeds
0.5, the better the algorithm performs.

5.2. General Interpretation of the W-Index. As a matter of
fact, the proposed W-index is a special case of cost-sensitive
evaluation metrics. In undirected and unweighted graphs,
we can regard link prediction as a binary classification
problem where all pairs of nodes are divided into observed
edges and unobserved edges. )e classification result in-
cludes three cases. )e first is the correct classification, that
is, the testing link having a higher score than the unobserved
link or, namely, win. )e second is the wrong classification
result, namely, loss, which can be further refined into the
following two. One is treating observed edges as unobserved
edges, named L1, and the other is treating unobserved edges
as observed edges, named L2. )e third is it cannot be
classified, that is, the testing link having the same score as the
unobserved link, or, namely, draw. Among them, the latter
two classification results which are L1, L2 and draw will
bring costs.

Taking protein-protein interaction networks as an ex-
ample, we have to perform lots of expensive and time-
consuming experiments to discover unknown interactions.
In L1, we miss the experiment we were supposed to perform
and are unable to obtain discoveries. In L2, we do useless
experiments and could not get findings either. In the draw,
we need to perform all experiments, but this takes a lot of
time and money.

Under theW-index, we have the same penalties for these
three costs, that is, we get 0 points in draws and losses.
However, in different contexts, different classification results
often bring different costs. Furthermore, we can focus on the
cases where the cost is high and use the total cost of clas-
sification results as the evaluation criterion. For example, we
give −10 points in L1. In this way, although a link prediction
method with the highest accuracy under the AUC metric
may be abandoned, it has important practical significance in
applications.
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Figure 11: Performance of each predictor under AUC and W-index in WS-Group6. (a) Accuracy measured by AUC. (b) Accuracy
measured by W-index.

14 Complexity



6. Conclusions

In this paper, we discuss two side effects of draws in the AUC
and propose the W-index, which only cares about wins, to
obtain discriminative evaluation of link prediction methods.
A series of tools have been introduced for measuring the
reliability and the performance of this new metric in this
paper. Based on empirical data, two methods, i.e., ranking
change and correlation analysis, are applied for comparative
analysis to verify the reliability of the W-index. To evaluate
the performance of the W-index, we utilize local and global

distances to measure the differences between link prediction
methods. Moreover, the impact of the network structure and
training set length on the performance of predictors is
clarified under W-index and AUC. )ese tools may shed
light on the study of new evaluation metrics.

)e main observations from our experiments on various
networks are summarized as follows. Firstly, W-index is able
to effectively evaluate the performance of predictors com-
pared to AUC, which is supported by the following argu-
ments. )e performance ranking of link prediction methods
does not change significantly when using W-index and
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Figure 12: Performance of each predictor in the six networks under different proportions of the training set.
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AUC, respectively, and the results of correlation analysis of
W-precision and AUC-precision (see Tables 4 and 5) are also
highly consistent. )e next important observation is that
using W-index instead of AUC to evaluate the performance
of link predictors, the differences between these methods are
more evident, both locally and globally. )en, our results
show the use of community information does not necessarily
improve the performance of a predictor. Whether it works
depends on how it is utilized. For instance, the performance
of W-form algorithms (i.e., CN-W, LHN-W, RA-W, and
WIC) is not good, while ICRA always performs well. In
addition, the performance of a link predictor is affected by
the network structure, and our results in Section 4.7 show
that the average clustering coefficient of networks is themain
factor.

Finally, we would like to remind readers that, in 1995,
the football league increased the reward for a win from two
to three points, and the main objective of this rule change is
to encourage more exciting and attractive matches. )ere-
after, empirical data proved that the introduction of the
three-point system reduced the number of draws in football
matches and produced a more correct ranking of the teams
[49]. In addition, the total number of goals scored per game
also increased. Inspired by this, we hope that our work will
contribute to further research and exploration of more
competitive link prediction methods.
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