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Topological index (numeric number) is a mathematical coding of the molecular graphs that predicts the physicochemical,
biological, toxicological, and structural properties of the chemical compounds that are directly associated with the
molecular graphs. (e Zagreb connection indices are one of the TIs of the molecular graphs depending upon the
connection number (degree of vertices at distance two) appeared in 1972 to compute the total electron energy of the
alternant hydrocarbons. But after that, for a long period, these are not studied by researchers. Recently,
Ali and Trinajstic [Mol. Inform. 37(2018), 1 − 7] restudied the Zagreb connection indices and reported that the Zagreb
connection indices comparatively to the classical Zagreb indices provide the better absolute value of the correlation
coefficient for the thirteen physicochemical properties of the octane isomers (all these tested values have been taken from
the website http://www.moleculardescriptors.eu). In this paper, we compute the general results in the form of exact
formulae & upper bounds of the second Zagreb connection index and modified first Zagreb connection index for the
resultant graphs which are obtained by applying operations of corona, Cartesian, and lexicographic product. At the end,
some applications of the obtained results for particular chemical structures such as alkanes, cycloalkanes, linear poly-
nomial chain, carbon nanotubes, fence, and closed fence are presented. In addition, a comparison between exact and
computed values of the aforesaid Zagreb indices is also included.

1. Introduction

Graph theory has provided a variety of useful tools in which
one of the best tools is a topological index (TI). Molecules
and molecular compounds are often modeled by molecular
graphs. (e topological indices (TIs) predict hydrocarbon,
physicochemical, and structural properties of the molecular
graphs such as critical temperature, ZE-isomerism, chirality,
solubility, molecular mass, and connectivity, see [1–4].
Medical behaviours of the drugs, crystallin materials, and
nanomaterials which are very important for chemical and
pharmaceutical industries are also studied by TIs, see [5–8].
Todeschini et al. [9] also reported that TIs are widely used in
the study of quantitative structure-activity relationships
(QSARs) and quantitative structure-property relationships

(QSPRs).(ese relationships play a vital role in the subject of
cheminformatics, see [9–13].

TIs have been divided into different classes, but degree-
based are studied more, see [1, 4, 7, 14, 15, 16]. Gutman and
Trinajstić [17] investigated the correlation value between the
total π-electron energy and the structure of a molecule using
the first Zagreb index. Gutman et al. [18] developed their
work and established another TI for molecular structures
called the second Zagreb index. After that, many extended
works have been appeared on these invariants. For more
study, we refer to [9, 10, 19, 20]. Another TI was studied by
Gutman and Trinajstić in the same paper [17], but there was
not more attention on this index by other researchers up to
2017. Ali and Trinajstić [21] restudied this TI and renamed it
as the modified first Zagreb connection index (ZCI). (ey
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also reported that it has more precise values of the corre-
lation coefficients of various octane isomers. Du et al. [22],
Ducoffe et al. [23], and Shao et al. [24] determined extremal
alkanes and cycloalkanes under different conditions using
this ZCI. Zhu et al. [25] established the lower bound by using
the modified first ZCI of trees in terms of their order and
maximum degree. Tang et al. [26] computed the first and
second (ZCI) and modified first (ZCI) of the S-sum graphs.

A simple graph can be molded into a chemical structure
by using some operations. First of all, Graovac and Pisanski
[27] computed different results of the Wiener index using
product based on operations. So, many chemical graphs can
be generated by using simple graphs based on operations
such as alkane (C3H6) is the corona product of P3 &N2, a
type of cycloalkanes is cyclohexane (C6H12) that is the
corona product of C6 &N2, a polynomial chain and
nanotube (TUC4(m, n)) are the Cartesian product of
Pm &P2 and Cm &P2, and a fence and closed fence are the
lexicographic product of Pm &P2 and Cm &P2. Up till now,
many results of the various TIs have been presented under
different molecular graphs based on operations, see
[26, 28–38].

In this paper, we compute the second ZCI and modified
first ZCI of the resultant graphs which are obtained by
applying various operations of corona product, Cartesian
product, and lexicographic product (composition) in the
form of exact formulae and upper bounds. (e rest of the
paper is settled as Section 2 represents the preliminary
definitions and results, Section 3 covers the general results of
molecular graphs based on operations, and Section 4 in-
cludes the applications and conclusion.

2. Preliminaries

Let Q � (V(Q), E(Q)) be a simple and connected molecular
graph with a vertex set V(Q) and an edge set
E(Q)⊆V(Q) × V(Q). A null graph (N) has at least two
vertices and no edge. It becomes a trivial graph K1 if it has
exactly one vertex and no edge. Todesehini et al. [9] defined
kfQ(b) � |kNQ(b)| for kNQ(b) � a ∈ V(Q): d(a, b) � k{ }

such that 1fQ(b) � dG(b) and 2fQ(b) � τG(b) are called the
degree and connection number of the vertex b ∈ Q. Now,
throughout the paper, we assume that Q1 and Q2 are two
connected graphs such that |V(Q1)| � n1, |V(Q2)| � n2,
|E(Q1)| � e1, and |E(Q2)| � e2.

Alkanes are the simplest organic compounds containing
a single bound between carbon atoms. (ey are also called
hydrocarbon compounds. Its simple and Lewis structures
are shown in Figure 1.

(e some examples of alkanes are methane (CH4),
ethane (H3C-CH3), and propane (H3C-CH2-CH3), and
their Lewis structures are shown in Figure 2.

Cycloalkanes are cyclic organic compounds containing
the closed chain of carbon atoms. In other words, a
cycloalkane is arranged into a chemical structure obtained a
single ring (sometime side chains may be attached), and all

of the carbon-carbon bonds are single. (ese are classified
into two classes as homocyclic and heterocyclic compounds.
If cyclo-organic compounds containing between carbons [1
to 5], [6 to 10], and [11 to on wards] are called small,
mediam, and large cyclo organic compounds, respectively.
Cycloalkanes are the isomers of alkene, e.g., C3H6 is used as
the same chemical formula of cyclopropane as well as
propene. (e general formula of cycloalkanes is CnH2(n).
(e sets of Cyclopropane, cyclobutane, cyclopentane,

cyclohexane etc.}& pyrol, thiophene etc.  are examples
of cycloalkanes that are classified by homocyclic and
heterocyclic compounds, respectively. Furthermore, the
following Lewis structures of these cycloalkanes are
shown in Figure 3.

Definition 1. For a graphQ, the first Zagreb index (M1(Q)),
second Zagreb index (M2(Q)), and their coindices are
defined as

M1(Q) � 
b∈V(Q)

dQ(b) 
2

� 
ab∈E(Q)

dQ(a) + dQ(b) ,

M2(Q) � 
ab∈E(Q)

dQ(a) × dQ(b) ,

M1(Q) � 
ab∉E(Q)

dQ(a) + dQ(b) ,

M2(Q) � 
ab∉E(Q)

dQ(a) × dQ(b) .

(1)

Gutman et al. [17, 18, 39] defined the different degree-
based TIs which are frequently used in the studies of QSPR
and QSAR [40–43]. Corresponding to these degree-based
TIs, the connection-based TIs are defined in Definition 2.
For further studies of connection-based TIs, see [21, 22, 44].

Definition 2. For a graph Q, the first Zagreb connection
index (ZC1(Q)), second Zagreb connection index
(ZC2(Q)), and modified first Zagreb connection index
(ZC∗1(Q)) are defined as

ZC1(Q) � 
b∈V(Q)

τQ(b) 
2
,

ZC2(Q) � 
ab∈E(Q)

τQ(a) × τQ(b) ,

ZC
∗
1(Q) � 

b∈V(Q)

dQ(b)τQ(b) � 
ab∈E(Q)

τQ(a) + τQ(b) .

(2)

Definition 3. (e corona product Q1∘Q2 of two graphs Q1
and Q2 is obtained by taking one copy of Q1 and n1 copies of
Q2 (i.e., Qi

2: 1≤ i≤ n1 ) and then by joining each vertex of
the ith copy of Q2 to the ith vertex of one copy of Q1, where
1≤ i≤ n1. Also, a number of vertex set and edge set are
defined as: |V(Q1∘Q2)| � n1n2 + n1 and |E(Q1∘Q2)| � e1
+ n1e2 + n1n2. For more detail, see Figure 4.
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Figure 2: Lewis structure of (a) methane, (b) ethane and (c) propane.
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Figure 3: (a) (e set of Lewis structure of cyclopropane, cyclobutane, cyclopentane, and cyclohexane, (b) the set of Lewis structure of
pyrrole and thiophene.
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Figure 4: (a) Q1 � C4, (b) Q2 � C3, and (c) CoronaProduct(C4 ∘C3).
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Figure 1: (a) Simple structure of alkanes P2, P3, and P4, respectively, and (b) Lewis structure of alkanes P2, P3, and P4, respectively.
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Definition 4. (e Cartesian product (Q1 ⊙Q2) and lexico-
graphic product or composition (Q1[Q2]) of two graphs Q1
and Q2 are obtained by taking the vertex set V(Q1 × Q2) �

V(Q1) × V(Q2) and the edge set E(Q1 × Q2) �

[ (a1, b1)(a2, b2)where (a1, b1), (a2, b2) ∈ V(Q1) × V(Q2)}],
where with conditions

(i) either [a1 � a2 ∈ V(Q1)∧ b1b2 ∈ E (Q2)] or
[b1 � b2 ∈ V(Q2)∧ a1a2 ∈ E(Q1)],

(ii) either [a1 � a2 ∈ V(Q1)∧ b1b2 ∈ E(Q2)] or [b1, b2
∈ V(Q2)∧ a1a2 ∈ E(Q1)], respectively.

For more detail, see Figures 5 and 6.

Lemma 1 (see [45]). Let Q be a connected graph and Q be its
complement. .en, (i) b∈V(Q)dQ(b) � 2e, (ii) d

Q
(b) �

(n − 1) − dQ(b), and (iii) M1(Q) � M1(Q) − 4, where
|V(Q)| � n and |E(Q)| � e.

Lemma 2 (see [46]). Let Q be a connected graph with n
vertices and e edges. .en, τQ(a) + dQ(a)≤b∈NQ(a)(dQ(b)),
where equality holds if and only if Q is a C3, C4 − free graph.

Lemma 3 (see [26]). Let Q be a connected and C3, C4 − free
graph with n vertices and e edges. .en, a∈V(Q) τQ(a) �

M1(Q) − 2e.

3. Main Results

(is section consists on the main results.

Theorem 1. Let Q1 and Q2 be two connected and C3, C4 −

free graphs. .en, ZC2 and ZC∗1 of the corona product of Q1
and Q2 are as follows:
(a) ZC2 G1∘Q2(  � n2ZC

∗
1 Q1(  + ZC2 Q1(  + n

2
2M2 Q1( 

+ n1M2 Q2(  + n
2
2 + e2 M1 Q1( 

− n1 n2 − 1( M1 Q2(  + n1 n2 − 1( 
2
e2

+ 2e1 2 n2 − 1( e2 − M1 Q2(  

+ n2 n2 − 1(  − 2e2  M1 G1(  − 2e1 

+ 2e1 n
2
2 n2 − 1(  − 2n2e2 

+ n2 

ab∈E Q1( )

dQ1
(a)τQ1

(b) + dQ1
(b)τQ1

(a) .

(b) ZC
∗
1 Q1∘Q2(  � ZC

∗
1 Q1(  + 2n2M1 Q1(  − n1M1 Q2( 

+ 2n1e2 n2 − 2(  + 2n
2
2e1 + n1n2 n2 − 1(  + 4e1e2.

(3)

Proof

(a) If for any b ∈ V(Q1∘Q2) either b ∈ V(Q1) or
b ∈ V(Qi

2), where 1≤ i≤ n1 and
(i) Case I: if b ∈ V(Q1), then τQ1∘Q2

(b) � τQ1
(b)

+ n2dQ1
(b).

(ii) Case II: if b ∈ V(Qi
2), then τQ1∘Q2

(b) � (n2 − 1)

− dQi
2
(b) + dQ1

(bi).

ZC2 Q1∘Q2(  � 

ab∈E Q1∘Q2( )

τ Q1∘Q2( )(a) × τ Q1∘Q2( )(b) 

� 

ab∈E Q1∘Q2( )

a,b∈V Q1( )

τQ1
(a) × τQ1

(b)  + 

ab∈E Q1∘Q2( )

a,b∈V Q2( )

τQ2
(a) × τQ2

(b)  + 

ab∈E Q1∘Q2( )

a∈V Q1( )∧b∈V Q2( )

τQ1
(a) × τQ2

(b) . (4)

Take



uv∈E Q1∘Q2( )

a,b∈V Q1( )

τQ1
(a) × τQ1

(b)  � 

ab∈E Q1( )

τQ1
(a) + n2dQ1

(a)  × τQ1
(b) + n2dQ1

(b)  

� 

ab∈E Q1( )

τQ1
(a)τQ1

(b) + n2dQ1
(b)τQ1

(a) + n2dQ1
(a)τQ1

(b) + n
2
2dQ1

(a)dQ1
(b) 

� ZC2 Q1(  + n
2
2M2 Q1(  + n2 

ab∈E Q1( )

dQ1
(a)τQ1

(b) + dQ1
(b)τQ1

(a) .

(5)
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Also take



ab∈E Q1∘Q2( )
a,b∈V Q2( )

τQ2
(a) × τQ2

(b) 

� 

n1

i�1


ab∈E Qi
2( )

n2 − 1(  − dQi
2
(a) + dQ1

bi(   × n2 − 1(  − dQi
2
(b) + dQ1

bi(   

� 

n1

i�1


ab∈E Qi
2( )

n2 − 1( 
2

− n2 − 1(  dQi
2
(a) + dQi

2
(b)  + 2 n2 − 1( dQ1

bi(  + dQi
2
(u)dQi

2
(b) − dQ1

bi( dQi
2
(a)

− dQ1
bi( dQi

2
(b) + d

2
Q1

bi( 

� n1 n2 − 1( 
2
e2 − n1 n2 − 1( M1 Q2(  + 2e1 2 n2 − 1( e2 − M1 Q2(   + n1M2 Q2(  + e2M1 Q1( .

(6)

Similarly,



ab∈E Q1∘Q2( )

a∈V Q1( )∧b∈V Q2( )

τQ1
(a) × τQ2

(b) 

� 

n1

i�1


b∈V Qi
2( )

τQ1
ai(  + n2dQ1

ai(   × n2 − 1(  − dQi
2
(b) + dQ1

ai(   

� n2 n2 − 1(  − 2e2  + M1 Q1(  − 2e1  + n2ZC
∗
1 Q1(  + 2e1 n

2
2 n2 − 1(  − 2n2e2  + n

2
2M1 Q1( .

(7)

1
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Figure 5: (a) Q1 � C5, (b) Q2 � P2, and (c) CartesianProduct(C5 ⊙P2).
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Figure 6: (a) Q1 � C4, (b) Q2 � P2, and (c) LexicographicProduct(C4[P2]).
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Consequently,

ZC2 Q1∘Q2(  � n2ZC
∗
1 Q1(  + ZC2 Q1(  + n

2
2M2 Q1(  + n1M2 Q2(  + n

2
2 + e2 M1 Q1( 

− n1 n2 − 1( M1 Q2(  + n1 n2 − 1( 
2
e2 + 2e1 2 n2 − 1( e2 − M1 Q2(   + n2 n2 − 1(  − 2e2  M1 G1(  − 2e1 

+ 2e1 n
2
2 n2 − 1(  − 2n2e2  + n2 

ab∈E Q1( )

dQ1
(a)τQ1

(b) + dQ1
(b)τQ1

(a) .

(8)

(b)

ZC
∗
1 Q1∘Q2(  � 

ab∈E Q1∘Q2( )

τ Q1∘Q2( )(a) + τ Q1∘Q2( )(b) 

� 

ab∈E Q1∘Q2( )

a,b∈V Q1( )

τQ1
(a) + τQ1

(b)  + 

ab∈E G1∘G2( )

a,b∈V Q2( )

τQ2
(a) + τQ2

(b)  + 

ab∈E Q1∘Q2( )

a∈V Q1( )∧b∈V Q2( )

τQ1
(a) + τQ2

(b) . (9)

Take



ab∈E Q1∘Q2( )
a,b∈V Q1( )

τQ1
(a) + τQ1

(b)  � 

ab∈E Q1( )

τQ1
(a) + n2dQ1

(a)  + τQ1
(b) + n2dQ1

(b)   �� ZC
∗
1 Q1(  + n2M1 Q1( .

(10)

Also take



ab∈E Q1∘Q2( )
a,b∈V Q2( )

τQ2
(a) + τQ2

(b) 

� 

n1

i�1


ab∈E Qi
2( )

n2 − 1(  − dQi
2
(u) + dQ1

bi(   + n2 − 1(  − dQi
2
(b) + dQ1

bi(   

� 2n1 n2 − 1( e2 − n1M1 Q2(  + 4e1e2.

(11)

Similarly,



ab∈E Q1∘Q2( )
a∈V Q1( )∧b∈V Q2( )

τQ1
(a) + τQ2

(b)  � n2 M1 Q1(  − 2e1  + 2n
2
2e1 + n1n2 n2 − 1(  − 2n1e2 + 2n2e1.

(12)

Consequently,

ZC
∗
1 Q1∘Q2(  � ZC

∗
1 Q1(  + 2n2M1 Q1(  − n1M1 Q2(  + 2n1e2 n2 − 2(  + 2n

2
2e1 + n1n2 n2 − 1(  + 4e1e2. (13)

□
Theorem 2. Let Q1 and Q2 be two connected and C3, C4 −

free graphs..en, ZC2 and ZC
∗
1 of the Cartesian product of Q1

and Q2 are as follows:

6 Complexity



(a) ZC2 Q1 ⊙Q2(  � 2 M1 Q2(  − e2 ZC
∗
1 Q1(  + 2 M1 Q1(  − e1 ZC

∗
1 Q2(  + n2ZC2 Q1( 

+ n1ZC2 Q2(  + e2ZC1 Q1(  + e1ZC1 Q2(  + M1 Q1( M2 Q2(  + M1 Q2( M2 Q1( 

+ 2e2 

a1a2∈E Q1( )

dQ1
u1( τQ1

a2(  + dQ1
a2( τQ1

a1(  

+ 2e1 

b1b2∈E Q2( )

dQ2
b1( τQ2

b2(  + dQ2
b2( τQ2

b1(  ,

(b) ZC
∗
1 Q1 ⊙Q2(  � n2ZC

∗
1 Q1(  + n1ZC

∗
1 Q2(  + 4e2M1 Q1(  + 4e1M1 Q2(  − 8e1e2.

(14)

Proof

(a) For a ∈ V(Q1), b ∈ V(Q2), and (a, b) ∈ V(Q1 ⊙Q2),
we have

τQ1 ⊙Q2
(a, b) � τQ1

(a) + dQ1
(a)dQ2

(b) + τQ2
(b),

ZC2 Q1 ⊙Q2(  � 

a1 ,b1( ) a2 ,b2( )∈E Q1⊙Q2( )

τQ1 ⊙Q2
a1, b1(  × τQ1 ⊙Q2

a2, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

τQ1 ⊙Q2
a, b1(  × τQ1 ⊙Q2

a, b2(   + 

b∈V Q2( )



a1a2∈E Q1( )

τQ1 ⊙Q2
a1, b(  × τQ1 ⊙Q2

a2, b(  .

(15)

Take



a∈V Q1( )



b1b2∈E Q2( )

τQ1 ⊙Q2
a, b1(  × τQ1 ⊙Q2

a, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

τQ1
(a) + dQ1

(a)dQ2
b1(  + τQ2

b1(   × τQ1
(a) + dQ1

(a)dQ2
b2(  + τQ2

b2(   

� e2ZC1 Q1(  + M1 Q2( ZC
∗
1 Q1(  + ZC

∗
1 Q2(  M1 Q1(  − 2e1  + M1 Q1( M2 Q2(  + n1ZC2 Q2( 

+ 2e1 

b1b2E Q2( )

dQ2
b1( τQ2

b2(  + dQ2
b2( τQ2

b1(  .

(16)

Similarly,



b∈V Q2( )



a1a2∈E Q1( )

τQ1 ⊙Q2
a1, b(  × τQ1 ⊙Q2

a2, b(  

� n2ZC2 Q1(  + ZC
∗
1 Q1(  M1 Q2(  − 2e2  + 2e2 

a1a2∈E Q1( )

dQ1
a1( τQ1

a2(  + dQ1
a2( τQ1

a1(  

+ M1 Q2( M2 Q1(  + M1 Q1( ZC
∗
1 Q2(  + e1ZC

∗
1 Q2( .

(17)

Consequently,

ZC2 Q1 ⊙Q2(  � 2 M1 Q2(  − e2 ZC
∗
1 Q1(  + 2 M1 Q1(  − e1 ZC

∗
1 Q2(  + n2ZC2 Q1( 

+ n1ZC2 G2(  + e2ZC1 Q1(  + e1ZC1 Q2(  + M1 Q1( M2 Q2(  + M1 Q2( M2 Q1(  + 2e2



a1a2∈E Q1( )

dQ1
u1( τQ1

a2(  + dQ1
a2( τQ1

a1(   + 2e1 

b1b2∈E Q2( )

dQ2
b1( τQ2

b2(  + dQ2
b2( τQ2

b1(  .

(18)

Complexity 7



(b) Consider

ZC
∗
1 Q1 ⊙Q2(  � 

a1 ,b1( ) a2 ,b2( )∈E Q1 ⊙Q2( )

τQ1 ⊙Q2
a1, b1(  + τQ1 ⊙Q2

a2, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

τQ1 ⊙Q2
a, b1(  + τQ1 ⊙Q2

a, b2(   + 

b∈V Q2( )



a1a2∈E Q1( )

τQ1 ⊙Q2
a1, b(  + τQ1 ⊙Q2

a2, b(  .

(19)

Take



a∈V Q1( )



b1b2∈E Q2( )

τQ1 ⊙Q2
a, b1(  + τQ1 ⊙Q2

a, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

τQ1
(a) + dQ1

(a)dQ2
b1(  + τQ2

b1(   + τQ1
(a) + dQ1

(a)dQ2
b2(  + τQ2

b2(   

� 2e2 M1 Q1(  − 2e1  + 2e1M1 Q2(  + n1ZC
∗
1 Q2( .

(20)

Similarly,



b∈V Q2( )



a1a2∈E Q1( )

τQ1 ⊙Q2
a1, b(  + τQ1 ⊙Q2

a2, b(  

� n2ZC
∗
1 Q1(  + 2e2M1 Q1(  + 2e1M1 Q2(  − 4e1e2.

(21)

Consequently,

ZC
∗
1 Q1 ⊙Q2(  � n2ZC

∗
1 Q1(  + n1ZC

∗
1 Q2(  + 4e2M1 Q1(  + 4e1M1 Q2(  − 8e1e2. (22)

□
Theorem 3. Let Q1 and Q2 be two connected graphs. .en,
ZC2 and ZC

∗
1 of the composition (or lexicographic product) of

Q1 and Q2 are as follows:

(a) ZC2 Q1 Q2 ( ≤ n2 n2 n2 − 1(  − 4e2 + 2n2e2 + n2δ2 − δ2 ZC∗1 Q1(  + n
2
2 n2 + δ2 + 2e2( ZC2 Q1( 

+ n
2
2e2ZC1 Q1(  + n1 − n1n2 − 2n2e1 + 3e1( M1 Q2(  + n1 + 2e1( M2 Q2(  + 2n2 n2 − 1( e2 − n2M1 Q2(  

M1 Q1(  − 2e1  + n2 − 1(  n1e2 n2 − 1(  + e1e2 n2 − 2(  + δ2

n2 + n2e2 − e1 − 1(  − n2 − 1( e1M1 Q2(  + e1M2 Q2( 

− 2n2 

a1a2∈E Q1( )



b1b2∈E Q2( )

dQ2
b1( τQ1

a2(  + dQ2
b2( τQ1

a1(  

− n2 

a1a2∈E Q1( )



b1b2 ∉ E Q2( )

dQ2
b1( τQ1

a2(  + dQ2
b2( τQ1

a1(  ,

(b) ZC∗1 Q1 Q2 ( ≤ n2 n2 + δ2 + 2e2( ZC∗1 Q1(  + 2n2e2M1 Q1(  − n1 + 2e1( M1 Q2( 

+ n2 − 1(  2n1e2 + 2n2e1 + 2δ2e1 + 4e1e2(  − 4 n2 + 1( e1e2 − e1M1 Q2( .

(23)
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Proof

(a) For a ∈ V(Q1), b ∈ V(Q2), and (a, b) ∈ V(Q1[Q2]),
we have

τQ1 Q2[ ](a, b) � n2τQ1
(a) + d

Q2
(b) � n2τQ1

(a) + n2 − 1(  − dQ2
(b),

ZC2 Q1 Q2 (  � 

a1 ,b1( ) a2 ,b2( )∈E Q1 Q2[ ]( )

τQ1 Q2[ ] a1, b1(  × τQ1 Q2[ ] a2, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a, b1(  × τQ1 Q2[ ] a, b2(   + 

b∈V Q2( )



a1a2∈E Q1( )

τQ1 Q2[ ] a1, b(  × τQ1 Q2[ ] a2, b(  

+ 

a1a2∈E Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a1, b1(  × τQ1 Q2[ ] a2, b2(  

+ 

a1a2∈E Q1( )



b1b2 ∉ E Q2( )

τQ1 Q2[ ] a1, b1(  × τQ1 Q2[ ] a2, b2(  .

(24)

Take



a∈V Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a, b1(  × τQ1 Q2[ ] a, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

n2τQ1
(a) + n2 − 1(  − dQ2

b1(   × n2τQ1
(a) + n2 − 1(  − dQ2

b2(   

� n
2
2e2ZC1 Q1(  + 2n2 n2 − 1( e2 − n2M1 Q2(   M1 Q1(  − 2e1  + n1 n2 − 1( 

2
e2 − n1 n2 − 1( M1 Q2(  + n1M2 Q2( .

(25)

Also take



a1a2∈E Q1( )



b1b2 ∉ E Q2( )

τQ1 Q2[ ] a1, b1(  × τQ1 Q2[ ] a2, b2(  

≤ 

a1a2∈E Q1( )



b1b2 ∉ E Q2( )

n2τQ1
a1(  + n2 − 1(  − dQ2

b1(   × n2τQ1
a2(  + n2 − 1(  − dQ2

b2(   

� 

a1a2∈E Q1( )



b1b2 ∉ E Q2( )

n
2
2τQ1

a1( τQ1
a2(  + n2 n2 − 1(  τQ1

a1(  + τQ1
a2(   − n2 dQ2

b1( τQ1
a2(  + dQ2

b2( τQ1
a1(  

+ n2 − 1( 
2

− n2 − 1(  dQ2
b1(  + dQ2

b2(   + dQ2
b1( dQ2

b2( .

(26)

Let’s suppose that



b1b2∉E Q2( )

� n2 n2 − 1(  − 2e2 � δ2

� n
2
2δ2ZC2 Q1(  + n2 n2 − 1( δ2ZC

∗
1 Q1(  − n2 

a1a2∈E Q1( )



b1b2∉E Q2( )

dQ2
b1( τQ1

a2(  + dQ2
b2( τQ1

a1(  

+ n2 − 1( 
2δ2e1 − n2 − 1( e1M1 Q2(  + e1M2 Q2( .

(27)
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Similarly,



b∈V Q2( )



a1a2∈E Q1( )

τQ1 Q2[ ] a1, b(  × τQ1 Q2[ ] a2, b(  

� n2 n2 n2 − 1(  − 2e2 ZC
∗
1 Q1(  + n

3
2ZC2 Q1(  + e1M1 Q2(  + n2 − 1( e1 n2 n2 − 1(  − 4e2 .

a1a2 ∈ E Q1(  

a1a2∈E Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a1, b1(  × τQ1 Q2[ ] a2, b2(  ,

� 2 

a1a2∈E Q1( )



b1b2∈E Q2( )

n2τQ1
a1(  + n2 − 1(  − dQ2

b1(   × n2τQ1
a2(  + n2 − 1(  − dQ2

b2(   

� 2n
2
2e2ZC2 Q1(  + 2n2 n2 − 1( e2ZC

∗
1 Q1(  − 2n2 

a1a2∈E Q1( )



b1b2∈E Q2( )

dQ2
b1( τQ1

a2(  + dQ2
b2( τQ1

a1(  

+ 2 n2 − 1( 
2
e1e2 − 2 n2 − 1( e1M1 Q2(  + 2e1M2 Q2( .

(28)

Consequently,

ZC2 Q1 Q2 ( ≤ n2 n2 n2 − 1(  − 4e2 + 2n2e2 + n2δ2 − δ2 ZC
∗
1 Q1(  + n

2
2 n2 + δ2 + 2e2( ZC2 Q1( 

+ n
2
2e2ZC1 Q1(  + n1 − n1n2 − 2n2e1 + 3e1( M1 Q2(  + n1 + 2e1( M2 Q2(  + 2n2 n2 − 1( e2 − n2M1 Q2(  

M1 Q1(  − 2e1  + n2 − 1(  n1e2 n2 − 1(  + e1e2 n2 − 2(  + δ2 n2 + n2e2 − e1 − 1(  ,

− n2 − 1( e1M1 Q2(  + e1M2 Q2(  − 2n2 

a1a2∈E Q1( )



b1b2∈E Q2( )

dQ2
b1( τQ1

a2(  + dQ2
b2( τQ1

a1(  

− n2 

a1a2∈E Q1( )



b1b2 ∉ E Q2( )

dQ2
b1( τQ1

a2(  + dQ2
b2( τQ1

a1(  .

(29)

(b)

ZC
∗
1 Q1 Q2 (  � 

a1 ,b1( ) a2 ,b2( )∈E Q1 Q2[ ]( )

τQ1 Q2[ ] a1, b1(  + τQ1 Q2[ ] a2, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a, b1(  + τQ1 Q2[ ] a, b2(  

+ 

b∈V Q2( )



a1a2∈E Q1( )

τQ1 Q2[ ] a1, b(  + τQ1 Q2[ ] a2, b(  

+ 

a1a2∈E Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a1, b1(  + τQ1 Q2[ ] a2, b2(  

+ 

a1a2∈E Q1( )



b1b2 ∉ E Q2( )

τQ1 Q2[ ] a1, b1(  + τQ1 Q2[ ] a2, b2(  .

(30)

Take



a∈V Q1( )



b1b2∈E Q2( )

τQ1 G2[ ] a, b1(  + τQ1 Q2[ ] a, b2(  

� 

a∈V Q1( )



b1b2∈E Q2( )

n2τQ1
(a) + n2 − 1(  − dQ2

b1(   + n2τQ1
(a) + n2 − 1(  − dQ2

b2(  

� 2n2e2 M1 Q1(  − 2e1  + 2n1 n2 − 1( e2 − n1M1 Q2( .

(31)
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Also take



a1a2∈E Q1( )



b1b2∉E Q2( )

τQ1 Q2[ ] a1, b1(  + τQ1 Q2[ ] a2, b2(  

≤ 

a1a2∈E Q1( )



b1b2∉E Q2( )

n2τQ1
a1(  + n2 − 1(  − dQ2

b1(   + n2τQ1
a2(  + n2 − 1(  − dQ2

b2(   

� n2δ2ZC
∗
1 Q1(  + 2 n2 − 1( δ2e1 − e1M1 Q2( .

(32)

1 2 3

(a)

s t

(b)

1

s1

3

t3s3

s2 t2

2 C

H H

C

H H

C

HH
t1

(c)

Figure 7: (a) Q1 � P3, (b) Q2 � N2, and (c) alkane (P3 ∘N2 � C3H6).

1

2

3

4

5

6

(a)

s

t

(b)

H

H

H

H

H

H

H

H

H

H

H

HC

C

C

C

C

C

s2

s6

s4

s5

s3

s1

t3

t2

t4

t5

t1

t6

(c)

Figure 8: (a) Q1 � C6, (b) Q2 � N2, and (c) cyclohexane (C6 ∘N2 � C6H12).

1 2 3 4 5

(a)

s

t

(b)

(1, s)

(2, s)

(3, s)

(4, s)

(5, s)

(1, t)

(2, t)

(3, t)

(4, t)

(5, t)

(c)

Figure 9: (a) Q1 � P5, (b) Q2 � P2, and (c) (P5 ⊙P2).
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Similarly,



b∈V Q2( )



a1a2∈E Q1( )

τQ1 Q2[ ] a1, b(  + τQ1 Q2[ ] a2, b(  

� n
2
2ZC
∗
1 Q1(  + 2n2 n2 − 1( e1 − 4e1e2, 

a1a2∈E Q1( )



b1b2∈E Q2( )

τQ1 Q2[ ] a1, b1(  + τQ1 Q2[ ] a2, b2(  

� 2 

a1a2∈E Q1( )



b1b2∈E Q2( )

n2τQ1
a1(  + n2 − 1(  − dQ2

b1(   + n2τQ1
a2(  + n2 − 1(  − dQ2

b2(   

� 2n2e2ZC
∗
1 Q1(  + 4 n2 − 1( e1e2 − 2e1M1 Q2( .

(33)

1 2 3

(a)

t

u v

w

s

(b)

(2, t)

(1, s) (2, s) (3, s)

(1, t)

(1, u)

(1, v)

(1, w)

(2, u)

(2, v)

(2, w)

(3, t)

(3, u)

(3, v)

(3, w)

(c)

Figure 10: (a) Q1 � P3, (b) Q2 � C5, and (c) carbon nanotube (TUC4(m, n)) (P3 ⊙C5).

1 2 3 4 5

(a)

s

t

(b)

(1, s) (1, t)

(2, s)

(3, s)

(4, s)

(5, s)

(2, t)

(3, t)

(4, t)

(5, t)

(c)

Figure 11: (a) Q1 � P5, (b) Q2 � P2, and (c) fence (P5[P2]).

1

2 3

4

(a)

s t

(b)

(1, s) (4, s)

(2, s) (3, s)
(1, t) (4, t)

(2, t) (3, t)

(c)

Figure 12: (a) Q1 � C4, (b) Q2 � P2, and (c) closed fence (C4[P2]).
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Consequently,

ZC
∗
1 Q1 Q2 ( ≤ n2 n2 + δ2 + 2e2( ZC

∗
1 Q1(  + 2n2e2M1 Q1(  − n1 + 2e1( M1 Q2(  + n2 − 1(  2n1e2 + 2n2e1 + 2δ2e1 + 4e1e2( 

− 4 n2 + 1( e1e2 − e1M1 Q2( .

(34)

□
4. Applications and Conclusion

In this section, we present some applications of the
obtained results for particular chemical structures such
as alkanes (see Figure 7), cycloalkanes (see Figure 8),
linear polynomial chain (see Figure 9), carbon nanotubes
(see Figure 10), fence (see Figure 11), and closed fence
(see Figure 12). We also give the both exact and com-
puted values of the obtained results for the aforesaid
particular chemical structures to develop an easy un-
derstanding. Let N2 be a null graph, P2, P3, and P5 be
three particular alkanes called by paths, and C4, C5, and
C6 be cycles.

4.1. Corona Product

Example 1. Alkane (C3H6).

(i) Exact value of ZC2(P3∘N2) � 72,

(ii) Exact value of ZC∗1(P3∘N2) � 48,

(iii) Computed value of ZC2(P3∘N2) � 72,

(iv) Computed value of ZC∗1(P3∘N2) � 48.

Example 2. Cyclohexane (C6H12).

(i) Exact value of ZC2(C6∘N2) � 432,

(ii) Exact value of ZC∗1(C6∘N2) � 180,

(iii) Computed value of ZC2(C6∘N2) � 432,

(iv) Computed value of ZC∗1(C6∘N2) � 180.

4.2. Cartesian Product

Example 3. Polynomial chain.

(i) Exact value of ZC2(P5 ⊙P2) � 114,

(ii) Exact value of ZC∗1(P5 ⊙P2) � 76,

(iii) Computed value of ZC2(P5 ⊙P2) � 114,

(iv) Computed value of ZC∗1(P5 ⊙P2) � 76.

Example 4. Carbon nanotube (TUC4(m, n)).

(i) Exact value of ZC2(P3 ⊙C5) � 730,

(ii) Exact value of ZC∗1(P3 ⊙C5) � 270,

(iii) Computed value of ZC2(P3 ⊙C5) � 730,

(iv) Computed value of ZC∗1(P3 ⊙C5) � 270.

4.3. Lexicographic Product

Example 5. Fence (P5[P2]).

(i) Exact value of ZC2(P5[P2]) � 128,

(ii) Exact value of ZC∗1(P5[P2]) � 104,

(iii) Computed value of ZC2(P3[P3]) � 128,

(iv) Computed value of ZC∗1(P5[P2]) � 104.

Example 6. Closed fence (C4[P2]).

(i) Exact value of ZC2(C4[P2]) � 72,

(ii) Exact value of ZC∗1(C4[P2]) � 72,

(iii) Computed value of ZC2(C4[P2])≤ 80,

(iv) Computed value of ZC∗1(C4[P2])≤ 88.

In this paper, we have computed the general results
related to the second ZCI and modified first ZCI of the
resultant graphs which are obtained with the help of various
operations of product on graphs such as corona product,
Cartesian product, and lexicographic product (composi-
tion). (e obtained results also illustrated with the help of
particular class of molecular graphs. However, the problem
is still open to compute the ZCI of the molecular graphs
under the different operations of subdivision, addition and
product, etc.
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